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PREFACE.

TTAVING beeu invited by President Oilman to deliver a

-*—*- course of lectures in the Johns Hopkins University after

the meeting of the British Association in Montreal in 1884, on

a subject in Physical Science to be chosen by myself, I gladly

accepted the invitation. I chose as subject the Wave Theory

of Light with the intention of accentuating its failures ; rather

than of setting forth to junior students the admirable success with

which this beautiful theory had explained all that was known

of light before the time of Fresnel and Thomas Young, and

had produced floods of new knowledge splendidly enriching the

whole domain of physical science. My audience was to consist of

Professorial fellow-students in physical science ; and from the

beginning I felt that our meetings were to be conferences of

coefficients, in endeavours to advance science, rather than teach-

ings of my comrades by myself I spoke with absolute freedom,

and had never the slightest fear of undermining their perfect

faith in ether and its light-giving waves : by anything I could

tell them of the imperfection of our mathematics ; of the insuffi-

ciency or faultiness of our views regarding the dynamical qualities

of ether; and of the overwhelmingly great difficulty of finding

a field of action for ether among the atoms of ponderable matter.

We all felt that difficulties were to be faced and not to be

evaded ; were to be taken to heart ivith the hope of solving

them if possible ; but at all events with the certain assurance

that there is an explanation of every difficulty though we may

never succeed in finding it.
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It is in some measure satisfactory to me, and I hope it will

be satisfactory to all my Baltimore coefficients still alive in our

world of science, when this volume reaches their hands ; to find

in it dynamical explanations of every one of the difficulties with

which we were concerned from the first to the last of our twenty

lectures of 1884. All of us will, I am sure, feel sympathetically

interested in knowing that two of ourselves, Michelson and Morley,

have by their great experimental work on the motion of ether

relatively to the earth, raised the one and only serious objection*

against our dynamical explanations ; because they involve the

assumption that ether, in the space traversed by the earth and

other bodies of the solar system, is at rest absolutely except in so

far as it is moved by waves of light or radiant heat or variations

of magnetic force. It is to be hoped that farther experiments

will be made ; to answer decisively the great question :—is, or

is not, ether at rest absolutely throughout the universe, except

in so far as it is moved by waves generated by motions of ponder-

able matter ? I cannot but feel that the true answer to this

question is in the affirmative, in all probability : and provisionally,

I assume that it is so, but always bear in mind that experimental

proof or disproof is waited for. As far as we can be contented

with this position, we may feel satisfied that all the difficulties

of 1884, set forth in Lectures I, X, and XV, are thoroughly

explained in Lectures XVIII, XIX, and XX, as written afresh

in 1902 and 1903.

It seems to me that the next real advances to be looked for in

the dynamics of ether are :

—

(I) An explanation of its condition in the neighbourhood of

a steel magnet or of an electroma^i^ou, in virtue of which mutual

static force acts between two magnets whether in void ether or in

space occupied also by gaseous, liquid, or solid, ponderable matter.

(II) An investigation of the mutual force between two moving

electrions, modified from purely Boscovichian repulsion; as it must

be by the composition, with that force, of a force due to the inertia

* See Appendix A § 18 and Appendix B § 10.
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of the ether set in motion by the motion of each of the electrions.

It seems to me that, of these, (II) may be at present fairly within

our reach ; but that (I) needs a property of ether not included

in the mere elastic-solid-theory worked out in the present volume.

My object in undertaking the Baltimore Lectures was to find how

much of the phenomena of light can be explained without going

beyond the elastic-solid-theory. We have now our answer : every

thing non-magnetic; nothing magnetic. The so-called "electro-

magnetic theory of light " has not helped us hitherto : but the

grand object is fully before us of finding a comprehensive dynamics

of ether, electricity, and ponderable matter, which shall include

electrostatic force, magnetostatic force, electromagnetism, electro-

chemistry, and the wave theory of light.

I take this opportunity of expressing the gratitude with which

I remember the hearty and genial cooperation of my coefficients

in our meetings of 19 years ago in Baltimore, and particularly

the active help given me by the late Prof. Rowland, from day to

day all through our work.

I desire also to specially thank one of our number, Mr A. S.

Hathaway, for the care and fidelity with which he stenographically

recorded my lectures, and gave his report to the Johns Hopkins

University in the papyrograph volume published in December 1884.

The first eleven lectures, as they appear in the present volume,

have been printed from the papyrograph, with but little of even

verbal correction ; and with a few short additions duly dated.

Thirteen and a half years after the delivery of the lectures,

some large additions were inserted in Lecture XII. In Lectures

XIII, XIV, XV, freshly written additions supersede larger and

larger portions of the papjTOgraph report, which still formed

the foundation of each Lecture. Lectures XVI—XX have been

written afresh during 1901, 1902, 1908.

In my work of the last five years for the present volume

I have received valuable assistance successively from Mr W. Craig

Henderson, Mr W. Anderson, and Mr G. A. Witherington ; not

a 5
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only in secretarial affairs, but frequently also in severe mathe-

matical calculation and drawing; and I feel very grateful to them

for all they have done for me.

The printing of the present volume began in August, 1885
;

and it has gone on at irregular intervals during the 19 years

since that time ; in a manner which I am afraid must have

been exceedingly inconvenient to the printers.

I desire to thank Messrs J. and C. F. Clay and the Cambridge

University Press for their never-failing obligingness and efficiency

in working for me in such trying circumstances, and for the

admirable care with which they have done everything that could

be done to secure accuracy and typographical perfection.

KELVIN.

Netherhall,

January, 1904.
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ADVERTISEMENT.

In the month of October, 1884, Sir William Thomson of

Glasgow, at the request of the Trustees of the Johns Hopkins

University in Baltimore, delivered a course of twenty lectures

before a company of physicists, many of whom were teacher^ of

this subject in other institutions. As the lectures were not written

out in advance and as there was no immediate prospect that they

would be published in the ordinary form of a book, arrangements

were made, with the concurrence of the lecturer, for taking down

what he said by short-hand.

Sir William Thomson returned to Glasgow as soon as these

lectures were concluded, and has since sent from time to time

additional notes which have been added to those which were

taken when he spoke. It is to be regretted that under these

circumstances he has had no opportunity to revise the reports.

In fact, he will see for the first time simultaneously with the

public this repetition of thoughts and opinions which were freely

expressed in familiar conference with his class. The "papyro-

graph" process which for the sake of economy has been employed

in the reproduction of the lectures does not readily admit of cor-

rections, and some obvious slips, such as Canchy for Cauchy, have

been allowed to pass without emendation ; but the stenographer

has given particular attention to mathematical formulas, and

he believes that the work now submitted to the public may be

accepted, on the whole, as an accurate report of what the lecturer

said.

A. S. HATHAWAY.
Dec, 1884.





LECTURE I.

5 p.m. Wednesday, Oct. 1, 1884.

The most important branch of physics which at present makes

demands upon molecular dynamics seems to me to be the wave

theory of light. When I say this, I do not forget the one great

branch of physics which at present is reduced to molecular dyna-

mics, the kinetic theory of gases. In saying that the wave theory

of light seems to be that branch of physics which is most in want,

which most imperatively demands, applications, of molecular dyna-

mics just now, I mean that, while the kinetic theory of gases is a

part of molecular dynamics, is founded upon molecular dynamics,

works wholly within molecular dynamics, to it molecular dynamics

is everything, and it can be advanced solely by molecular dynamics

;

the wave theory of light is only beginning to demand imperatively

applications of that kind of dynamical science.

The dynamics of the wave theory of light began very molecu-

larly in the hands of Fresnel, was continued so by Cauchy, and to

some degree, though much less so, in the hands of Green. It was

wholly molecular dynamics, but of an imperfect kind in the hands

of Fresnel. Cauchy attempted to found his mathematical investi-

gations on a rigorous molecular treatment of the subject. Green

almost wholly shook off the molecular treatment, and worked out

all that was to be worked out for the wave theory of light, by the

dynamics of continuous matter. Indeed, 1 do not know that it is

possible to add substantially to what Green has done in this sub-

ject. Substantial additions are scarcely to be made to a thing

perfect and circumscribed as Green's work is, on the explanation

of the propagation of light, of the refraction and the reflection of

light at the bounding surface of two different mediums, and of the
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propagation oi' light through crystals, by a strict mathematical

treatment, founded on the consideration of homogeneous elastic

matter. Green's treatment is really complete in this respect, and

there is uothinor essential to be added to it. But there is a great

deal of exposition wanting to let us make it our own. We must

study it; we must try to see what there is in the very concise and

sharp treatment, with some very long formulas, which we find in

Green's papers.

The wave theory of light, treated on the assumption that the

medium through which the light is propagated is continuous and

homogeneous, except where distinctly separated by a bounding

inter-face between two ditferent mediums, is really completed by

Green. But there is a gi'eat deal to be learned from that kind of

treatment that perhaps scarcely has yet been learned, because the

subject has not been much studied nor reduced to a very popular

form hitherto.

Cauchy seemed unable to help beginning with the considera-

tion of discreet particles mutually acting upon one another.

But, except in his theory of dispersion, he virtually came to the

same thing somewhat soon in his treatment every time he began

it afresh, as if he had commenced right away with the considera-

tion of a homogeneous, elastic solid. Green preceded him, I believe,

in this subject. I have read a statement of Lord Rayleigh that there

seems to have been an attributing to Cauchy of that whicli Green

had actually done before. Green had exhausted the subject ; but

there is I believe no doubt that Cauchy worked in a wholly inde-

pendent way.

• What I propose in this first Lecture—we must have a little

mathematics, and 1 therefore must not be too long with any kind

of preliminary remarks— is to call your attention to the outstand-

ing difficulties. The first difficulty that meets us in the dynamics

of light is the explanation of dispersion; that is to say, of the fact

that the velocity of propagation of light is different for different

wave lengths or for light of different periods, in one and the same
medium. Treat it as we will, vary the fundamental supj^ositions

as much as we can, as much as the very fundamental idea allows

us to vary them, and we cannot force from the dynamics of a

homogeneous elastic solid a difference of velocity of wave propa-

gation for different periods.

Cauchy pointed out that if the sphere of action of individual
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molecules be comparable with the wave lengths, the fact of the

difference of velocities for different periods or for different wave

lengths in the same medium is explained. The best way, perhaps,

of putting Cauchy's fundamental explanation is to say that there is

heterogeneousness through space comparable with the wave length

in the medium,—that is, if we are to explain dispersion by

Cauchy's unmodified supposition. We shall consider that, a little

later. I have no doubt the truth is perfectly familiar already to

many of you that it is essentially insufficient to explain the facts.

Another idea for explaining dispersion has come forward more

recently, and that is the assumption of molecules loading the

luminiferous ether and somehow or other elastically connected with

it. The first distinct statement that I have seen of this view is in

Helmholtz's little paper on anomalous dispersion. I shall have

occasion to speak of that a good deal and to mention other names

whom Helmholtz quotes in this respect, so that I shall say

nothing about it historically, except that there we have in Helm-

holtz's paper, and by some German mathematicians who preceded

him, quite another departure in respect to the explanation of

dispersion. The Cauchy hypothesis gives us something comparable

with the wave length in the geometrical dimensions of the body.

Or, to take a crude matter of fact view of it, let us say the ratio of

the distance from molecule to molecule (from the centre of one

molecule to the centre of the next nearest molecule) to the wave

length of light is the fundamental characteristic, as it were, to

which we must look for the explanation of dispersion upon

Cauchy's theory.

We may take this fundamental idea in connection with the two

hypotheses for accounting for dispersion : that we must have, in the

very essence of the ponderable medium, some relation either to

wave length or to period, and it seems at first sight (although this

is a proposition that may require modification) that with very long

waves the velocity of propagation should be independent of the

period or wave length. That, at all events, seems to be the case

when the subject is only looked upon according to Cauchy's view.

We are led to say then that it seems that for very long waves

there should be a constant velocity of propagation. Experiment

and observation now seem to be falling in very distinctly to affirm

the conclusions that follow frum the second hypothesis that I

alluded to to account for dispersion. In this second hypothesis,
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instead of having a geometrical dimension in the ponderable

matter which is comparable with the wave length, we have a

fundamental time-relation—a certain definite interval of time

somehow ingrained in the constitution of the ponderable matter,

which is comparable with the period. So that, instead of a relation

of length to length, we have a relation of time to time.

jNow, how are we to get our time element ingrained in the

constitution of matter i We need scarcely put that question

now-a-days. We are all familiar with the time of vibration of the

sodium atom, and the great wonders revealed by the spectroscope

are all full of indications showing a relation to absolute intervals of

time in the properties of matter. This is now so well understood,

that it is no new idea to propose to adopt as our unit of time one

of the fundamental periods—for instance, the period of vibration of

light in one or other of the sodium D lines. You all have a

dynamical idea of this already. You all know something about

the time of vibration of a molecule, and how, if the time of

vibration of light passing through any substance is nearly the

same as the natural time of vibration of the molecules of the

substance, this approximate coincidence gives rise to absorption.

We all know of course, according to this idea, the old dynamical

explanation, first proposed by Stokes, of the dark lines of the solar

spectrum.

We have now this interesting point to consider, that if we

would work out the idea of dispersion at all, we must look definitely

to times of vibration, in connection with all ponderable matter. To

get a firm hypothesis that will allow us to work on the subject, let

us imagine space, otherwise full of the lumiuiferous ether, to be

partially occupied by something different from the general lumiui-

ferous ether. That something might be a portion of denser ether,

or a portion of more rigid ether ; or we might suppose a portion of

ether to have greater density and greater rigidity, or difi:brent

density and different rigidity from the siirrounding ether. We will

come back to that subject in connection with the explanation

of the blue sky, and, particularly. Lord Rayleigh's dynamics of the

blue sky. In the meantime, I want to give something that will

allow us to bring out a very crude mechanical model of dis-

persion.

In the first place, we nmst not listen to any suggestion that we

are tu look upon the lumiuiferous ether as an ideal way of putting
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the thing. A real matter between us and the remotest stars

I beUeve there is, and that light consists of real motions of that

matter, motions just such as are described by Fresuel and

Young, motions in the way of transverse vibrations. If I knew

Avhat the electro-magnetic theory of light is, I might be able

to think of it in relation to the fundamental principles of the wave

theory of light. But it seems to me that it is rather a backward

step from an absolutely definite mechanical notion that is put

before us by Fresnel and his followers to take up the so-called

Electro-magnetic theory of light in the way it has been taken up

by several writers of late. In passing, I may say that the one

thing about it that seems intelligible to me, I do not think is

admissible. What I mean is, that there should be an electric dis-

placement perpendicular to the line of propagation and a magnetic

disturbance perpendicular to both. It seems to me that when we

have an electro-magnetic theory of light, we shall see electric dis-

placement as in the direction of propagation, and simple vibrations

as described by Fresnel with lines of vibration perpendicular to the

line of propagation, for the motion actually constituting light. I

merely say this in passing, as perhaps some apology is necessary

for my insisting upon the plain matter-of-fact dynamics and the

true elastic solid as giving what seems to me the only tenable

foundation for the wave theory of light in the present state of our

knowledge.

The luminiferous ether we must imagine to be a substance

which so far as luminiferous vibrations are concerned moves as if

it were an elastic solid. I do not say it is an elastic solid.

That it moves as if it were an elastic solid in respect to the lumini-

ferous vibrations, is the fundamental assumption of the wave theory

of light.

An initial difficulty that might be considered insuperable is,

how can we have an elastic solid, with a certain degree of rigidity

pervading all space, and the earth moving through it at the

rate the earth moves around the sun, and the sun and solar system

moving through it at the rate in which they move through space,

at all events relatively to the other stars ?

That difficulty does not seem to me so very insuperable,

Suppose you take a piece of Burgundy pitch, or Trinidad pitch, or

what I know" best for this particular subject, Scottish shoemaker's

wax. This is the substance I used in the illustration I intend
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to refer to. I do not know how far the others would succeed

in the experiment. Suppose you take one of these substances, the

shoemaker's wax, for instance. It is brittle, but you could form

it into the shape of a tuning fork and make it vibrate. Take a

long rod of it, and you can make it vibrate as if it were a piece of

glass. But leave it lying upon its side and it will flatten down
gradually. The weight of a letter, sealed with sealing-wax in the

old-fashioned way, used to flatten it, will flatten it. Experiments

have not been made as to the absolute fluidity or non-fluidity of

such a substance as shoemaker's wax ; but that time is all that is

necessary to allow it to yield absolutely as a fluid, is not an im-

probable supposition with reference to any one of the substances

I have mentioned. Scottish shoemaker's wax I have used in this

way : I took a large slab of it, perhaps a couple of inches thick,

and placed it in a glass jar ten or twelve inches in diameter. I filled

the glass jar with water and laid the slab of wax in it with a

quantity of corks underneath and two or three lead bullets on the

ujjper side. This was at the beginning of an Academic year. Six

months passed away and the lead bullets had all disappeared, and

I suppose the corks were half way through. Before the year had

passed, on looking at the slab I found that the corks were floating

in the water at the top, and the bullets of lead were tumbled about

on the bottom of the jar.

Now, if a piece of cork, in virtue of the greater specific gravity

of the shoemaker's wax would float upwards through that solid

material and a piece of lead, in virtue of its greater specific gravity

would move downwards through the same material, though only at

the rate of an inch per six months, we have an illustration, it seems

to me, quite sufficient to do away with the fundamental difficulty

from the wave theory of light. Let the luminiferous ether be

looked upon as a wax which is elastic and I was going to say

brittle, (we will think of that yet—of what the meaning of brittle

would be) and capable of executing vibrations like a tuning fork

when times and forces are suitable—when the times in which the

forces tending to produce distortion act, are very small indeed, and

the forces are not too great to produce rupture. When the forces

are long continued then very small forces suffice to produce un-

limited change of shape. Whether infinitesimally small forces

produce unlimited change of shape or not Ave do not know ; but

very small forces suffice to do so. All Ave need Avith respect to the



INTRODUCTORY. 11

luminiferous ether is that the exceedingly small forces brought

into play in the luminiferous vibrations do not, in the times during

which they act, suffice to produce any transgression of limits of

distortional elasticity. The come-and-go effects taking place in

the period of the luminiferous vibrations do not give rise to the

consumption of any large amount of energy : not large enough an

amount to cause the light to be wholly absorbed in say its pro-

pagation from the remotest visible star to the earth.

If we have time, wc shall try a little later to think of some of

the magnitudes concerned, and think of, in the first place, the mag-

nitude of the shearing force in luminiferous vibrations of some

assumed amplitude, on the one hand, and the magnitude of the

shearing force concerned, when the earth, say, moves through the

luminiferous ether, on the other hand. The subject has not been

gone into very fully ; so that we do not know at this moment

whether the earth moves dragging the luminiferous ether altogether

with it, or whether it moves more nearly as if it were through

a frictionless fluid. It is conceivable that it is not impossible that

the earth moves through the luminiferous ether almost as if it were

moving through a frictionless fluid and yet that the luminiferous

ether has the rigidity necessary for the performance of tlie lumini-

ferous vibration in periods of from the four hundred million

millionth of a second to the eight hundred milhon millionth of

a second corresponding to the visible rays, or from the periods

which we now know in the low" rays of radiant heat as recently

experimented on and measured for wave length by Abuey and

Langley, to the high ultra-violet rays of light, known chiefly by

their chemical actions. If we consider the exceeding smallness of

the period from the ]00 million millionth of a second to the 1600

million millionth of a second through the known range of radiant

heat and light, we need not full}' despair of understanding the

property of the luminiferous ether. It is no greater mystery at

all events than the shoemaker's wax or Burgundy pitch. That is

a mystery, as all matter is ; the luminiferous ether is no greater

mystery.

We know the luminiferous ether better than we know any

other kind of matter in some particulars. We know it for its

elasticity ; we know it in respect to the constancy of the velocity

of propagation of light for different periods. Take the eclipses of

Jupiter's satellites or something far more telling yet, the waxings
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and wanings of self-luminous stars as referred to by Prof Newcomb
in a recent discussion at Montreal on the subject of the velocity of

propagation of light in the lurainiferous ether. These phenomena
prove to us with tremendously searching test, to an excessively

minute degree of accuracy, the constancy of the velocity of propa-

gation of all the rays of visible light through the luminiferous

ether.

Luminiferous ether must be a substance of most extreme

simplicity. We might imagine it to be a material whose ultimate

property is to be incompressible ; to have a definite rigidity for

vibrations in times less than a certain limit, and yet to have the

absolutely yielding character that we recognize in wax-like bodies

when the force is continued for a sufficient time.

It seems to me that we must come to know a great deal more
of the luminiferous ether than we now know. But instead of

beginning with saying that we know nothing about it, I say that

we know more about it than we know about air or water, glass or

iron—it is far simpler, there is far less to know. That is to say,

the natural history of the luminiferous ether is an infinitely

simpler subject than the natural history of any other body. It

seems probable that the molecular theory of matter may be so far

advanced sometime or other that we can understand an excessively

fine-grained structure and understand the luminiferous ether as

diifering from glass and water and metals in being very much more

finely grained in its structure. We must not attempt, however, to

jump too far in the inquiry, but take it as it is, and take the great

facts of the wave theory of light as giving us strong foundations

for our convictions as to the luminiferous ether.

To think now of ponderable matter, imagine for a moment
that we make a rude mechanical model. Let

this be an infinitely rigid spherical shell ; let

there be another absolutely rigid shell inside

of it, and so on, as many as you please. Na-

turally, we might think of something more

continuous than that, but I only wish to call

your attention to a crude mechanical ex-

planation, possibly sufficient to account for dispersion. Suppose

we had luminiferous ether outside, and that this hollow space is

of very small diameter in comparison with the wave length. Let

zig-zag springs connect the outer rigid Ijoundary with boundary
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number two. T use a zig-zag, not a spiral spring possessing the

helical properties for which we are not ready yet, but which must

be invoked to account for such properties as sugar and quartz

have in disttirbing the luminiferous vibrations.

Suppose we have shells 2 and 8 also connected

by a sufficient number of zig-zag springs and

so on ; and let there be a solid nucleus in the

centre with spring connections between it and

the shell outside of it. If there is only one of

these interior shells, you will have one definite

period of vibration. Suppose you take away everything except

that one interior shell ; displace that shell and let it vibrate while

you hold the outer sheath fixed. The period of the vibration is

perfectly definite. If you have an immense number of such

sheaths, with movable molecules inside of them distributed through

some portion of the luminiferous ether, you will put it into a

condition in which the velocity of the propagation of the wave

will be different from what it is in the homogeneous luminiferous

ether. You have what is called for, viz., a definite period; and

the relation between the period of vibration in the light con-

sidered, and the period of the free vibration of the molecule Avill

be fundamental in respect to the attempt of a mechanism of that

kind to represent the phenomena of dispersion.

If you take away everything except one not too massive

interior nucleus, connected by springs with the outer sheath, you

will have a crude model, as it were, of what Helmholtz makes the

subject of his paper on anomalous dispersion. Helmholtz, besides

that, supposes a certain degree or coefficient of viscous resistance

against the vibration of the nucleus, relatively to the sheath.

If we had only dispersion to deal with there would be no

difficulty in getting a full explanation by putting this not in a

rude mechanical model form, but in a form which would commend
itself to our judgment as presenting the actual mode of action of

the particles, of gross matter, whatever they may be upon the

luminiferous ether. It is difficult to imagine the conditions of the

luminiferous ether in dense fluids or liquids, and in solids; but

oxygen, hydrogen, and gases generally, must, in their detached

particles, somehow or other act on the luminiferous ether, have

some sort of elastic connection with it ; and I cannot imagine

anything that commends itself to our ideas better than this
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multiple molecule which I have put before you. By taking

enough of these interior shells, and by passing to the idea of

continuous variation from the density of the ether to the enor-

mously greater densit}'' of the molecule of grosser matter imbedded

in it, we may come as it were to the kind of mutual action that

exists between any particular atom and the luminiforous ether.

It seems to me that there must be something in this molecular

hypothesis, and that as a mechanical symbol, it is certainly not

a mere hypothesis, but a reality.

But alas for the difficulties of the undulatory theory of light

;

—refraction and reflection at plane surfaces worked out by Green

differ in the most irreduceable way from the facts. They cor-

respond in some degree to the facts, but there are differences that

we have no way of explaining. A great many hypotheses have

been presented, but none of them seems at all tenable.

First of all is the question, are the vibrations of light per-

pendicular to, or are they in, the plane of polarization—defining

the plane of polarization as the plane through the incident and

refracted rays, for light polarized by reflection? Think of light

polarized by reflection at a plane surface and the question is, are

the vibrations in the reflected ray perpendicular to the plane of

incidence and reflection, or are they in the plane of incidence and

reflection ? I merely speak of this subject in the way of index.

We shall consider very fully, Green's theory and Lord Rayleigh's

work upon it, and come to the conclusion with absolute certainty,

it seems to me, that the vibrations must be perpendicular to the

plane of incidence and reflection of light polarized by reflection.

Now there is this difficulty outstanding —the dynamical theory

of refraction and reflection which gives this result does not give it

rigorously, but only approximately. We have by no means so

good an approach in the theory to complete extinction of the

vibrations in the reflected ray (when we have the light in the

incident ray vibrating in the plane of incidence and reflection) as

observation gives. I shall say no more about that difficulty, be-

cause it will occupy us a good deal later on, except to say that the

theoretical explanation of reflection and refraction is not satisfac-

tory. It is not complete; and it is unsatisfactory in this, that we

do not see any way of amending it.

But suppose for a moment that it might be mended and there

is a question connected with it Avhich is this: Is the difference
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between two mediums a difference corresponding to difference of

rigidity, or does it correspond to difference of densit}'? That is an

interesting question, and some of the work that had been done

upon it seemed most tempting in respect to the supposition that

the difference between two mediums is a difference of rigidity and

not a difference of density. When fully examined, however, the

seemingly plausible way of explaining the facts of refraction and

reflection by difference of rigidity and no difference of density I

found to be delusive, and we are forced to the view that there is

difference of density and very little difference of rigidity.

In working out this subject very carefully, and endeavouring to

understand Lord Rayleigh's work upon it, and to learn what had

been done by others, for a time I thought it too much of an

assumption that the rigidity was exactly the same and that the

whole effect was due to difference of density. Might it not be, it

seemed to me, that the luminiferous ether on the two sides of the

interface at which the refraction and reflection takes place, might

differ both in rigidity and in density. It seemed to me then by a

piece of work (which I must verify, however, before I can speak

quite confidently about it *) that by supposing the luminiferous

ether in the commonly called denser medium to be considerably

denser than it would be were the rigidities equal, and the rigidity

to be greater in it than in the other medium, we might get a

better explanation of the polarization by reflection than Green's

result gives. Green's work ends with the supposition of equal

rigidities and unequal densities. He puts the whole problem in

bis formulae to begin with, but he ends with this supposition and

his result depends upon it.

Not to deal in generalities, let us take the case of glass and a

vacuum, say. It seemed to me that by supposing the effective

rigidity of luminiferous ether in glass to be greater than in vacuum
and the density to be greater, but greater in a greater proportion

than the rigidity, so that the velocity of propagation is less in glass

than in vacuum, we should get a better explanation of the details

of polarization by reflection than Green's result gives.

It is only since I have left the other side of the Atlantic that I

have worked at this thing, and going into it with keen interest,

I inquired of everybody I met whether there were any observa-

tions that would help me. At last I was told that Prof Rood had
* See Appendix A.
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done what I desired to know, and on lookincr at his paper, I found

that it settled the matter.

My question was this: Has there been any measurement of the

intensity of light reflected at nearly normal incidence from glass or

water showing it to be considerably greater than Fresnel's formula

(-1 \ 2

-—-\ for the ratio of the intensity of the

reflected ray to the intensity of the incident ray in the case of

normal incidence, or incidence nearly normal. I wanted to find

out whether that had been verified by observation. It seems that

nobody had done it at all until Prof. Rood, of Columbia College,

New York, took it up. His experiments showed to a rather

minute degree of accuracy an agreement with Fresnel's formula,

so that the explanation I was inclined to make was disproved by

it. I myself had worked with the reflection of a candle from a

piece of window glass, during a pleasant visit to Dr Henry Field

in your beautiful Berkshire hills at the end of August ; and had

come to the same conclusion, even through such very crude and

roughly approximate measurements. At all events, I satisfied

myself that there was not so great a deviation from Fi'esnel's law

as would allow me to explain the difficulties of refraction and

reflection by assuming greater rigidity, for example, in glass than

in air. We are now forced very much to the conclusion from

several results, but directly from Prof. Rood's photometrical ex-

periments, that the rigidity must be very nearly equal in the two.

There is quite another supposition that might be made that

would give us the same law, for the case of normal incidence ;—the

supposition that the reflection depends wholly upon difference

of rigidity and that the densities are equal in the two. That gives

rise to the same intensity of perpendicularly reflected light, so that

the photometric measurement does not discriminate between these

two extremes, but it does prevent us from pushing in on the other

side of generally accepted result, a supposition of equal rigidities,

in the manner that I had thought of.

We may look upon the explanation of polarization by reflection

and refraction as not altogether unsatisfactory, although not quite

satisfactory : —and you may see [pointing to diagrams which had

been chalked on the board: see pp. 12 and 18 above] that this

kind of modification of the luminiferous ether is just what would

give us the virtually greater density. How this gives tis precisely
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the same effect as a greater density I shall show when we work

the thing out mathematically. We shall see that this supposition

is equivalent to giving the luminiferous ether a greater density,

while making the addition to virtual density according to the period

of the vibration.

I am approaching an end : I had hoped to get to it sooner.

We have the subject of double refraction in crystals, and here

is the great hopeless difficulty.

If we look into the matter of the distortion of the elastic solid, Molar,

we may consider, possibly, that that is not wonderful ; but

Fresnel's supposition as to the direction of the vibration of light, is

that the conclusion that the plane of vibration is perpendicular to

the plane of polarization proves, if it is true, that the velocity

of propagation of light in uniaxial crystals depends simply on

the direction of vibration and not otherwise on the plane of

the distortion. In the vibrations of light, we have to consider

the medium as being distorted and tending to recover its shape.

Let this be a piece of uniaxial crystal, Iceland spar, for instance,

a round or square column, with its length in the direction of

the optic axis, which I will represent on the board by a

dotted line.

Now the relation between light polarized by passing

through Iceland spar on the one hand and light polarized

by reflection on the other hand, shows us that if the line

of vibration is perpendicular to the plane of polarization, the

velocity of propagation of light in different directions through

Iceland spar must depend solely on the line of vibration and not

on the plane of distortion.

There is no way in which that can be explained by the rigidity Case I.

of an elastic solid. Look upon it in this way. Take a cube of
^Jq°^^^^^"

Iceland spar, keeping the same direction of the axis I
direction

as before. Let the light be passing downwards, as

indicated by the arrow-head. What would be the

mode of vibration, with such a direction of propaga-

tion ? Let us suppose, in the first place, the vibra-

tions to be in the plane of the diagram. Then the dis-

tortion of that portion of matter will be of the kind, and in the

direction indicated by Fig. 2. A portion which was rectangular

swings into the shape represented by the dotted lines. The force

tending to cause a piece of matter which has been so displaced to

T. L. 2

Fig. 1.

of axis:

vibrations

in plane of

diagram.

Fig. 2.
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Molar.

Case II.

Propaga-
tion per-

pendicular

to axis:

vibrations

in plane of

diagram.

resume its original shape depends on this kind of distortion. The

mathematical expression of it would be n a constant of rigidit}',

multiplied into a, the amount of the distortion. How that is to be

reckoned is familiar to many of you, and we will not enter into the

details just now. But just consider this other case, where the

direction of propagation of the light is horizontal, as indicated by

the arrow-head, that is to say, propagated perjDen-

dicular to the axis of the crystal (Fig. 3). What
would be the nature of the distortion here, the

vibration being still in the plane of the diagram ?

The distortion will be in this way in which I move my
A portion which was rectangular will swing into this

The return force

But a dis-

Fig. 3.

Case III.

Case IV.

Propaga-
tion per-

pendicular

to axis:

vibrations

perpen-
dicular to

plane of

diagram.

two hands.

shape, indicated by the dotted lines in Fig. 3.

will then depend upon a distortion of this kind.

tortion of this kind is identical with a distortion of that kind

(Fig. 2), and the result must be, if the effect depends upon the

return force in an elastic solid, that we must have the same velocity

of propagation in this case and in that case (Figs. 3 and 2).

Consider similarly the distortions produced b;y waves con-

sisting of vibrations perpendicular to the plane of the diagrams,

the arrow-heads in Figs. 2 and 3 still representing directions of

propagation. The distortion in the case of Fig. 2 will still be

as by shearing perpendicular to the axis, but in the direction

perpendicular to the plane of the diagram, instead of that repre-

sented by aid of the dotted lines of Fig. 2. Hence on the homo-

geneous elastic solid theory, and in the case of an axially isotropic

crystal, the velocity of propagation in this case would be the same

as in each of the first two cases. But with vibrations perpen-

dicular to the plane of the diagram, and propagation perpendicular

to the axis, the distortion is by shearing in the plane perpendicular

to the line of the arrow in Fig. 3, and in the direction perpen-

dicular to the plane of the diagram. In the supposed crystal, the

rigidity modulus for this shearing would be different from the

rigidity modulus for the shearings of cases I., II. and III. Hence

cases III, and IV. would correspond to the extraordinary ray, and

cases I. and II. the ordinary ray.

Now observe, that light polarized in a plane through the axis,

constitutes the ordinary ray, and light polarized in the plane per-

pendicular to the plane of the ray and the axis constitutes the

extraordinary ray. There is therefore an outstanding difficulty in
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the assumption that the vibration is perpendicular to the plane of Molar,

polarization, which is absolutely inexplicable on the bare theory

of an elastic solid.

The question now occurs, may we not explain it by loading the

elastic solid ? But the difficulty is, to load it unequally in different

directions. Lord Rayleigh thought that he had got an explanation

of it in his paper to which I have referred. He was not aware

that Rankine had had exactly the same idea. Lord Rayleigh at

the end of this paper puts forward the supposition that difference of

effective inertias in different directions may be adduced to explain

the difference of velocity of propagation in Iceland spar. But
if that were the case the wave propagation would not follow

Huyghens' law. It would follow the law according to which

the velocity of propagation would be inversely proportional to what

it is according to Huyghens' law. Huyghens' geometrical construc-

tion for the extraordinary ray in Iceland spar gives us an oblate

ellipsoid of revolution according to which the velocity of propagation

of light will be found by drawing from the centre of the ellipsoid

a perpendicular to the tangent plane. For

example (Fig. 4), CiY will correspond to the

velocity of propagation of the light when the

front is in the direction of this (tangent) line.

If the velocity is different in different directions ^^^'

in virtue of an effective inertia, Lord Rayleigh's idea is that Molecular,

the vibrating molecules might be like oblate spheroids vibrating in

a frietionless fluid. The medium would thus have greater effective

inertia when vibrating in the direction of its axis (perpendicular to

its flat side), and less effective inertia Avhen vibrating in its equa-

torial plane. That is a very beautiful idea, and we shall badly want

it to explain the difficulty. We would be delighted and satisfied

with it if the pushing forward of the conclusions from it were veri-

fied by experiment. Stokes has made the experiment. Rankine

made the first suggestion in the matter, but did not push the ques-

tion further than to give it as a mode of getting over the difficulty

in double refraction. Stokes took away the possibility of it. He ex-

perimented on the refracting index of Iceland spar for a variety of

incidences, and found with minute accuracy indeed that Huyghens'

construction was verified and that therefore it was impossible to

account for the unequal velocity of propagation in different direc-

tions by the beautiful suggestions of Rankine and Lord Rayleigh.

9 2
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Molecular. J have not been able to make a persistent suggestion of explan-

ation, but I have great hopes that these spring arrangements are

going to help us out of the difficulty. I will, just in conclusion,

give you the idea of how it might conceivably do so.

We can easily suppose these spring arrangements to have

different strengths in different directions ; and their directional

law will suit exactly. It will give the fundamental thing we want,

which is that the velocity of propagation of light shall depend on

the direction of vibration, and not merely on the plane of the

distortion. And it will obviously do this in such a manner as to

verify Huyghens' law—giving us exactly the same shape of wave-

surface as the seolotropic elastic solid would give.

But alas, alas, we have one difficulty which seems still insuper-

able and prevents my putting this forward as the explanation. It

is that I cannot get the requisite difference of propagational

velocity for different directions of the vibration to suit different

periods. If we take this theory, we should have, instead of the very

nearly equal difference of refractive index for the different periods

in such a body as Iceland spar, with dispersion merely a small

thing in comparison with those differences : we should, I say, have

difference of refractive index in different directions comparable

with dispersion and modified by dispersion to a prodigious degree,

and in fact we should have anomalous dispersion coming in between

the velocity of propagation in one direction and the velocity of

propagation in another. The impossibility of getting a difference

of wave velocity in different directions sufficiently constant for the

different periods seems to me at present a stopper.

So now, I have given you one hour and seven minutes and

brought you face to face with a difficulty which I will not say

is insuperable, but something for which nothing ever has been

done from the beginning of the world to the present* time that

can give us the slightest promise of explanation.

I shall do to-morrow, what I had hoped to do to-day, give you

a little mathematics, knowing that it is not going to explain every-

thing. But I think that in relation to the wave-theory of light we

really have an interest in working out the motions of an elastic

solid and obtaining a few solutions that depend on the equations of

motion of an elastic solid. I shall first take the case of zero

* [I retract this statement. See an Appendix near the end of the present

vokime. W. T. Oct. 28, 1880.]
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rigidity ; that will give us sound. We shall take the most elemen- Molecular.

tary sounds possible, namely a spherical body alternately expand-

ing and contracting. We shall pass from that to the case of a

single globe vibrating to and fro in air. We shall pass from that

to the case of a tuning-fork, and endeavour to explain the cone of

silence which you all know in the neighbourhood of a vibrating

tuning-fork. I hope we shall be able to get through that in a

short time and pass on our way to the corresponding solutions

of the motions of a wave proceeding from a centre in respect to the

wave-theory of light.
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Oct 2, 5 P.M.

Part I. In the first place, I will take up the equations of

motion of an elastic solid. I assume that the fundamental prin-

cijsles are familiar to you. At the same time, I should be very

glad if any person present would, without the slightest hesitation,

ask for explanations if anything is not understood. I want to be

on a conferent footing with you, so that the work shall be rathiir

something between you and me, than something in which I shall

be making a performance before you in a matter in which many

of you may be quite as competent as I am, if not more so.

I want, if we can get something done in half an hour, on these

problems of molar dynamics as we may call it, to distinguish from

Molecular dynamics, to come among you, and talk Avith you for

a few moments, and take a little rest; and then go on to a problem

of molecular dynamics to prepare the way for motions depending

on mutual interference among particles under varying circum-

stances that may perhaps have applications in physical science and

particularly to the theory of light.

Molar. The fundamental equations of equilibrium of clastic solids are,

of course, included in D'Alembert's form of the equations of

motion. I shall keep to the notation that is employed in Thomson

and Tait's Natural Philosophy, which is substantially the same

notation as is employed by other writers.

Let a, b, c denote components of distortion : a, is a distortion in

the plane perpendicular to OX produced by slippings parallel to

either or to both of the two co-ordinate planes Avhich intersect

in OX.

Let us consider this state of strain, in which, without other

change, a portion of the solid in the plane yz which was a
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square becomes a rhombic figure. The measurement of that state Molar,

of strain is given fully in Thomson and Tait's geometrical pre-

liminary for the theory of elastic solids, {Natural Philosophy,

^ 169—177, and § GG9, or Elements, §§ 148—156 and § 640). It

is called a simple shear. It may be measured

either by the rate of shifting of parallel planes per

unit distance perpendicular to them, or, which

comes to exactly the same thing, the change of

the angle measured in radians. Thus I shall write

down inside this small angular space the letter a,

to denote the magnitude of the angle, measured

in radians; the particular case of strain considered

being a slipping parallel to the plane YOX.
I use the word " radian " ; it is not, hitherto, a very common

word ; but I suppose you know what I mean. In Cambridge

in the olden time we used to have a very illogical nomen-

clature,
—"the unit angle"—a very absurd use of the definite

article "the'. It is illogical to talk of an angle being measured in

terms of " the " unit angle ; there is no such thing as measuring

anything, except in terms of "a" unit. The degree is a unit

angle ; so is the minute ; so is the second ; so is the quadrant

;

so is the round ; all of these are units in frequent use for angular

measurement. The unit in which it is most generally convenient

to measure angles in Analytical Mechanics is the angle whose arc

is radius. That used to be called at Cambridge " the unit angle."

My brother, James Thomson, proposed to call it " the radian'.

There are three principal distortions, a, h, c, relative to the

axes of OX, OY, OZ ; and again, three principal dilatations—con-

densations of course if any one is negative, e, f, g, which are

the ratios of the augmentation of length to the length.

The general equation of energy will of course be an equation in

which we have a quadratic function of e, f, g, a, b, c, the ex-

pression for which will be

1 (lle'+ V2ef+ ISeg + Uea + loeb + IGec + 21ef+ 22/='+ 2S/g +. . .).

We do not here use 11, 12,... etc., as numbers but as symbols

representing the twenty-one coefiicients of this quadratic subject

to the conditions 12 == 21, etc. If we denote this quadratic function

by E, then

^"^= lie + 12/+ ISg + 14a + 156 + 16c.
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This is a component of the normal force required to produce this

compound strain e, f, g, a, b, c. According to the notation of

Thomson and Tait, let

P Q = clE _ clE (IE

da
T =

dE
~dh

TJ =
dE
dc

dE
'de ' ^ df

We have then, the relation

Pe+ Qf+Bg + Sa +Tb-\- Uc = 2E,

the well-known dynamical interpretation of which you are of course

familiar with. A little later we shall consider these 21 coefficients,

first, in respect to the relations among them which must be

imposed to produce a certain kind of symmetry relative to the

three rectangular axes ; and then see what further conditions must

be imposed to fit the elastic solid for performing the functions

of the luminiferous ether in a crystal.

Before going on to that we shall take the case of a perfectly

isotropic material. We can perhaps best put it down in tabular

form in this way

:

1

^ 33 33

i^ ^ 33

53 33 m

n

n

01

In the first place in this lower right-hand corner-square which

has to do with the distortions a, b, c, alone, if we let n represent the

rigidity-modulus the three main diagonal terms will each be ??., and

those not in the diagonal will be zero. Six of the 21 coefficients

are thus determined as follows :

44 = 55 = 66 = n, and 45 = 46 = 56 = 0,

and other nine of them, by the zeros in the upper right and lower

left corner-squares,

—

14 = 15 = 16 = 24 = 25 - 26 = 34 = 35 = m = 0.
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To verify these zeros of the upper right-hand and lower left-hand Molar,

corner-squares, let us consider what possible relations there can be

for an isotropic body between longitudinal strains and distortions.

Clearly none. No one of the longitudinal strains can call into

play a tangential force in any of the faces ; and conversely, if the

medium be isotropic, no distortion produced by slipping in the

faces parallel to the principal planes can introduce a longitudinal

stress—a stress parallel to any of the lines OX, OY, OZ. There-

fore we have all zeros in these two squares. We know that

11 = 22 = 33; and each of these will be represented by Saxon A {^).

Now consider the effect of a longitudinal pull in the direction

of OX. If the body be only allowed to yield longitudinally, that

clearly will give rise to a negative pull in the directions parallel to

Oy, Oz. We have then a cross connection between pulls in the

directions OX, OY, OZ. Isotropy requires that the several

mutual relations be all equal, so that we have just one coefficient

to express these relations. That coefficient is denoted by ISaxou B
(23). Thus we fill up our 36 squares, which represent but 21 co-

efficients in virtue of the relations 12 = 21, etc. We can now

write down our quadratic expression for the energy,

Instead of these Saxon letters ^, 23, which have very distinct and

obvious interpretations, we may introduce the resistance of the

solid to compression, the reciprocal of what is commonly called

the compressibility, or, what we may call the bulk modulus, k.

Then it is proved in Thomson and Tait, and in an article in the

Encyclopcedia Britannica which perhaps some of you may have*,

that ^ = k + ^ n, ^ = k — ^n. The considerations which show

these relations with the bulk modulus also show us that we must

have n = ^{^ — 23). This is most important. Take a solid cube

with its edges parallel to OX, Y, OZ. Apply a pull along two

faces perpendicular to OX and an equal pressure on two faces

perpendicular to OF; that will give a distortion in the plane xy.

Find the value of that simple shear; it is done in a moment. Find

the shearing force required to produce it calculated from ^ and 23,

and equate that to the force calculated from the rigidity modulus

11, and then you find this relation. The relations for complete

* Eeprint of Mathematical and Fliyslcal Papers, Vol. in. Ait. xcii. now in the

Press. [W. T. Aug. 7, 1885.]
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isotropy are exliibited here iu this quadratic expression for the

energy, if in it we take | (^ — 23) in place of n.

We shall pass on to the formation of the equations of motion.

For equilibrium, the component parallel to OX of the force applied

at any point .r, i/, z of the solid, reckoned per unit of bulk at that

point must be equal to

'(IP_ dUd/F\
, dx dy dz )

'

if the body be held distorted in any way, by bodily forces applied

all through the interior ; because the resultant of the elastic force

on an infinitesimal portion of matter at the point x, y, z is obviously

(dP dU dT\ _, , , ^ , .
, , .^ ,1-1—I--T—h

-J- j
axayclz. lo prove this remark that it the pull

augments as you go forward in the direction OX there will, in

virtue of that, be a resultant forward pull

u dp
I

-j—dx.dydz upon the infinitesimal ele-

ment. The two tangential forces, U per-

pendicular to OY, and U perpendicular

to OX on the one pair of forces and the

pair of forces equal and in opposite di-

rections on the other faces constitute two

balancing couples, as it were. If this

tangential force parallel to OX increases

as we proceed in the direction y positive, there will result a positive

force on the element, because it is pulled to left by the smaller

and to right by the larger, and thus the force in the direction

dU
of OX receives a contribution , dy.dzdx. Quite similarly we

dT
find, -r- dz . dxdy as a third and last contribution to the force

parallel to OX.

Now, let there be no bodily forces acting through the material,

but let the inertia of the moving part, and the reaction against

acceleration in virtue of inertia, constitute the equilibrating re-

action against elasticity. The result is, that we have the equation

dP dU dT^ ^
dx dy dz ^ df

'

if by p we denote the density and by ^ we denote the displace-

ment from equilibrium in the direction OX of that portion of

matter having x, y, z for co-ordinates of its mean position.

(>
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I said I would use tlie notation of Tliomson and Tait who Molar.

employ a, /3, 7 to denote the displacements; but errors are too

common when a and a are mixed up, especially in print, so we

will take ^, t], f instead. I have had trouble in reading Helm-

holtz's paper on anomalous dispersion, on this account, very fre-

quently not being able to distinguish Avith a magnifying glass

whether a certain letter was a or a.

The values of /S', T, U, we had better write out in full, although

the others may be obtained from the value of any one of the

three by symmetry. The expenditure of chalk is often a saving

of brains. They are :

\dz ay J \dx dzj \dy dx!

We have P=^e4-23 if+o)- There are two or three other forms

which are convenient in some cases, and I will put them down

(writing in for h + ^n)

dx dy dzj \dx dy dz

We shall denote very frequently by 8 the expression

^ + ^i^ +^
dx dy dz

'

so that for example, the second of these expressions is

P = {m - n) 8+2n^^ .

If we want to write down the equations of a heterogeneous medium,

as will sometimes be the case, especially in following Lord Ray-

leigh's work on the blue sky, we must in taking dP/dx, dP/dy, &c.,

to find the accelerations, keep the symbols m, n inside of the

symbols of differentiation ; but for homogeneous solids, we treat m
and n as constant. I forgot to say that 8 is the cubic dilatation or

the augmentation of volume per unit volume in the neighbour-

hood of the point x, y, z, which is pretty well known, and helps us

to see the relations to compressibility. If we suppose zero rigidity,

P = iu8 is the relation between pressure and volume. In order

to verify this take the preceding expression for P and make n =
and we obtain P = m8, the equation for the compression of a

compressible fluid, in which in has become the bulk modulus.
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This sort of work I have called molar dynamics. It is tlie

dynamics of continuous matter; there are in it no molecules, no

heterogeneousnesses at all. We are preparing the way for dealing

with heterogeneousnesses in the most analytical manner by sup-

posing m and n to be functions of x, y, z. Lord Rayleigh

studied the blue sky in that way, and very beautifully ; his treat-

ment is quite perfect of its kind. He considers an imbedded

particle of water, or dust, or unknown material, whatever it is

that causes the blue sky. To discover the effect of such a particle,

on the waves of light, he supposes a change of rigidity and of

density from place to place in the luminiferous ether; not an

absolutely sudden change, but confined to a space which is small

in comparison with the wave-length.

Ten minutes interval.

Part II. I want to take up another subject which Avill pre-

pare the way to what we shall be doing afterward, v/hich is the

particular dynamical problem of the movement of a system of con-

nected particles. I suppose most of you know the linear equations

of motion of a connected system—whose integral always leads to

the same formula as the cycloidal pendulum; this result being

come to through a determinant equated to zero, giving an alge-

braical equation whose roots are essentially real for the square

of the period of any one of the fundamental modes of simple

harmonic motion.

As an example, take three weights, one of 7 pounds, another of

14 pounds, and another of 28 pounds, say. The lowest weight is

hung upon the middle weight by a spiral spring;

^^p the middle is hung upon the upper by a spiral

^P spring, and the upper is attached to a fixed point

by a spiral (or a zig-gag) spring. It is a pretty

illustration; and I find it very useful to myself.

I am speaking, so to say, to professors who sym-

pathize with me, and might like to know an

experiment which will be instructive to their

pupils.

Just apply your finger to any one of the

weights, the upper weight, for example. You

28

14

soon learn to find by trial the fundamental periods. Move it up

and down gently in the period which you find to be that of the
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three all moving in the same direction. Yon will get a very Molecular,

pretty oscillation, the lowest weight moving through the greatest

amplitude, the second through a less, and the upper weight through

the smallest. That is No. 1 motion, corresponding to the greatest

root of the cubic equation which expresses the solution of the

mathematical problem. No. 2 motion will come after a little

practice. You soon learn to give an oscillation a good deal quicker

than before, the first; a second mode, in which the lowest weight

moves downward while the two upper move upwards, or the two

lower move downwards while the upper moves upwards, or it

might be that the middle weight does not move at all in this

second mode, in which case the excitation must be by putting the

finger on the upper or the lower weight. These periods depend

upon the magnitude of the weights, and the strength of the

springs that we use, and are soon learned in any particular set of

weights and springs. It might be a good problem for junior

laboratory students to find weights and springs which will in-

sure a case of the nodal point lying between the upper and

middle weisfhts, or at the middle weight, or between the middle

and lower weights. The third mode of vibration, corresponding

to the smallest root of the cubic equation, is one in which you

always have one node in the spring between the upper and middle

weights, and another node in the spring between the middle and

lowest (the first and third weight vibrating in the same direction, and

the middle weight in an opposite direction to the first and third).

It is assumed that there is no mass in the springs. If you

want to vary your laboratory exercises, take smaller masses for the

weights, and more massive springs, and if you omit the attached

masses altogether, you pass on to a very beautiful illustration

of the velocity of sound. For that purpose a long spiral spring

of steel wire, the spiral 20 feet long, hung up, say, if you have

a lofty enough room, will answer, and you will readily get

two or three of the graver fundamental modes without any

attached weights at all. In the special problem which we have

been considering we have three separate weights and not a con-

tinuous spring ; and we have three, and only three modes of vibra-

tion, when the springs are massless. We have an infinite number

of modes when the mass of the springs is taken into account. In

any convenient arrangement of heavy weights, the stiffness of the

springs is so great and their masses so small that the gravest
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[olccular. period of vibration of one of the springs by itself will be very short

;

but take a long spring, a spiral of best pianoforte steel wire, if you

please, and hang it up, with a weight perhaps equal to its own,

on its lower end, and you will find it a nice illustration for getting

several of the graver of the infinite number of the fundamental

modes of the system.

I want to put down the dynamics of our problem for an}^

number of masses. You will see at once that that is just the case

that I spoke of yesterday, of extending Helmholtz's singly vibrat-

ing particle connected with the luminiferous ether to a multiple

vibrating heavy elastic atom imbedded in the luminiferous ether,

which I think must be the true state of the case. A solid mass

must act relatively to the luminiferous ether as an elastic body

imbedded in it, of enormous mass compared with the mass of the

luminiferous ether that it displaces. In order that the vibrations

of the ether may not be absolutely stopped by the mass, there

must be an elastic connection. It is easier to say what must

be than to say that we can understand how it comes to be. The

result is almost infinitely difficult to understand in the case of

ether in glass or water or carbon disulphide, but the luminiferous

ether in air is very easily imagined. Just think of the molecules

of oxygen and nitrogen as if each were a group of ponderable par-

ticles mutually connected by springs, and imbedded in homogene-

ous perfectly elastic jelly constituting the luminiferous ether.

You do not need to take into account the gaseous motions of the

particles of oxygen, nitrogen, and carbon dioxide in our atmosphere

when you are investigating the propagation of luminous waves

through the air. Think of it in this way : the period of vibration

in ultra-violet rays in luminous waves and in infra red heat

waves so far as known, is fi'om the 1600 million-millionth of

a second to the 100 million-millionth of a second. Now think

how far a particle of oxygen or nitrogen moves, according to the

kinetic theory of gases, in the course of that exceedingly small

time. You will find that it moves through an exceedingly small

fraction of the wave-length. For examjjle, think of a molecule

moving at the rate of 50000 centimetres per second. In the period

of orange light it crawls along 10"'" of a centimetre which is only

1/GOOOOO of the wave-length of orange light. I am fully confident

that the wave motion takes place independently of the translatory

motion of the particles of oxygen and nitrogen in performing
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tlieir functions according to the kinetic theory of gases. You may Molecular,

therefore really look upon the motion of light waves through our

atmosphere as being solved by a dynamical problem such as this

before us, applied to a case in which there is so little of effective

inertia due to the imbedded molecules, that the velocity of light is

not diminished more than about one-thirty-third per cent, by it.

More difficulties surround the subject when you come to consider

the propagation of light through highly condensed gases, or trans-

parent liquids or solids.

In our dynamical problem, let the masses of the bodies be

represented hy m^, vi.^,...mj. I am going to suppose the several

particles to be acted upon by connecting springs. I do not want

to use spiral springs here. The helicalness of the spring in these

experiments has no sensible effect; but we want to introduce

a spiral for investigating the dynamics of the helical properties, as

shown by sugar. It is usually called the rotatory property, but this

is a misnomer. The magneto-optical property which was dis-

covered by Faraday is rotational, the property exhibited by quartz

and susrar and such thinos, has not the essential elements of

rotation in it, but has the characteristic of a spiral spring (a helical

spring, not a flat spiral), in the constitution of the matter that ex-

hibits it. We apply the word helical to the one and the word

rotational to the other.

I am going to suppose one other connect-

ed particle F, which is moved to and fro

with a given motion whose displacement

downwards from a fixed point 0, we shall call

^. Let Cj be the coefficient of elasticity of

the first spring, connecting the particle P
with the particle m^; c^ the coefficient of

elasticity of the next spring connecting m^

and m^', Cj_^,^, the coefficient of elasticity of

the spring connecting lUj to a fixed point.

We are not taking gravity into account ; we

have nothing to do with it. Although in the

experiment it is convenient to use gravity,

it would be still better if we could go to the

centre of the earth and there perform the

experiment. The only difference would be,

these springs would not be pulled out by the weights hung upon
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Molecular, them. In all other respects the problem would be the same, and

the same symbols would apply.

We are reckoning displacements downwards as positive, the

displacement of the particle m. being x.. The force acting upon

?7ij in virtue of the spring connection between it and P is c, (f — x^)
;

and in virtue of the spring connection between it and m^ is the

opposing pull — c^ {x^ — x^ ; so that the equation of motion of the

first particle is

dj^x
m, -^i = Cj (^ - x^) - c, (a?, - x^.

For No. 2 particle we have

X
w„

dt
= Cg {x^— x^) — C3 (x^ - x^) ; and so on.

Now suppose P to be arbitrarily kept in simple harmonic mo-

27rt
tion in time or period t ; so that ^ = const, x cos — . We assume

that every part of the apparatus is moving with a simple harmonic

motion, as will be the case if there were infinitesimal viscous

resistance and the simple harmonic motion of P is kept up long

27rt
enough ; so that we can write x. = const, x cos — , etc. I am

going to alter the ins so as to do away with the 47r^ which comes

771

in from differentiation. I will let —4, denote the mass of the first
47r'

particle, and 7 -| the mass of the second particle, etc. The result

will be that the equations of motion become

-
T^^i

= Cj (^ - ^J - c, (x^ - x^), etc.

Our problem is reduced now to one of algebra. There are

some interesting considerations connected with the determinant

which we shall obtain by elimination from these equations. To
find the number of terms is easy enough ; and it will lead to some

remarkable expressions. But I wish particularly to treat it with

a view to obtaining by very short arithmetic the result which can

be obtained from the determinant in the regular way only by

enormous calculation. We shall obtain an approximation, to the

accuracy of which there is no limit if you push it far enough,
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that will be exceedingly convenient in performing the calcu- MolecuLar.

latious.

In the next lecture, resuming the molar problem, we shall

begin with the solution for sound, of the equations that are now
before you on the board. We shall next try to go on a step further

with this molecular problem, of the vibrations of our compound

molecule.

T. L.



LECTURE III.

Oct. 8, 5 p.m.

Molar. We will now go on with the problem of Molar dynamics, the

propagation of sound or of light, from a source. I advise you all

who are engaged in teaching, or in thinking of these things for

yourselves, to make little models. If you want to imagine the

strains that were spoken of yesterday, get such a box as this

covered with white paper and mark upon it the directions of the

forces S, T, IT. I always take the directions of the axes in a

certain order so that the direction of positive rotation shall be

from y to z, from z to w, from x to y. What we call positive is the

same direction as the revolution of a planet seen from the northern

hemisphere, or opposite to the motion of the hands of a watch. I

have got this box for another purpose, as a mechanical model of an

elastic solid with 21 independent moduluses, the possibility of

which used to be disproved, and after having been proved, was still

disbelieved for a long time.

Let us take our equations,

d'^^dP dU dT
^^^^^^^

" df dx dy dz '

dx \ay dxl \dx dz

^^d^_^dn^dX
dx dy dz

We shall not suppose that m and n are variables, but take them

constant. If we do not take them constant we shall be ready for

Lord Rayleigh's paper on the blue sky, already referred to. I will

do the work upon the board in full, as it is a case in which

the expenditure of chalk saves brain ; but it would be a waste to
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print such calculations, for the reason that a reader of mathematics Molar.

should always have pencil and paper beside him to work the thing

out. * * * * The result is that

''d?='"5i+«^f <!>•

We take the symbol

^ dx^'^ df^ dz^'

In the case of no rigidity, or n — 0, the last term goes out. We
shall take solutions of these equations, irrespectively of the

question of whether we are going to make n — or not, and we

shall find that one standard solution for an elastic solid is in-

dependent of n and is therefore a proper solution for an elastic

fluid.

I have in my hand a printed report* of a Royal Institution

lecture of Feb. 1883, on the Size of Atoms, containing a note on

some mathematical problems which I set when I was examiner for

the Smith's Prizes at Cambridge, Jan. 30, 1883. One was to show

that the equations of motion of an isotropic elastic solid are what

we have here obtained, and another to show that so and so was a

solution. We will just take that, which is : Show that every pos-

sible solution of these three equations [(1) etc.] is included in the

following

:

f=^!+- "=1+^' ?=!-" (^)-

where ^, u, v, lu, are some functions of x, y,z, t\ with the condition

that «, V, lu are such that

du dv ,d^f^_f^ /ON

dx dy dz

If we calculate the value of the cubic dilatation, we find

^ „ , du dv diu o , / i V

^ = ^^ + 5+5^ + 37 = ^* «•

dch
Again, by using ^ = -^ + u in (1), we find (bearing in mind

( d' d(i) d\i\ /
, \ idd) ^

„ ,^.

Hs55 + d?j = ("' + "^^i + "^" ^'"-

* Reprinted in Vol. I. of Sir W. Thomson's Popular Lectures and Addresses.

(Macmillan, 1889).

3—2
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Molar. Now we may take

''a?s = <'"+">^ s '^^-

The full justification and explanation of this procedure is

reserved. [See commencement of Lecture IV. below.] Multiply

(6) by dx, and the corresponding y and z equations by di/, dz, and

add. We thus get a complete differential ; in other words, the

relation which cf) must satisfy is

P^^ = (m + ^Ov^^ ^^^-

And (2) shows that if </> satisfies (7) we have ii, v, w, satisfying

equations of the same form, but with n instead of (m + n); viz.

dhi „ d^v „ d^w „ ,„.

PW^""^''^ ^^ = "^^' Plf^''"^'' ^^>-

By solving these four similar equations, one involving {m + ??),

and three involving n, we can get solutions of (1), that is certain.

That we get every possible solution, I shall hope to prove

to-morrow. The velocity of the sound wave, or condensational

wave is /s^f
. The velocity of the wave of distortion in the

elastic solid is a / -. I shall not take this up because I am very

anxious to get on with the molecular problem ; but you see

brought out perfectly well the two modes of waves in an isotropic

homogeneous solid, the condensational wave and the distortional

wave. The condensational wave follows the equations of motion

of sound, which is the same as if n were null ; and this gives the

solution of the propagation of sound in a homogeneous medium,

like air, etc. The solution is worked out ready to hand for the

distortional wave because the same forms of equations give us

separate components u, v, w ; the same solution that gives us the

velocity potential for the condensational waves, gives us the

separate components of displacement for the distortional waves.

What I am going to give you to-morrow will include a solution

which is alluded to by Lord Rayleigh. There is nothing new in it.

I am going to pass over the parts of the solution which interpreted

by Stokes explain that beautiful and curious experiment of

Leslie's. Lord Rayleigh quotes from Stokes, ending his quotation

of eight pages with "The importance of the subject and the masterly

manner in which it has been treated by Prof. Stokes w^ill probably
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be thought sufficient to justify this long quotation." I would just Molar.

like to read two or three things in it. Lord Rayleigh says [Theory

of Sound, Vol. II. p. 207), "Prof. Stokes has applied this solution

to the explanation of a remarkable experiment by Leslie, according

to which it appeared that the sound of a bell vibrating in a

partially exhausted receiver is diminished by the introduction

of hydrogen. This paradoxical phenomenon has its origin in the

augmented wave length due to the addition of hydrogen in conse-

quence of which the bell loses its hold (so to speak) on the

surrcjunding gas." I do not like the words " paradoxical pheno-

menon;" "curious phenomenon," or "interesting phenomenon"

would be better. There are no paradoxes in science. Lord

Rayleigh goes on to say, " The general explanation cannot be

better given than in the words of Prof. Stokes :
' Suppose a person

to move his hand to and fro through a small space. The motion

which is occasioned in the air is almost exactly the same as it

would have been if the air had been an incompressible fluid.

There is a mere local reciprocating motion in which the air

immediately in front is pushed forward and that immediately

behind impelled after the moving body, while in the anterior space

generally the air recedes from the encroachment of the moving

body, and in the posterior space generally flows in from all sides

to supply the vacuum that tends to be created ; so that in lateral

directions, the flow of the fluid is backwards, a portion of the

excess of the fluid in front going to supply the deficiency

behind.' " It will take some careful thought to follow it. I

wish I had Green here to read a sentence of his. Green

says, " I have no faith in speculations of this kind unless they

can be reduced to regular analysis." Stokes speculates, but is

not satisfied without reducing his speculation to regular analysis.

He gives here some very elaborate calculations that are also

important and interesting in themselves, partly in connection

with spherical harmonics, and partly from their exceeding instruc-

tiveness in respect to many problems regarding sound. Passing

by all that five or six pages of mathematics—I will not tax your

brains with trying to understand the dynamics of it in the course

of a few minutes ; I am rather calling your attention to a thing

to be read than reading it—Stokes comes more particularly to

Leslie's experiments. Instead of a bell vibrating, Stokes con-

siders the vibrations of a sphere becoming alternately prolate and
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oblate ; and he sIioavs that the principles are the same. Read all

this for yourselves. I have intended merely to arouse an interest

in the subject.

Ten minutes interval.

To return to the consideration of our molecules connected by

springs, we will suppose a good fixing at the top, so firm and stiff

that the changing pull of the spring does not give it any sensible

motion. For any one of the springs let there be a certain change

of pull, c per unit change of length. This coefficient c measures

what I call the longitudinal rigidity of the spring : its effective

stiffness in fact. It is not the slightest consequence whether the

spring is long or short, only, if it is long, let it be so much the

stiffer ; but long or short, thick or thin, it must be massless. I

mean that it shall have no inertia. The masses may be equal

or unequal, and are connected by springs. Let us

attach here something like the handle of the bell

pull of pre-electric ages ;—something that you can

pull by. Call it P. This, in our application to the

luminiferous ether, will be the rigid shell lining be-

tween the luminiferous ether and the first moving mass.

The equation of motion for the first mass be-

comes, on bringing ^ to the left-hand side.

-Cil = (7^-<^i-C2)«i + c,;

and similarly for the second mass ; I shall use i

to denote any integer. I find the letter i too useful

for that purpose to give it up, and when I want

to write the imaginary ^—1, I use c. Let us call

the first coefficient on the right a^, the similar

coefficient in the next equation a^, and so on, so that

CL = - C; - C;.

The iih equation will thus be

Now write down all these j equations supposing the whole number

of the springs to be j ; form the determinant by which you find all

of the others in terms of ^, and the problem is solved.

If we had a little more time I would like to determine the

number of terms in this determinant. We will come back to
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that because it is exceeJiugly interesting ; but I want at once to Molecular.

put the equations in an interesting form, taking a suggestion from

Laplace's treatment of his celebrated Tidal problem. What we

want is really the ratios of the displacements, and we shall there-

fore write

introducing the sign minus, so that when the displacements are

alternately positive and negative the successive ratios will be all

positive. We have then,

-X^ '
' % ' ' It, Ui^x

w, = aj
; («_,.+! = CO ).

We can now form a continued fraction which, for the case that

we want, is rapidly convergent. If this be differentiated with

respect to T~^ we find a very curious law, but I am afraid we

must leave it for the present. The solution is

u, = a, —
^3

^ a„ —

a

Thus if we are given the spring connections and the masses,

everything is known when the period is known. If you develop

this, you simply form the determinant ; but the fractional form

has the advantage that in the case when the masses are larger

and larger, and the spring connections are not larger in pro-

portion, we get an exceedingly rapid approximation to its value

by taking the successive convergents. The differential coefficient

of this continued fraction with respect to the period is essentially

negative, and thus we are led beautifully from root to root, and

see the following conditions :—First, suppose we move P to and

fro in simple harmonic motion of very short period ; then when

the whole has got into periodic movement, it is necessary that P
and the first particle move in opposite directions. The vibrations

of the first particle needs to be " hurried up " (if you will allow

me an expressive American phrase) when the motion of P is

of a shorter period than the shortest of the possible inde-

pendent motions of the system with P held fixed. Now if you

want to hurry up a vibrating particle, you must at each end of

its range press it inwards or towards its middle position.
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You meet this principle quite often ; it is well known in

the construction of clock escapements. To hurry up the vibra-

tory motion of our system we must add to the return force of

particle No, 1 by the action of the spring connected to the

handle P, by moving F always in the direction opposite to the

motion of m. From looking at the thing, and learning to under-

stand it hy feeling the experiment, if you do not understand it by

brains alone, you will see that everything that I am saying is

obvious. But it is not satisfactory to speak of these things- in

general terms unless we can submit them to a rigorous analysis.

I now set the system in motion, managing, as you see, to get

it into a state of simple harmonic vibration by my hand applied

to P. That, which you now see, is a specimen of the configuration

in which the motion of P is of a shorter period than the shortest

of the independent motions with P fixed. Suppose now, the

vibration of P to be less rapid and less rapid ; a state of things

will come, in which, the period of P being longer and longer, the

motion of the first particle will be greater and greater. That is

to say, if I go on augmenting the period of P we shall find for

the same range of motion of P, that the ranges of motion of ni^

and of the other particles generally will be greatly increased

relatively to the range which I give to P. In analytical words,

if we begin with a configuration of values corresponding to r

very small, and then, if we increase t to a certain critical

CO

value, we shall find -^ will become infinite. In the first place, we

begin with u^, u^,...Uj all positive; and t small enough will make

them all positive as you see. ISovv take the differential coefficient

of u. with respect to t and it will be found to be essentially nega-

tive. In other words, if we increase r, we shall diminish u^, u^

In every case u^ will first pass through zero and become negative.

When Wj is zero we have the first infinity -^ = oo . If we diminish

T a little further ii^ will pass through zero to negative while u^ is

still negative. Diminish t a little further and u^ will become

zero and pass to negative, while u^ is still negative ; but in the

mean time u^ may have reached a negative maximum and passed

through zero to positive, or it may not yet have done so. We
shall go into this to-morrow ; but I should like to have you know

beforehand what is goings to come from this kind of treatment of

the subject.



LECTURE IV.

Oct. 4, 3.45 P.M.

We found yesterday Molar.

di'

d\)

df

d^
df

dx

dS „

dy+"'^'^

= {k + in) j-^ + n^'i;

= {k + .(i;

and we saw that we get two solutions, which when fully inter-

preted, correspond to two different velocities of propagation, on

the assumptions that were put before you as to a condensational

or a distortional wave. We will approach the subject again from

the beginning, and you will see at once that the sum of these

solutions expresses every possible solution.

In one of our solutions of yesterday, we took, instead of ^, t], ^,

other symbols u, v, w, which satisfied the condition,

du dv dw _ ^
dx dy dz

In other words, the u, v, w of yesterday express the displacements

in a case in which the dilatation or condensation is zero. Now, just

try for the dilatation in any case whatever, without such restriction.

This we can do as follows : Differentiate (1) with respect to x

(taking account of the constancy of m and n) and the correspond-

ing equations with respect to y and z, and add. We thus find

d'8

^ df ^ ^"' "^ ''^ ^'^ " ^^ ^ ^"^ ^'^ .(2).
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Molar. This equation, you will remember, is the same as we had yesterday

for </). We shall consider solutions of this equation presently

;

but now remark, that whatever be the displacements, we have

a dilatation corresponding to some solution of this equation. It

may be zero, but it must satisfy (2). Now in any actual case, B is

a determinate function of cc, y, z, t; and whether we know it or

not, we may take ^ to denote a function such that

V^(^ = through all space (3).

This function, ^, is determinate. It is in fact given explicitly

(as is well known in the theory of attraction) by the equation

where S' denotes the value of S at {x
,
y', z). This formula (4) is

important as giving ^ explicitly ; and exceedingly interesting on

account of the relations to the theory of attraction ; but in the

wave-problem, when S is given, (8) gives <^ determinately and in

the easiest possible way. Putting now

du
. dv . diD

dy
We have 8 =vV+i + i^ +i («'

=

and therefore, by (3), g +| +
I"

= (7).

Now, remembering that (1) are satisfied by d(j)/dx, d(f)/dy, d(f)/dz

in place of ^, 77, ^, we see, by multiplying the first by dec, or the

second by dy, or the third by dz, and integrating, that

p'^^ = {k + in)v'<P (8),

and we find the three equations for

fc _# ^ _ f^^ ^ _ ^^^

^ dx' ^ dy' ^ dz

reduced, in virtue of (7), to the following :

d^u , d% „ d'^iu

P -^ = '^V ^*> P -^ = '^V V, p ^^2
= '^V'w (9).

For any possible solutions of equations (1), we have a value

of B which is a function of x, y, z ; take the above volume integral
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corresponding to this value of 6 through all points of space x'y z ,
Molar,

and we obtain the corresponding function which fulfils the

condition v"0 = h. Now, let us compound displacements — j ,
etc.,

with the actual displacements and denote the resultant as follows:

^ dd) (16 ^ clcfi

and remarking that therefore

du dv dw _
dx dy dz

'

we see the proposition that we had before us yesterday established.

Hence to solve the three equations (1) we have simply to find

8 by solution of the one equation

P ^. = ("^ + «) V f>>

and to deduce <^ from S, by (3); or to find direct by solution

of the equation

d (b / , -2

,

p ^ = (''i + '0 V </>

;

and u, V, lu from the three separate similar equations with n in the

place of (m + n), subject to the conditions

du dv dw _ „

dx dy dz

We shall take our ^ equation and see how we can from it

obtain different forms of ^ solutions. We can do that for the

purpose of illustrating different problems in soimd, and in order

to familiarize you with the wave that may exist along with the

wave of distortion in any true elastic solid which is not incom-

pressible. We ignore this condensational wave in the theory of

light. We are sure that its energy at all events, if it is not null,

is very small in comparison with the energy of the luminiferous

vibrations we are dealing with. But to say that it is absolutely

null would be an assumption that we have no right to make.

When we look through the little universe that we know, and think

of the transmission of electrical force and of the transmission of

magnetic force and of the transmission of light, we have no right

to assume that there may not be something else that our philo-
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sophy does not dream of. We have no right to assume that there

may not be condensational waves in the luminiferous ether. We
only do know that any vibrations of this kind which are excited

by the reflection and refraction of light are certainly of very small

energy compared with the energy of the light from which they

proceed. The fact of the case as regards reflection and refraction

is this, that unless the luminiferous ether is absolutely incom-

pressible, the reflection and refraction of light must generally

give rise to waves of condensation. Waves of distortion may
exist without waves of condensation, but waves of distortion cannot

be reflected at the bounding surface between two mediums without

exciting in each medium a wave of condensation. When we come

to the subject of reflection and refraction, we shall see how to

deal with these condensational waves and find how easy it is to

get quit of them by supposing the medium to be incompressible.

But it is always to be kept in mind as to be examined into, are

there or are there not very small amounts of condensational waves

generated in reflection and refiaction, and may after all, the pro-

pagation of electric force be by these waves of condensation ?

Suppose that we have at any place in air, or in luminiferous

ether (I cannot distinguish now between the two ideas) a body

that through some action we need not describe, but which is con-

ceivable, is alternately positively and negatively electrified; may
it not be that this will give rise to condensational waves ? Suppose,

for example, that we have two spherical condvictors united by a

fine wire, and that an alternating electromotive force is pro-

duced in that fine wire, for instance by an "alternate current"

dynamo-electric machine; and suppose that sort of thing goes on

away from all other disturbance—at a great distance up in the

air, for example. The result of the action of the dynamo-electric

machine will be that one conductor will be alternately positively

and negatively electrified, and the other conductor negatively and

positively electrified. It is perfectly certain, if we turn the

machine slowly, that in the air in the neighbourhood of the con-

ductors we shall have alternately positively and negatively directed

electric force with reversals of, for example, two or three hundred

per second of time Avith a gradual transition from negative

through zero to positive, and so on; and the same thing all

through space ; and we can tell exactly what the potential and

what the electric force is at each instant at any point. Now, does
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any one believe that if that revolution was made fast enough Molar.

the electro static law of force, pure and simple, would apply to

the air at different distances from each globe? Eveiy one believes

that if that process be conducted fast enough, several million times,

or millions of million times per second, we should have large devia-

tion from the electrostatic law in the distribution of electric force

through the air in the neighbourhood. It seems absolutely certain

that such an action as that going on would give rise to electrical

waves. Now it does seem to me probable that those electrical

waves are condensational waves in luminiferous ether; and pro-

bably it would be that the propagation of these waves would be

enormously faster than the propagation of ordinary light waves.

I am quite conscious, when speaking of this, of what has

been done in the so-called Electro-Magnetic theory of light.

I know the propagation of electric impulse along an insulated

wire surrounded by gutta percha, which I worked out myself

about the year 18-54, and in which I found a velocity comparable

with the velocity of light*. We then did not know the relation

between electro-static and electro-magnetic units. If we work

that out for the case of air instead of gutta percha, we get simply

"y," (that is, the number of electrostatic units in the electro-

magnetic unit of quantity,) for the velocity of propagation of the

impulse. That is a very different case from this very rapidly

varying electrification I have ideally put before you : and I have

waited in vain to see how we can get any justification of the way

of putting the idea of electric and magnetic waves in the so-called

electro-magnetic theory of light.

I may refer to a little article of mine in which I gave a sort

of mechanical representation of electric, magnetic, and galvanic

forces—galvanic force I called it then, a very badly chosen name.

It is published in the first volume of the reprint of my papers.

It is shown in that paper that the static displacement of an elastic

solid follows exactly the laws of the electro-static force, and that

rotatory displacement of the medium follows exactly the laws of

magnetic force. It seems to me that an incorporation of the

theory of the propagation of electric and magnetic disturbances

with the wave theory of light is most probably to be arrived at

by trying to see clearly the view that I am now indicating. In

the wave theory of light, however, we shall simply suppose the

* (See an Appendix near the end of the present voUime.)
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resistance to compression of the luminiferous ether and the

velocity of propagation of the condensational wave in it to be

infinite. We shall sometimes use the words "practically infinite"

to guard against supposing these quantities to be absolutely

infinite.

I will now take two or three illustrations of this solution for

condensational waves. Part of the problem that I referred to

yesterday says :—prove that the following is a solution of (7), the

equation of motion,

6 = - sm -^ {r —t . / —

-

or, if we put for brevity,

27r / ,
/k + ^n

P
^=^v-u/-^:-] (10)^

^=^ (11).

The question might be put into more analytical form :—to find

a solution of (7) isotropic in respect to the origin of co-ordinates

;

or to solve (7) on the assumption that ^ is a function of r and t.

Taking this then as our problem, remark that we now have (be-

cause ^ is a function of r)

v> = "i(^'f)-^^*-' a^)-

Hence (7), Avith both sides multiplied by r^, becomes

P ^f
-(A^+3'^)

^^.2 (13),

of which the general solution is

r(f> = F{r- vt) +f(r + vt))

where ^ =/^' )
*'*^'

and F and f denote two arbitrary functions.

This result simply expresses wave disturbance of rcj), with

velocity of propagation \/[(^ + |^0/p] • ^^^ i^ proves (9), being

merely the case of a simple harmonic wave disturbance propagated

in the direction of r increasing, that is to say outwards from the

origin.
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Here then is the determination of a mode of motion which Molar,

is possible for an elastic solid. We shall consider the nature of

this motion presently. The factor - in (0) prevents it from being

a pure wave motion. Passing over that consideration for the

present, we note that it is less and less effective, relatively to the

motion considered the farther we go from the centre.

In the meantime, we remark that the velocity of propagation

in an elastic solid is but little greater than in a fluid with the

same resistance to compression, k is the bulk modulus and

measures resistance to compression, n is the rigidity modulus.

I may hereafter consider relations between k and n for real solids.

k is generally several times n, so that ^n is small in comparison

with k, and therefore in ordinary solids the velocity of propagation

of the condensational wave is not greatly greater than if the solid

were deprived of rigidity and we had an elastic fluid of the same

bulk modulus.

I shall want to look at the motion in the neighbourhood of

the source. That beautiful investigation of Stokes, quoted by

Lord Rayleigh, has to do entirely with the region in which the

change of value of the factor f-j from point to point is consider-

able. Without looking at that now, let us find the components of

the displacement and their resultant, and study carefully all the

circumstances of the motion.

-^ , -^ , 7 . are the three components of the displacement.
dx dy dz

Clearly, therefore, the displacement will be in the direction of the

radius because everything is symmetrical ; and its magnitude will

be ~: and from (11) and (10) we find
dr

deb -1 . 27rl— —^ sm q + —
7'- ^ X ?

^ = -j-smq+ ^-cosq (L5).

Having obtained this solution of our equations, let us see what

we can make of interpreting it. When r is great in comparison

with 5- , the first term becomes very small in comparison with
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the second and we have

d(b . 27r 1 /i/.\*-7^ = -— cos a (16)*.
dr ' \ r ^

Therefore, wlien the distance from the origin is a great many

27r 1
wave-lengths, the displacement is sensibly equal to — - cos q.

A, T

and is therefore approximately in the inverse proportion to the

distance ; and the intensity of the sound if the solution were

to be applied to sound, would be inversely as the square of the

distance from the source.

I want now to get a second and a third solution. Take

as the velocity potential for a fresh solution. I take it that you

all know that if we have one solution
(f),

for the velocity potential,

we can get another solution by yjr any linear function of

d(f) d^ d(f)

dx ' dy ' dz'

Now let us find the displacements

(Z-x/r d-y^ dyjr

dx ' dy ' dz
'

Here I want to prove that though this solution is no longer sym-

metrical with respect to r, so that there will be motions other

than radial in the neighbourhood of the source, yet still the

motion is approximately radial at great distances from the source.

Work it out, and you will find that

d-<^ 277 sin q

dx ^ ^' _
9_ „2

The principal term here is —— -3 sin q. We might go on to the

third and fourth and higher differential coefficients of ^, with

their larger and larger numbers of terms. The interpretation of

this multiplicity of terms, of the terms other than those which

I am now calling the " principal terms," is all-important in respect

to the motion of the air in the neighbourhood of the source. It

* I use = to denote approximate equality.

t X/27r is introduced merely for convenience. The solution differs from

\j/ — d<(>jdx, only by a constant factor.

'x' I X y r' - Sa;'! cos o r" - 33^
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is dealt with in that splendid work of Stokes, one of the finest Molar,

things ever written in physical mathematics, of which I read to

you this afternoon, with reference to the effect of an atmosphere

of hydrogen round a bell killing its sound. But we will drop

those terms and think only of the terms which express the

efficiency of the vibrator at distances great in comparison with

the wave-length.

Thus, for the ^-component displacement of the motion now
considered, we have

This approximate equality is true for distances from the centre

great in comparison with the wave-length. Let me remark, it is

the differentiation of cos q that gives the distantly effective terms

of the displacement ; and in differentiating yjr with respect to y,

you have simjjly to differentiate cos q and to take the differential

coefficient of r now with respect to y, instead of x as formerly.

So that we may write down the principal terms of the y and z

displacements by taking y/.x and z/x of the second member of (19)

as follows :

—

27r xy . <, 2Tr xz .

'? = --^-^sm^, r = --^-^sm^.

The three component displacements being proportional to x, y, z,

shows that the resultant displacement is in the direction of the

radius ; and its magnitude is —-—5 sin q. If we write x = r cos i,

this becomes
^TT cos i .—r sm q (20),\ r ^ ^ '

or the displacement is inversely proportional to the distance. If

i = we have a maximum ; if i = — we have zero. The upshot of

it is that the displacement is a maximum in the axis OX, zero

everywhere in the plane of OY, OZ ; and symmetrical all round

the axis OX.

A third solution is got by taking -7-^ as our velocity potential.

At a distance from the origin, great in comparison with the wave-

T. L. 4
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length, the displacement is in the direction of the radius, and its

., ,
. d d'<h

raaffnitude is -^ -^^ .^ dr dec"

Now the interpretation of these cases is as follows :—The first

solution, (velocity potential ^) a globe alternately becoming larger

and smaller; the second solution, (velocity potential djy/dx) a

globe vibrating to and fro in a straight line ; the third solution,

(velocity potential d^(f>/dx^) a characteristic constituent of the

motion of the air produced by two globes vibrating to and fro

in the line of their centres, or by the prongs of a vibrating fork.

This last requires a little nice consideration, and we shall take

it up in a subsequent lecture. The third mode does not quite

represent the motion in the neighbourhood of the pair of vibrating

globes, or of the prongs of a vibrating fork ; there must be an

unknown amount of the first mode compounded with the third

mode for this purpose. The expression for the vibration in the

neighbourhood of a tuning fork, going so far from the ends of it

that we will be undisturbed or but little disturbed, by the general

shape of the Avhole thing, will be given by a velocity potential
72 I

A(fi + -j-^ . That will be the velocity potential for the chief terms,

the terms which alone have effect at great distances. The dif-

ferentiation will be performed simply with reference to the r in

the term sin q or cos q ; and will be the same as if the coefficient

of sin q or cos q were constant. A difi"erentiation of this velocity

potential will show that the displacement is in the direction of

the radius from the centre of the system, and the magnitude of

the displacement will be ^ (^^ "^ T^j •

A is an unknown quantity depending upon the tuning fork.

I want to suggest this as a junior laboratory exercise, to try tuning

forks with different breadths of prongs. When you take tuning

forks with prongs a considerable distance asunder you have much
less of the in the solution : try a tuning fork with flat prongs,

pretty close together, and you will find much more of the
(f).

The
(f)

part of the velocity potential corresponds to the alternate

swelling and shrinking of the air between the two prongs of the

timing fork. The larger and flatter the prongs are the greater is

the proportion of the (j) solution, that is to say, the larger is the
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value of A in that formula; and the smaller the angle of the cone Molar,

of silence.

The experiment that I suggest is this : take a vibrating tuning

fork and turn it round until you find the cone of silence, or find

the angle between the line joining the prongs and the line going to

the place where your ear must be to hear no sound. The sudden-

ness of transition from sound to no sound is startling. Having
the tuning fork in the hand, turn it slowly round near one ear

until you find its position of silence. Close the other ear with your

hand. A very small angle of turning round the vertical axis from

that position gives you a startlingly loud sound. I think it is very

likely that the place of no sound will, with one and the same fork,

depend on the range of vibration. If you excite it very powerfully,

you may find less inclination between the line of vibration of the

prongs and the line to the place of silence ; less powerfully, greater

inclination. It will certainly be different with different tuning forks.

4-2
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Molar: I STATED in the last lecture that the second solution, corre-
Eecapitu- 7 ,

lation. spending to the velocity potential y^ , would represent the effect,

at a great distance from the mean position, of a single body vibrat-

ing to and fro in a straight line. I said a sphere, but we may take

a body of any shape vibrating to and fro in a straight line; and at

a very great distance from the vibrator, the motion produced will

rich

be represented by the velocity potential —-, provided the period

of the vibration is great in comparison with the time taken by

sound to travel a distance equal to the greatest diameter of the

body. Then the velocity potential ^^ , in the third solution,

would, I believe, represent (without an additional term A(f)) the

motion at great distances, when the origin of the sound consists

in two globes, let us say, for fixing the ideas, placed at a distance

from one another very great in comparison with their diameters

and set to vibrate to and fro through a range small in comparison

with the distance between them, but not necessarily small in

comparison with their diameters : provided always that the period

of the vibration is great in comparison with the time taken by

sound to travel the distance between the vibrators. Suppose

this is a globe in one hand, and this is one in the other. I now

move my hands towards and from each other—the motion of the

air produced by that sort of motion of the exciting bodies would, at

a very great distance, be expressed exactly by the velocity potential

But when you have two globes, or two flat bodies, very near

one another, you need an unknown amount of the <^ vibration to
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represent tlie actual state of tlic case. That unknown amount Molar:

might be determined theoretically for the case of two spheres, lation.

The problem is analogous to Poisson's problem of the distribution

of electricity upon two spheres, and it has been solved by Stokes

for the case of fluid motion (see Mem. de VInst., Paris, 1811, pp. 1,

1G3; and Stokes' Papers, Vol. I., p. 230—" On the resistance of a

fluid to two oscillating spheres"). You can thus tell the motion

exactly in the neighbourhood of two spheres vibrating to and fro

provided the amplitudes of their vibrations are small in comparison

with the distance between them ; and you can find the value of

A for two spheres of any given radii and any given distance

between them. For such a thing as a tuning fork, you could

not, of course, work it out theoretically ; but I think it would be

an interesting subject for junior laboratory work, to find it by

experiment.

I suppose you are all now familiar with the zero of sound in

the neighbourhood of a tuning fork ; but I have never seen it

described correctly anywhere. We have no easy enough theo-

retical means of determining the inclination of the line going to

the position of the ear for silence to the line joining the prongs

;

but we readily see that it is dependent upon the proportions

of the body. In turning the tuning fork round its axis, you

can get with great nicety the position for silence ; and a sur-

prisingly small turning of the tuning fork from the position of

silence causes the motion to be heard. It would be very curious

to find whether the position of zero sound varies perceptibly with

the amplitude of the vibrations. I doubt whether any perceptible

diflerence will be found in any ordinary case however we vary the

amplitude of the vibrations. But I am quite sure you will find

considerable difference, according as you take tuning forks with

cylindrical prongs, or with rectangular prongs of such proportions

as old Marlowe used to make, or tuning forks like the more

modern ones that Koenig makes, with very broad flat prongs.

Now for our molecular problem. Molecular.

I want to see how the variable quantities vary, when we vary

the period. Remember that

a.= -i — c, -c... \^)

,
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Blolccular. ^o that , , L,. = lit. (2).
air )

Write for the moment d for , -- _o, , and differentiate the equation

for u. ; we find

dlL = 111, + (^^^'^^ j
dlL^„ dlL^,= Wi,^,+ (^' j aii,,.,, . . . du^ = 111,.

Substitute successively, and we find,

dii. = III. +
I

'"^'
) ra.

u.

+ ^''^) "U+- ^-^-^ "h (3)

This is our expression, and remark the exceedingly important

jjroperty of it that it is essentially positive, i. e. the variation of u.

with increase of t~^ is essentially positive. Now

^ = -2T-'du.:
dr

also -^ = —
,

-^±2. = i±2
^ and so on.

The result (3) therefore is equivalent to the following expression

(4) for the differential coefficient of u, with respect to the period.

du 2 1

This is certainly a very remarkable theorem, and one of great

importance with reference to the interpretation of the solution of

our problem. Remember that x^ is the displacement of m. at any

time of the motion. You may habitually think of the maximum
values of the displacements, but it is not necessary to confine your-

selves to the maximum values. Instead of x^, x^, ... x^ we may
take constants equal to the maximum values of the a''s, each

multiplied into sin , because the particles vibrate according to

the simple harmonic law, all in the same period and the same

phase, that is all passing through zero simultaneously, and reach-

ing maximums simultaneously, every vibration. The masses are

positive, and we have squares of the disjDlacements in the several

terms of (4) ; so that the second member of (4) is essentially
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negative. Hence, as Ave augment the period, each one of the ratios Molecular.

u. decreases.

Let us now consider the configurations of motion in our spring

arrangement, for different given periods of the exciting vibrator, P.

I am going to suppose, in the first place, that the period of

vibration is very small, and is then graduall}' increased. As you

increase the period, we have seen that the value of each one of the

quantities Mj,^^, ... decreases. It is interesting to remark that

this is so continuously throughout each variety of the configura-

tions found successively by increasing r from to <X) . But we

shall find that there are critical values of t, at which one or other

of the us, having become negative decreases to — x ; then suddenly

jumps to + 00 as T is augmented through a critical value; and

again decreases, possibly again coming to + oo
,
possibly not, while

T is augmented farther and farther, to infinity. In the first j)lace,

T may be taken so small that the u's are all very large positive

quantities; for u. being equal to —.}— c^ — c._^_^, ^^ may be cer-

tainly made as very large positive as we please by taking t small

enough, if, at the same time the succeeding quantity, w.^^, is large,

a condition which we see is essentially fulfilled where r is very

small, because we have Uj = mjjr^ — Cj — c^^^, which makes Uj very

great.

Observe that the it's all positive implies that ^, x^, x^, x^, ... x^

are alternately positive and negative. In other words the handle

P and the successive particles ??i, , m.^, ... m^, are each moving in a

direction opposite to its neighbour on either side. Since the

magnitudes of the ratios w^, u,^, ... u^ of the successive amplitudes

decrease with the increase of the period, the amplitude of particle

111. is becoming smaller in proportion to the amplitude of the suc-

ceeding particle m._^^, as long as the vibrations of the successive

particles are mutually contrary-wards. I am going to show you

that as every one of these quantities u. decreases, the first that

passes through zero is necessarily w^; corresponding to a motion of

each particle of the system infinitely great in comparison with

the motion of the handle P ; that is to say, finite simple harmonic

motion of the system with P held fixed. This is our first critical

case. It is the only one of the j fundamental modes of vibration of

the system with P fixed, in which the directions of vibration of the

successive particles are all mutually contrariwise, and it is the one
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Molecultii. of them of which the period is shortest. After that, as we in-

crease T, Mj becomes negative, and the motion of P comes to be in

the direction of the motion of the first particle. As Ave go on

increasing the period we shall find that the next critical case that

comes is one in which particle ??ij has zero motion, or

U, = -" = — 00 .

* — X

To prove this, and to investigate the further progress, lot us look

at the state of things when a positive decreasing u. has approached

very near to zero. We shall have u._^ , being equal to a._^ , a

very large negative quantity. This alone shovv^s that u._^ must

have preceded il in becoming zero, since it must have passed

through zero before becoming negative. Therefore, as we augment

T, the first of the w's to become zero is u, = -^ ; or, as I said
' — X

before, the motion of particle ri\ and also of each of the other

particles is infioite in comparison with the motion of F. Just

before this state of things all the particles P, Wj, ... nij are, as we

saw, moving each contrary-wards to its neighbour; just after it, P
has reversed its motion with reference to the first particle, and is

moving in the same direction with it.

This continues to be the configuration, till just before the

second critical case, in which we have u^ large negative, u^ small

positive, u^, ... Uj, all positive. At this critical case, we have

Q t

tij = -^ = + 00 ; or *'j = ± X ^.

The period of motion of P that will produce this state of things is

equal to the period of the free vibration of the system of particles,

with mass m^ held at rest, and each of the other masses moving

contrary-wards to its neighbour on each side. When the period of

the simple harmonic motion of P is equal to a period of motion

of the system with the first particle held at rest, then the only

simple harmonic motion which the system with all the particles

unconstrained can have is in that period, and with the amplitude

of vibration of the second particle in one direction just so great as

to produce by spring No. 2, a pull in that direction, on m^, equal

to the jJuU exercised on it through spring No. 1, by P in the

opposite direction ; so as to let the first particle be at rest. Sup-
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pose now T to be continuously increased through this critical value. Molecular.

Immediately after the critical case, u^ has changed from large

negative, through + x , to large positive, and u^ from small positive,

through + 0, to small negative ; or the first particle has reversed

the direction of its motion and come to move same-wards with P
and contrary-wards to the second particle.

The third critical case might be that of the second particle

coming to rest, (u,^ =+00, u^ = ± 0); or it might be u^ = a second

time : it must be either one or other of these two cases. But we

must not stop longer on the line of critical cases at present*. I

will just jump over the remaining critical cases to the final con-

dition.

It would be curious to find the solution when the period is

infinitely great out of our equations. When r is infinite, -^'

[Note added; Jan. 11, 1886, NetherhaU, Largs.]

* As we go on increasing r from the first critical value (that which made u^= 0),

the essential decreasiugs of Hj (negative) and 11.2 (still positive) bring u^ to - oc and

«., to simultaneously. With farther increase of r, the decreasings of ?fo (now

negative) and of u.^ (still positive) hring it.-, to - oo and M3 to 0, simultaneously; and

so on, in succession from h^ to Uj which passes through zero to negative, but cannot

become - 00 and remains negative for all greater values of r, diminishing to the

value - (Cj + C;+i) as t is augmented to infinity.

But i/j, after decreasing to - 00 , must pass to + co and again become decreasing

positive. It must again pass through zero; and thus there is started another

procession of zeros along the line from P, through m-^, m.2,... successively, but ending

in w^_., : not in »i;_i whose amplitude [Ujajjcj) is made zero and negative by the

conclusion of the first procession, before the second procession can possibly reach

it. Thus i(y_i passes a second and last time through zero and diminishes to the

limiting values - c,-, ( 1 1 l/f 1

) , as r is augmented to 00 .

Vj+x Cj Cj-J'\<-j--2 0-1/

A third procession of zeros, similarly commencing with P, passing along the

line, )»i,
»^.„...and ending with mj_.^, makes Uj_„ zero for a third and last time, and

leaves it to diminish to its limit (shown by the formula reported in the text below,

from the lecture,) as t augments to x . Similarly procession after procession, in

all J processions, commence with m^. The last begins and ends in m-^, and leaves u^

to go from zero to its negative limiting value

/ 1 1 1 1\// 11 1\
-cA— + +...+- + -)/ — + - + ...+-),

Vj+1 Cj Co Ci)l\cj+^ Cj C.2)

as T augments to 00 . There is no general rule of precedence in respect to magni-

tude of r, of the different transitional zeros of the different processions. For

example, there is no general rule as to order of commencement of one procession,

and termination of its predecessor. The one essential limitation is that no

collision can take place between the front of one procession and the rear of its

predecessor.
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Molecular, vanishes, and cij = — c^ — c.^j. That apj^lied to the e({uations for the

as ought to find the solution quite readily.

You know, when you think of the dynamics of tliis case, that

when T is infinitely great, P is moving infinitely slowly, so that

the inertia of each particle has no sensible effect ; and all the

particles are in equilibrium. Let F be the force, then, on the

spring ; that is to say, pull P slowly down with a force F and hold

it at rest. What will be the displacements of the different

F F F
particles ? Answer, x. =— , x, ,

= 1— , and so on. Particle

number j is displaced to a distance equal to the force, divided by

the coefficient of elongation of the spring. To obtain the displace-

ment of particle J — 1, we have to add the displacement resulting

from the elongation of the next spring c^, and so on. The general

equation then is

,
1 1 iW.

....^1
C..a.,/

It is a curious but of course a very simple and easy jDroblem to

substitute the value of a. = — c. — c^^j in the continued fraction

which gives u., and verify this solution. No more of this now
however.

It is fiddling while Rome is burning ; to be playing with

trivialities of a little dynamical problem, when phosphorescence

is in view, and when explanation of the refraction of light in

crystals is waiting. The difficulty is, not to explain phosphor-

escence and fluorescence, but to explain why there is so little of

sensible fluorescence and phosphorescence. This molecular theory

brings everything of light, to fluorescence and phosphorescence.

The state of things as regards our complex model-molecule would

be this: Suppose we have this handle P moved backwards and

forwards until everything is in a perfectly periodic state. Then

suddenly stop moving P. The system will continue vibrating for

ever with a complex vibration which will really partake something

of all the modes. That I believe is fluorescence.

But now comes Mr Michelson's question, and Mr Newcomb's

question, and Lord Rayleigh's question ;—the velocity of groups

of waves of light in gross matter. Suppose a succession of luminous
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vibrations commences. In the commencement of the luminous vi- Molecular.

brations the attached molecules imbedded in the luminiferous ether,

do not immediately get into the state of simple harmonic vibration

which constitutes a regular light. It seems quite certain that

there must be an initial fluorescence. Let light begin shining on

uranium glass. For the thousandth of a second, perhaps, after

the light has begun shining on it, you should find an initial state

of things, which differs from the permanent state of things some-

what as fluorescence differs from no light at all.

There is still another question, which is of j)rofound interest,

and seems to present many difficulties, and that is, the actual

condition of the light which is a succession of groups. Lord

Rayleigh has told us in his printed paper in respect to the

agitated question of the velocity of light, and then again, at the

meeting of the British Association at Montreal, he repeated very

peremptorily and clearly, that the velocity of a group of waves

must not be confounded with the wave velocity of an infinite

succession of waves, and is of necessity largely different from the

velocity of an infinite succession of waves, in every dispersively

refracting medium, that is to say, medium in which the velocity

is different for lights of different period. It seems to be quite

certain that what he said is true. But here is a difficulty which

has only occurred to me since I began speaking to you on the

subject; and I hope, before we separate, we shall see our way

through it. All light consists in a succession of groups. We are

all, already, familiar with the question ;—Why is all light not

polarized ? and we are all familiar with its answer. We are now

going to work our way slowly on until we get expressions for

sequences of vibrations of existing light. Take any conceivable

supposition as to the origin of light, in a flame, or a wire made

incandescent by an electric current, or any other source of light

;

we shall work our way up from these equations which we have

used for sound, to the corresponding expression for light from

any conceivable source. Now, if wc conceive a source con-

sisting of a motion kept going on with perfectly uniform period-

icity ; the light from that source would be plane polarized, or

circularly polarized, or elliptically polarized, and would be abso-

lutely constant. In reality, there is a multiplicity of successions

of groups of waves, and no constant periodicity. One molecule,

of enormous mass in comparison with the luminiferous ether that
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olecular. it displaces, gets a shock and it performs a set of vibrations until

it comes to rest or gets a shock in some other direction ; and it

is sending forth vibrations with the same want of regularity that

is exhibited in a group of sounding bodies consisting of bells,

tuning forks, organ pipes, or all the instruments of an orchestra

played independently in wildest confusion, every one of which is

sending forth its sound which, at large enough distances from the

source, is propagated as if there were no others. We thus see

that light is essentially composed of groups of waves ; and if the

velocity of the front or rear of a group of waves, or of the centre

of gravity of a group, differs from the wave-velocity of absolutely

continuous sequences of waves, in water, or glass, or other dispersively

refracting mediums, we have some of the ground cut from under us

in respect to the velocity of waves of light in all such mediums.

I mean to say, that all light consists of groups following one

another, irregularly, and that there is a difficulty to see what to

make of the beginning and end of the vibrations of a group : and

that then there is the question which was talked over a little in

Section A at Montreal,—will the mean of the effects of the

groups be the same as that of an infinite sequence of uniform

waves, and will the deviation from regular periodicity at the

beginning and end of each group have but a small influence on

the whole ? It seems almost certain that it must have but a

small influence from the known facts regarding the velocity of

light proved by the known, well-observed, and accurately measured,

phenomena of refraction and interference. But I am leading

you into a muddle, not however for you, I hope, a slough of

despond ; though I lead you into it and do not show you the

way out. You will all think a good deal along with me about the

connections of this subject.
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Monday, Oct. 6, 5 p.m.

I WANT to ask you to note that when I spoke of k + ^n not Molar,

differing very much from A- for most solids, I was rather under the

impression for the moment that the ratio of n to k was smaller

than it is ; and also you will remember that we had k + In on

the board by mistake for k + ^n. The scjuare of the velocity of a

condensational wave in an elastic solid is (^ + ^n)/p. For solids

fulfilling the supposed relation of Navier and Poisson between

compi-essibility and rigidity we have 7i = ^k; and for such cases the

numerator becomes fjc. It would be k if there were no rigidity
;

it is ^k if the rigidity is that of a solid for which Poisson's ratio

has its supposed value.

Metals are not enormously far from fulfilling this condition,

but it seems that for elastic solids generally oi bears a less pro-

portion to k than this. It is by no means certain that it fulfils it

even approximately for metals ; and for india rubber, on the other

hand, and for jellies, n is an exceedingly small fraction of /.;, so

that in these cases the velocity of the condensational wave is but

very little in excess of /- . The velocity of propagation of a

distortional wave is ./ -', so that for jellies, the velocity of propa-

gation of condensational wave is enormously greater than that of

distortional waves.

I am asked by one of you to define velocity potential. Those

who have read German writers on Hydrodynamics already know

the meaning of it perfectly well. It is a purely technical expres-

sion which has nothing to do with potential or force. " Velocity

potential " is a function of the co-ordinates such that its rate of

variation per unit distance in any direction is equal to the
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component of velocity in that direction. A velocity potential

exists when the distribution of velocity is expressible in this way

;

in other words when the motion is irrotational. The most con-

venient analytical definition of irrotational motion is, motion such

that the velocity components are expressed by the differential co-

efficients of a function. That function is the velocity potential.

When the motion is rotational there is no velocity potential.

This is the strict application of the words " velocity potential

"

which I have used. A corresponding language may be used for

displacement potential. It is not good language, but it is con-

venient, it is rough and ready. And when we are speaking of

component displacements in any case, whether of static displace-

ment in an elastic solid or of vibrations, in which the components

of displacement are expressible as the differential coefficients of a

function, we may say that it is an irrotational displacement. If from

the differentiation of a fvmction we obtain components of velocity,

we have velocity potential ; whereas, if we so get components of

displacement, we have displacement potential. The functions
(f),

that we used, are not then, strictly speaking, velocity potentials

but displacement potentials.

I w^ant you in the first place to remarK what is perfectly well

known to all who are familiar with Differential equations, that

taking the solution = -
. sin ^ as a primary, where

we may derive other solutions by differentiations with respect to

the rectangular co-ordinates. The first thing I am going to call

attention to is that at a distance from the origin, whatever be

the solution derived from this primary by differentiation, the cor-

responding displacement is nearly in the direction through the

oriofin of co-ordinates.

Take any differential coefficient whatever, ,-^^ , , ,; the term
•^ axdydz

of this which alone is sensible at an infinitely great distance is

that which is obtained by successive differentiation of sin q. That

distance term in every case is as follows

:

/27ry^'^'' /drV /drV /drV 1 sin

V X y ' \dajj ' \dy) ' \dz) ' r cos ^
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It will be sin q or cos q, according as i +j + Z; is even or odd. We Molar.

do not need to trouble ourselves about the algebraic sign, because

we shall make it positive, whether the differential coefficient is

T-T dr X dr y dr z „,
positive or negative. JNow ^-=-, ,

="
, ^- = - . ihus our

^ ax r dy r dz r

1 X- 1 a^y/ sin ^, . ,1 ,

type solution hecomes, ,.,';,,.,
, q. ihis expresses the mostjf r + +^+'cos

-' ^

general type of displacement potential for a condensational wave

proceeding from a centre, and having reached to a distance in

any direction from the centre, great in comparison with the wave-

length. I have not formally proved that this is the most general

type, but it is very easy to do so. I am rather going into the

thing synthetically. It is so thoroughly treated analytically by

many writers that it would be a waste of your time to go into

anything more, at present, than a sketch of the manner of treat-

ment, and to give some illustrations.

But now to prove that the displacement at a distance from the

origin of the disturbance is always in the direction of the radius

vector. Once more, the differential coefficient of this displace-

ment potential, which has several terms depending upon the

differentiation of the ?''s, x&, etc. has one term of paramount

importance, and that is the one in which you get as a factor.
A,

The smallness of \ in proportion to the other quantities makes

27r . .

the factor —- give importance to the term in which it is found.
A,

The distance terras then for the components of the displacement

are

^ _ x^y'z^ 27r x cos _ n ^' cos
e = ^.>*^i- ^ •

7^ sin ^ ~
7- sin

^'

D V COS ^ „ ^^ cos
7] = R'^ . q, ^ = R- . q.

r sill
^ r sin ^

These are then the components of a displacement which is radial

;

and the expression for the amplitude of the radial displacement is

The sum of any number of such expressions will express the

distance effect of sound proceeding from a source. It is interest-
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Molar. ing to see how, simply by making up an algebraic function in the

numerator out of the x's, y's and ^'s, we can get a formula that

will express any amount of nodal subdivision where silence is felt.

The most general result for the amplitude of the radial displace-

ment is i? = S ^i+]+,,+i • Remark that -
, ^ ,

- are merely angular

functions and may be expressed at once as sin 6 cos \/r, sin 6 sin y^r,

cos^; and therefore i? is an integral algebraic function of sin^cos-v|r,

sin 6 sin ^, cos 6. It is thus easy to see that you can vary inde-

finitely the expressions for sound proceeding from a source with

cones of silence and corresponding nodes or lines in which those

cones cut the spherical wave surface. It is interesting to see that

even in the neighbourhood of the nodes the vibration is still

perpendicular to the wave surface ; so that we have realized in

any case a gradual falling off of the intensity of the wave to zero

and a passing through zero, which would be equivalent to a change

of phase, without any motion perpendicular to the radius vector.

The more complicated terms that I have passed over are those

that are only sensible in the neighbourhood of the source. Sup-

pose, for instance, that you have a bell vibrating. The air slipping

out and in over the sides of the bell and round the opening gives

rise to a very complicated state of motion close to the bell ; and

similarly with respect to a tuning fork. If you take a spherical

body, you can very easily express the motion in terms of spherical

harmonics. You see that in the neighbourhood of the sounding

body there will be a great deal of vibration in directions perpen-

dicular to the radius vector, compounded with motions out and in

;

but it is interesting to notice that all except the radial component

motions become insensible at distances from the centre large in com-

parison with the wave-length. It is the consideration of the motion

at distances that are moderate in comparison with the wave-length

that Stokes has made the basis of that very interesting investiga-

tion with reference to Leslie's experiment of a bell vibrating in a

vacuum, to which I have already referred. (Lecture iii., pp. 36, 37

above.)

We may just notice, before I pass away from the subject, two

or three points of the case, with reference to a tuning fork, a bell,

and so on. Suppose the sounding body to be a circular bell. In

that case clearly, if the bell be held with its lip horizontal, and if

it be kept vibrating steadily in its gravest ordinary mode, the
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kind of vibration will be this : a vibration from a circular figure Molar.

4-.-^ into an elliptic figure U..'^'''.)) along one diameter, and

a swinging back through the circular figure \^T y ^^to an

elliptic figure ([ X ))
along the diameter at right angles to the

first. Clearly there would be practically a plane of silence

here and another at right angles to it here (represented on the

diagrams by dotted lines). Hence the solution for the radial

component corresponding to this case, at a considerable distance

cos Q
from the bell, is ii = (| - cosM) ^ , in order that the component

may vanish when cosM = |-, or ^ = + 45° ; A being an azimuthal

angle if the axis of the bell is vertical.

On the other hand, consider a tuning-fork vibrating to-and-fro

or an elongated (elliptic) bell, which I got from that fine old

Frenchman, Koenig's predecessor, Marloye. It makes an ex-

ceedingly loud sound and has an advantage in acoustic experi-

ments over a circular bell. If you set a circular bell vibrating

and leave it to itself you always hear a beating sound, because

the bell is approximately but not accurately symmetrical. Excite

it with a bow, and take your finger off, and leave it to itself: and

if you do not choose a proper place to touch it, for a fundamental

mode, when you take your finger off it will execute the re-

sultant of two fundamental modes.

I do not know whether the corresponding experiment Avith

circular plates is familiar to any of you. I would be glad to know

whether it is. I make it always before my own classes, in illus-

trating the subject. Take a circular plate—just one of the ordinary

circular plates that are prepared for showing vibration in acoustic

illustrations. Excite it in the usual way with a violoncello bow, and

putting a finger, or two fingers, to the edge to make the quadrantal

vibration. If sand is sprinkled on the plate, the vibrations toss it

into sand-hills with ridges lying along two diameters of the disc,

perpendicular to one another, one of them through the point or

T. L. 5
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two of them through the points of the edge touched by finger. Nov/

cease bowing and take your finger off the edge of the disc. The

sand-hills are tossed up in the air and the sand is scattered to

considerable distances on each side, and is continually tossed up

and not allowed to rest anywhere. At the same time you hear a

beating sound. But by a little trial, I find one place where if I

touch with the finger, and ply the bow so as to make a quadrantal

vibration, and if I then cease bowing and take off my finger, the

sand remains undisturbed on two diameters at right angles, and no

beat is heard. Then having found one pair of nodal diameters,

I know there will be another pair got by touching the plate here,

45° from the first place. Now touch therefore with two fingers, at

two points 90° from one another midway between the first and

second pairs of nodal diameters : cause the plate to vibrate and

then take off your fingers, and stop bowing : you will hear very

marked beats; a sound gradually waxing from absolute silence

to loudest sound, then gradually waning to silence again, and so

on, alternating between loudest sound and absolute silence with

perfect gradualness and regularity of waxing and waning.

Take a division of the circumference into six equal parts by

three diameters, and you find the same thing over again. Go on

by trial touching the plate at two points 60° or 120° asunder, and

bowing it 30° from either; and you will see the sand resting

on the three diameters determined by your fingers. Take off

your fingers and you will in general see the sand scattered and

hear a beat. Follow your way around, little by little—it is very

pretty when you come near a place of no beat. The moment you

take off your fingers you see the lines of nodes swaying to-and-

fro on each side of a mean position, with a slow oscillation

;

and you hear a very distinct beat, though of a soft but perfectly

regular character from loudest to least loud sound. Get exactly

the mean position, steadying the nodal sand-hills while still plying

the bow : then cease bowing and suddenly remove your finger or

fingers from the plate
;
you will see the nodal lines remaining

absolutely still and you will hear a pure note without beats. If

you touch at exactly 30° from the nodal lines first found you will

have the strongest beat possible, which is a beat from loud sound

to silence. Advance your fingers another 30° and you will again find

the sand-hills remain absolutely still when you remove your fingers.

You may go on in this way with eight and ten subdivisions, and so
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on ; but you must not expect that the places for the sextantal, Molar,

octantal, and higher, subdivisions correspond to the places for the

quadrantal subdivisions. The places for quadrantal subdivision

will not in general be places for octantal subdivision. You must

experiment separately for the octantal places, and you will find

generally that their diameters are oblique to the quadrantal.

The reason for all this is quite obvious. In each case, the

plate being only approximately circular and symmetrical, the

general equation for the motion has two approximately equal

roots corresponding to the nodes or divisions by one, two, three, or

four diameters, and so on. These two roots always correspond to

sounds differing a little from one another. The effect of putting

the finger down at random is to cause the plate, as long as your

finger is on it, to vibrate forcedly in a simple harmonic vibration

of period greater than the one root and less than the other. But

as soon as you take your finger off, the motion of the plate follows

the law of superposition of fundamental modes ; each fundamental

mode being a simple harmonic vibration. I have often, in showing

this experiment, tried musicians with two notes which were very

nearly equal, and said to them, " Now, which of the two notes is

the graver?" Rarely can they tell. The difference is generally too

small for a merely musical ear, and the verdict is that the notes

are "the same ;" musicians are not accustomed to listen to sounds

with scientific ears and do not always say rightly which is the

graver note, even when the difference is perceptible. Any person

can tell, after having made a few experiments of the kind, that

this is the graver and that the less grave note, even though he

may have what, for musicians, is an uncultivated ear, or truly a

very bad ear for music, not good enough in fact to guide him in

sounding a note with his voice, or to make him sing in tune if he

tries to sing. It is very curious, when you have two notes which

you thoroughly know are different, that if you sound first one and

then the other, most people will say they are about the same.

But sound them both together, and then you hear the discord of

the two notes in approximate unison.

In every case of a circular plate vibrating between diametral

lines of nodes, there is an even number of planes of silence in the

surrounding air; being the planes perpendicular to the plate,

through the nodal diameters. If you take a square plate or bell

vibrating in a quadrantal mode, for instance, then you have two

5—2
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Molar. vertical planes of silence at right angles to one another. If you

make it vibrate with six or more subdivisions, you will have a

corresponding number of planes of silence.

With reference to the motions in the neighbourhood of the

tuning-fork, you get this beautiful idea, that we have essentially

harmonic functions to express them. Essentially algebraic func-

tions of the co-ordinates appear in these distant terms, but in the

other terms which Prof Stokes has worked out, and which have

been worked out in Prof. Rowland's paper on Electro-Magnetic

Disturbances*, quite that kind of analysis appears, and it is most

important. I have not given you a detailed examination of that

part of our general solution, but only called your attention specially

to the " distance terms, ' partly because of their interest for sound

and partly because the consideration of them prepares us for our

special subject, waves of light.

To-morrow we shall begin and try to think of sources of waves

of light. I want to lead you up to the idea of what the simplest

element of light is. It must be polarized, and it must consist of

a single sequence of vibrations. A body gets a shock so as to

vibrate ; that body of itself then constitutes the very simplest

source of light that we can have ; it produces an element of light.

An element of light consists essentially in a sequence of vibrations.

It is very easy to show that the velocity of propagation of

sequences in the pure luminiferous ether is constant. The sequence

goes on, only varying with the variation of the source. As the

source gradually subsides in giving out its energy the amplitude

evidently decreases ; but there will be no throwing off of wavelets

forward, no lagging in the rear, no ambiguity as to the velocity of

propagation. But when light, consisting as it does of sequences

of vibrations, is propagated through air or water, or glass, or

crystal, what is the result ? According to the discussion to which

I have referred, the velocity should be quite uncertain, depending

upon the number of waves in the sequence, and all this seems

to present a complicated problem.

But I am anticipating a little. We shall speak of this here-

after. One of you has asked me if I was going to get rid of the

subject of groups of waves. I do not see how we can ever get rid

of it in the wave theory of light. We must try to make the best

of it, however.

* Fhil Mag. xvii., 1884, p. 413. Am. Jour. Math, vi., 1884, p. 359.
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Ten minutes interval.

This question of the vibration of connected particles is a Molecular.

pecuHarly interesting and important problem. I hope you are

not tired of it yet. You see that it is going to have many ap-

plications. In the first place remark that it might be made the

base of the theory of the propagation of waves. When we take

our particles uniformly distributed and connected by constant

springs we may pass from the solution of the problems for the

mutual influence of a group of particles to the theory, say, of the

longitudinal vibrations of an elastic rod, or, by the same analysis,

to the theory of the transverse vibrations of a cord.

I am going to refer you to Lagrange's Mecanique Analytique,

[Part II. p. 389]. The problem that I put before you here is given

in that work under the title of vibrations of a linear system of

bodies. Lagrange applies what he calls the algorithm of finite

differences to the solution. The problem which I put before you

is of a much more comprehensive kind ; but it is of some little

interest to know that cases of it may be found, ramifying into each

other.

I wish to put before you some properties of the solution which

are of very great importance. I want you to note first the number

of terms.

We have

:

All the A-'s being expressed in this way successively in terms of Xj.

Let i^; be the number of terms in Xj,.. These terms are obtained

by substituting the values of «,-.,+i, 0Cj,._^_^ in the formula

— Cj.i+i ^j-i= ^j-i+i ^j-i+i + "o'-i+a ^j-i+1'

None of the terms can destroy one another except for special

values, and the conclusion is that we have the following formula

for obtaining the number of terms :

This is an equation of finite differences. Apply the algorithm
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Molecular, of finite differences, as Lagrange says ; or, which is essentially the

same, we may try for solutions of this equation by the following

formula : N^ = zN-.y We thus find

2 ,
-,

l±\/5
^^ = ^ + 1, or ^ =—

2

We can satisfy our equation by taking either the upper or the

lower sign. The general solution is, of course,

where C, C are to be determined by the equation iV(,= 1, ^,= 1.

It is rather curious to see an expression of this kind for the

number of terms in a determinant. You will find that, of the more

general equation

the following is a solution:

F, = K ^ ~+ bK^— ^

,

^ r — s r — s

where ?•, s arc the two roots of the equation x^ = ax + b. Remark
that the coefficients of N^, N^, being symmetrical functions of the

two roots, are, as they must of course be, integral functions of a

and b.

If one of the roots, s, for example, be less than unity, we may
omit the large powers of s, and therefore for large values of i we
may be sure of obtaining iV. to within a unit, and therefore the

absolutely correct value, by calculating the integral part of

b

r

It is interesting to remark that the numerical value of this

formula differs less and less from an integer the greater is i, and

differs infinitely little from an infinitely large integer when i is

infinitely great.

The values of N. up to t*=12 for the case of our problem

(a-6=iV„ = iVj = l)are,

i = 2, 3, 4, 5, G, 7, 8, 9, 10, 11, 12.

N, = 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233.
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Lagrange, in the second section of the second part of his Me- Molecular.

canique Analytique on the Oscillation of a Linear System of Bodies,

has worked out very fully the motion in the first place for bodies

connected in series, and secondly for a continuous cord. The case

that we are working upon is not restricted to equal masses and

equal connecting springs, but includes the particular linear system

of Lagrange, in which the masses and springs are equal. I hope to

take up that particular case, as it is of great interest. We shall

take up this subject first to-day, and the propagation of disturbances

in an elastic solid second.

It was pointed out by Dr Franklin that, for the particular case

iVj = aN^, which is the case of our particular question as to the

number of terms in our determinant, the formula becomes

[a +6— -]N^
\ r — s r — s J

and may be thus simplified.

We have r^ = ar + b, or multiplying by r' "^ r''^^ = ar' + hr''^. So

that the expression simplifies down to

N. = ^L'——.
" r — s

This may be obtained directly, by determining C, C", in terms of

N^, with iV_j = 0, to make If, = CY + C's\

We have, in our case, a = h = 1 : whence

r-s = j5,r = ^"^^ = 1-618, s N - -618.
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Molecular. If we work this out by very moderate logarithms for the case

^^ r — s

dropping s", we find

13 log 1-618 - log/5 = 13 X -209 - -3495 = 2-3675 = log 233,

which comes out exact ; and this working with only 4-place-

logarithms.

I want to call your attention to something far more important

than this. The dynamical problem, quite of itself, is very interest-

ing and important, connected as it is with the whole theory of

modes and sequences of vibration ; but the application to the

theory of light, for which we have taken this subject up, gives to

it more interest than it could have as a mere dynamical problem.

I want to justify a fundamental form into which we can put our

solution, which is of importance in connection with the application

we wish to make.

— ;B

Algebra shows that we must be able to throw -— into the form

^ +^^^ + ...

T T T

where q^, cy---qj ai'e determinate constants, and k^, k^,...k. are the

values of the period t for which —~ becomes infinite. We can

put it into this form certainly, for if x\ and ^ be expressed in terms of

Xj, they will be functions of the {j — 1)"' oxidif^ degrees, respectively,

in -5 . This is easily seen if we notice that a;,. , =—^'

x. is of the
T^ ' Cj '

first degree in —^ , and that the degree of each x is raised a unit

111'-

above that of the succeeding x by the factor cij = —i — c^ — c,_^i in

the equation — c,^i-i = «j^"i+ c^4-i^',+i. Therefore, writing z for —

,

T

we have

- x^ _ Az'-' + A'z^'''+ ...
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This, on being expanded into partial fractions, becomes Molecular.

K K^ Kj

1 ' 1
^

1
2 ^ 2 '-^'

which takes the previously written form if we put K^k^ = q^.

We know that the roots of the equation of the i"' degree in z

which makes ~
J^ become infinite are all real; they are the

periods of vibration of a stable system of connected bodies. We
have formal proof of it in the work which we have gone through

in connection with such a system. I am putting our solution in

this form, because it is convenient to look upon the characteristic

feature of the ratio of t to one or other of the fundamental

periods. In the first place it is obvious that if we know the roots

/Cj, Ac.^,..., the determination of
(/j, q^,... is algebraic. Another form

which I shall give you is an answer to that algebraic question,

what are the values of q^, J'a---
? It is an answer in a form that is

particularly appropriate for our consideration because it introduces

the energy of the vibrations of the several fundamental modes in a

remarkable manner. We will just get that form down distinctly.

c f
Take the differential coefficients of -~- with respect to

-2, and denoting ^,-1, -1 - 1, , for brevity, by Dj, D,, we
T T T

find

For the case r = k„ our differential coefficient becomes -
, which

determines

^^
^ dr — x^

Now you will remember that we had

dr^ — x^ ^ ^ \xj

For the moment, take the expression for the simple harmonic

motion, and you see at once that that comes out in terms of the

energy. Adopt the temporary notation of representing the
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Molecular, maximum value by au accented letter. Then we have at any time

2
of the motion x. = x . sin , if we reckon our time from an era of

each particle passing through its middle position, remembering

that all the particles pass the middle position at the same instant.

We have therefore for the velocity of particle No. 1,

27r , 27re
X. = — X . cos .

' T ^ T

The energy which at any time is partly kinetic and partly

potential, will be all kinetic at the instant of passing through the

middle position. Take then the energy at that instant. For ^ =
27r

we have x^^ = 0, x^^ = — x\. Denoting the whole energy by E

(and remembering that the mass = j^A we have

E=^ {m^x^^ + 7H,<' + . . . m/cP) -,

.

Thus, the ratio of the whole energy to the energy of the first

particle / — , .^
\ being denoted by Br\ we have

^ dr ^ — x^

This is true for any value of t whatever. From this equation find

then the ratios of the whole energy to the energy of the first

particle when t = k^, k^,— Denoting these several ratios by R~^,

R~^..., we find a. = -^—-
, q^ = —^—

^ , Our solution becomes

then

This is a very convenient form, as it shows us everything in terms

of quantities whose determinations are suitable, and intrinsically

important and interesting, viz. the periods and the energy-ratios.

It remains, lastly, to show how, from our process without cal-

culating the determinants, we can get everything that is here

concerned. Our process of calculating gives us the w's in order,

beginning with Uj_^. That gives us the x'?, in order, and thus

we have all that is embraced in the differential coefficient with
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respect to -^ . Everything is done, if we can find the roots. I Molecular.

will show how you can find the roots from the continued fraction,

without working out the determinant at all. The calculation in

the neighbourhood of a root gives us the train of x's corresponding

to that root, and then by multiplying the squares of the ratios of

the xs to i^'j, by the masses, and adding, we have the corresponding

energy.

The case that will interest us most will be the successive

masses greater and greater; and the successive springs stronger

and stronger, but not in proportion to the masses so that the

periods of vibration of limited portions of the higher numbered

particles of the linear system shall be very large : so that if we

hold at rest particles 4 and 6, the natural time of vibration of

particle 5 will be longer than No. 2's would be if we held Nos. 1

and 3 at rest and set No. 2 to vibrate, and so on.

We will just put down once more two or three of our equations :

Without considering whether w.^j is absolutely large or small, let

us suppose that it is large in comparison with c.^^;

u. will then be of the order a.; u._^ of the order a._^', and so on.

We are to suppose that a^, a^, ...a. are in ascending order of

magnitude. Now, u^ u^... il = (-)' c^ . . . c. -^ . We thus have this

important proposition, that the magnitudes of the vibrations of

the successive particles decrease from particle No. 1 towards No. /';

and x^ is exceedingly small in comparison with ^, even though

there is only a moderate proportion of smallness with respect to

the ratios — , — , ... — . Thus see how small is the motion at a
u, u^ u.

considerable distance from the point at which the excitation is

applied, under the suppositions that we have been making.

Now, as to the calculations. I do not suppose anybody is

going to make these calculations*, but I always feel in respect to

arithmetic somewhat as Green has expressed in reference to

* Happily this negative prognostication was not fulfilled. See (Appendix C)

Numerical Solution with Illustrative Curves, by Prof. E. W. Morley, of the case of

seven connected masses, proposed in Lecture IX.
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analysis. I have no satisfaction in formulas unless I feel their

arithmetical magnitude—at all events when formulas are intended

for definite dynamical or physical problems. So that if I do not

exactly calculate the formulas, I would like to know how I could

calculate them and express the order of the magnitudes concerned

in them. We are not going to make the calculations, but you will

remark that we have every facility for doing so. In the first

place, is the exceeding rapidity of convergence of the formulas.

The question is to find —^ ; everything, you will find, depends

upon that. The exceeding rapidity of the convergence is mani-

fest. Since u^ is large, u^ is equal to a^ with a small correction

;

similarly u^ = a^ with a small correction, and so on ; so that two or

three terms of the continued fraction will be sufficient for cal-

culating the ratio denoted by ^i^. The continued fractions con-

verge with enormous rapidity upon the suppositions we have been

making. We thus know the value of the differential coefficient

^f^—1^. . We can in this way obtain several values of w, and begin
d (t ')

-^ 1 O

to find it coming near to zero. Then take the usual process.

Knowing the value of the differential coefficient allows you to

diminish very much the number of trials that you must make for

calculating a root. The process of finding the roots of this con-

tinued fraction will be quite analogous to Newton's process for

finding the roots of an algebraic equation ; and I tell any of you

who may intend to work at it, that if you choose any particular

case you will find that you will get at the roots very quickly.

I should think something like an arithmetical laboratory would

be good in connection with class work, in which students might be

set at work upon problems of this kind, both for results, and in

order to obtain facility in calculation.

I hinted to you in the beginning about the kind of view that

1 wanted to take of molecules connected with the luminiferous

ether, and affecting by their inertia its motions. I find since then

that Lord Rayleigh really gave in a very distinct way the first

indication of the explanation of anomalous dispersion. I will just

read a little of his paper on the Reflection and Refraction of Light

by intensely Opaque Matter {Phil. Mag., May, 1872). He com-

mences, " It is, I believe, the common opinion, that a satisfactory

mechanical theory of the reflection of light from metallic surfaces
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has been given by Caucliy, and that his formulce agree very well Molecular.

with observation. The result, however, of a recent examination of

the subject has been to convince me that, at least in the case of

vibrations performed in the plane of incidence, his theory is

erroneous, and that the correspondence with fact claimed for it is

illusory, and rests on the assumption of inadmissible values for the

arbitrary constants. Cauchy, after his manner, never published

any investigation of his formulae, but contented himself with a

statement of the results and of the principles from which he

started. The intermediate steps, however, have been given very

concisely and with a command of analysis by Eisenlohr (Pogg.

Ann. Vol. civ. p. 368), who has also endeavoured to determine

the constants by a comparison with measurements made by Jamin.

I propose in the present communication to examine the theory of

reflection from thick metallic plates, and then to make some

remarks on the action on light of a thiii metallic layer, a subject

which has been treated experimentally by Quincke.

" The peculiarity in the behaviour of metals towards light is

supposed by Cauchy to lie in their opacity, which has the effect of

stopping a train of waves before they can proceed for more than a

few lengths within the medium. There can be little doubt that

in this Cauchy was perfectly right; for it has been found that

bodies which, like many of the dyes, exercise a very intense

selective absorption on light, reflect from their surfaces in ex-

cessive proportion just those rays to which they are most opaque.

Permanganate of potash is a beautiful example of this given by

Prof. Stokes. He found (Phil. Mag., Vol. VL p. 293) that when

the light reflected from a crystal at the polarizing angle is ex-

amined through a Nicol held so as to extinguish the rays polarized

in the plane of incidence, the residual light is green ; and that,

when analyzed by the prism, it shows bright bands just where

the absorption-spectrum shows dark ones. This very instructive

experiment can be repeated with ease by using sunlight, and

instead of a crystal a piece of ground glass sprinkled with a little

of the powdered salt, which is then well rubbed in and burnished

with a glass stopper or otherwise. It can without difficulty be so

arranged that the two spectra are seen from the same slit one

over the other, and compared with accuracy.

"With regard to the chromatic variations it would have seemed

most natural to suppose that the opacity may vary in an arbitrary
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Molecular, manner Avith the wave-length, while the optical density (on which

alone in ordinary cases the refraction depends) remains constant,

or is subject only to the same sort of variations as occur in trans-

parent media. But the aspect of the question has been materially

changed by the observations of Christiansen and Kundt (Pogg.

Ann. vols. CXLI., cxliii., cxliv.) on anomalous dispersion in

Fuchsin and other colouring-matters, which show that on either

side of an absorption-band there is an abnormal change in the

refrangibility (as determined by prismatic deviation) of such a

kind that the refraction is increased below (that is, on the red

side of) the band and diminished above it. An analogy may be

traced here with the repulsion between two periods which frequently

occurs in vibrating systems. The effect of a pendulum suspended

from a body subject to horizontal vibration is to increase or diminish

the virtual inertia of the mass according as the natural period of

the pendulum is shorter or longer than that of its point of suspen-

sion. This may be expressed by saying that if the point of support

tends to vibrate more rapidly than the pendulum, it is made to go

faster still, and vice versa'—I cannot understand the meaning of the

next sentence at all. There is a terrible difficulty with writers in

abstruse subjects to make sentences that are intelligible. It is

impossible to find out from the words what they mean ; it is only

from knowing the thing* that you can do so
—"Below the absorp-

tion-band the material vibration is naturally the higher, and hence

the effect of the associated matter is to increase (abnormally) the

virtual inertia of the aether, and therefore the refrangibility. On
the other side the effect is the reverse." Then follows a note, "See

Sellmeier, Pogg. Ann. vol. cxliii. p. 272." Thus Lord Rayleigh

goes back to Sellmeier, and I suppose he is the originator of all

this. " It would be difficult to exaggerate the importance of these

facts from the point of view of theoretical optics, but it lies

beside the object of the present paper to go further into the ques-

tion here."

There is the first clear statement that I have seen. Prof

Rowland has been kind enough to get these papers of Lord

Rayleigh for me. I am most grateful to him and others among

you, by whom, with great trouble kindly taken for me, an

* In the next sentence, for " the refrangibility," substitute iu refractivity.

W. T. Feb. 9, 1892.
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iTnmensc number of books have been brought to me, in every one Molecular,

of which I have found something very important.

Selhneier, Lord Rayleigh, Helmholtz, and Lommel seem to be

about the order. Lommel does not quote Hehnholtz. I am rather

surprised at this, because Lommel comes three or four years after

Helmholtz : 1874 and 1878 are the respective dates. Lommel's

paper is published in Helmholtz's Journal {Ann. der PJiysik unci

Cheniie, 1878, vol. in. p. 339), Helmholtz's paper is excellent.

Lommel goes into the subject still further, and has worked out

the vibrations of associated matter to explain ordinary dispersion.

I only found this forenoon that Lommel {Ann. dei' Ph. tend

Chem. 1878, vol. IV. p. 55) also goes on to double refraction of light

iu crystals—the very problem I am breaking my head against.

He is satisfied with his solution, but I do not think it at all satis-

factory. It is the kind of thing that I have seen for a long time,

but could not see that it was satisfactory ; and I do see reason for its

not being satisfactory. He goes on from that and obtains an

equation which would approximately give Huyghens' surface. I

have not had time to determine how far it may be correct, but I

believe it must essentially differ from Huyghens' wave-surface to

an extent comparable with that experimentally disproved by

Stokes in his experimental disproof of Rankine's theory explaining

optical aeolotropy by difference of inertia in different directions.

The exceedingly close agreement of Huyghens' surface with the

facts of the case which Stokes has found, absolutely cuts the

ground from imder a large number of very tempting modes of ex-

plaining double refraction.



LECTUKE VIII.

Tuesday, Oct. 7, 5 p.m.

We shall take some fundamental solutions for wave motion

such as we have already had before us, only we shall consider them
as now applicable to non-condensational distortional waves, instead

of condensational waves. We can take our primary solution in the

form rf) = - sin —- (r — ct), where c = \/ ^ if the wave is con-» A, ^ P

densational, and a / - if the wave is distortional. But for a dis-

tortional wave we must also have 8=0.

In the first place, if our value of c is a / - , we know that «/>

satisfies p -^ = wy^^. [I want very much a name for that symbol

V^ (delta turned upside down). I do not know whether, Prof.

Ball, you have any name for it or not
;
your predecessor, Sir

William Hamilton, used it a great deal, and I think perhaps you

may know of a name for it.] The conditions to be fulfilled by the

three components of displacement, ^, 77, ^, of a distortional wave

are, in the first place,

and we must have besides

dx dy dz

Thus f, 7], ^ must be three functions, each fulfilling the same

equation. There is a fulfilment of this equation by functions
;

and as we have one solution, we can derive other solutions from
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that by ditferentiation. Let us see then, if we can derive three Molar,

solutions from this value of
(f>
which shall fulfil the remaining con-

dition. It is not my purpose here to go into an analytical investi-

gation of solutions ; it is rather to show you solutions which are

of fundamental interest. Without further preface then, I will

put before you one, and another, and then I will interpret them

both.

Take for example the following, which obviously fulfils the

d^ dv dt n
equation -^ -\-~ + ^ = {) :

ax ay dz

^
' ^ dz' ^ dy-

In each case the distance-terms only of our solution are what we
wish. Thus

dd) , '2'ir z
i, d(b 27r i/

i; = — J- = - - - . -2 . cos q, ^ = -/- = --. i^ cos q.
dz X r^ ^ dy \ r^ ^

Remark that in this solution the displacement at a distance from

the source is perpendicular to the radius vector ; i. e. we have

f. ^ d6 d(b ^

Before going further, it will be convenient to get the rotation. It

is an exceedingly convenient way of finding the direction of vibra-

tion in distortional displacements. The rotations about the axes of

X, y, z will be

:

,fd^ dv\_ 2'rr^f+z\
^[dy dz)- \'~ r«

''"^'

•' [dz dx) • \' r'
'"' ^'

''{dx dy) • V r'^'"'^-

These rotations are proportional to -3
, -f^ , -^ ; that is

to say, besides an x component equal to — , we have an r com-

tXj

ponent equal to -^ . We have a rotation around the radius vector

T.L. 6
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Molar. r, and a rotation around the axis of x, whose magnitudes are

X 1
proportional to -^ and - .

If you think out the nature of the thing, you will see that

it is this : a globe, or a small body at the origin, set to oscillating

rotationally about Ox as axis. You will have turning vibrations

everywhere ; and the light will be everywhere polarized in planes

through Ox. The vibrations will be everywhere perpendicular to

the radial plane through Ox.

In the first place we have (omitting the constant factor —1

1 = 0, '7 = --,cosg, ^=4cos5.

Hence for (y = 0, z = 0,) the displacements are zero, or we have

zero vibration in the axis of x. Everywhere else the displacements

are not null and are perpendicular to Ox (since we always have

^ = 0) ; and being perpendicular also to the radius vector, they are

perpendicular to the radial plane through the axis of x.

Let us consider the state of things in the plane yz. Suppose

we have a small body here at the origin or centre of disturbance,

and that it is made to turn forwards and backwards

^^\ in this way (indicating a turning motion about an axis

)j perpendicular to the plane of the paper) in any given

period. What is the result ? Waves will proceed out

in all directions from the source, and the intersections of the wave

fronts with the plane [yz) of the paper will be circles. We shall

have vibrations perpendicular to the radius vector ; of magnitude

, which is the same in all directions. The rotation (molecu-
X, r

lar rotation about the axis of x, or in the plane yz^ '^^
\'i —H •

There is therefore zero displacement where the rotation or the

distortion is a maximum (positive or negative) : and vice versa, at

a place of maximum displacement (positive or negative) there is

zero rotation and zero distortion. The rotation is clearly equal

to half the distortion in the plane yz by shearing (or differential

motion) perpendicular to rx, of infinitesimal planes perpendicular
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to r. The result is polarized light consisting of vibrations in the Molar,

plane yz and perpendicular to the radius vector, and therefore

the plane of polarization is the radial plane through OX.

Here we have a simple source of polarized light; it is the

simplest form of polarization and the simplest source that we can

have. Every possible light consists of sequences of light from

simple sources. Is it probable that the shocks to which the par-

ticles are subjected in the electric light, or in fire, or in any

ordinary source of light, would give rise to a sequence of this kind ?

No, at all events not much ; because there cannot be much ten-

dency in these shocks or collisions, to produce rotatory oscillations

of the gross molecules. We can arbitrarily do it, for we can do

what we will with the particle. That privilege occurred to me
in Philadelphia last week, and I showed the vibrations by having

a large bowl of jelly made with a ball placed in the middle of it.

I really think you will find it interesting enough to try it for

yourselves. It allows you to see the vibrations we are speaking

of I wish I had it to show you just now, so that you might see

the idea realized. It saves brain very much.

I had a large glass bowl quite filled with yellowish transparent

jelly, and a red-painted wooden ball floating in the middle of it.

Try it, and you will find it a very pretty il-

lustration. Apply your hand to the ball, and

give it a turning motion round its vertical

diameter, and you have exactly the kind

of motion expressed by our equations. The

motion in any oblique direction, such as at

this point P {x, y, z) represents that of polarized light vibrating

perpendicularly to the radial plane (or plane through the vertical

central axis). The amplitude of the vibration here (in the vertical

axis) is zero ; here at the surface (in the plane yz) it is - cos q ; and

if you use polar coordinates, calling this angle 6 (indicating on the

diagram) then the amplitude here (at P) is - cos q sin 6, giving

when ^ is a right angle the previous expression.

I say that this is the simplest source and the simplest system of

polarized light that we can imagine. But it can scarcely be induced

naturally. The next simplest is a globe or small body vibrating to-

6—2
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Molar. and-fro in one line. We will take the solution for that presently.

Still we have not got up to the essential complexity of the

vibration produced naturally by the simplest natural vibrator

with unmoved centre of inertia. I may take my hand and,

instead of the torsional oscillations which we have been con-

sidering, I may give vertical oscillations to the globe in the

jelly (and that makes a very pretty modification of the experi-

ment), and people all call out, " O, there is the natural time of

the vibration, if you only leave the globe to itself," oscillating

up and down in the jelly. But the case is not proper for an

illustration of undulatory vibrations spreading out from a centre.

We are troubled here also by reflection back, as it were, from the

containing bowl, just as in experiments on a stretched rope to

show waves running along it, we are troubled by the rope not

being infinitely long. You can always see sets of vibrations

running along the rope, and reflected back from the ends. But in

this experiment with the jelly in the bowl, you do not see the

waves travelling out at all because the distance to the boundary

is not large enough in comparison with the wave-length ; and what

you really see is a certain set of standing vibrations, depending on

the finiteness of the bowl. But just imagine the bowl to be

infinitely large, and that you commence making torsional oscilla-

tions ; what will take place ? A spreading outwards of this kind

of vibrations, the beginning being, as we shall see, abrupt. We
shall scarcely reach that to-day, but we shall perhaps another day

consider if the motion in the source begins and ends abruptly, the

consequent abruptness* of the beginnings and endingsof the vibra-

tions throughout an elastic solid ; in every case in which the

velocity of propagation is independent of the wave-length.

When you apply your hands and force the ball to perform

those torsional vibrations, you have waves proceeding from it

;

but if you then leave it to itself, there is no vibrating energy in

it at all, except the slight angular velocity that you leave it with.

A vibrator which can send out a succession of impulses independ-

ently of being forced to vibrate from without, must be a vibrator

with the means of conversion of potential into kinetic energy in

itself A tuning-fork, and a bell, are sample vibrators for sound.

The simplest sample vibrator that we can imagine to represent the

* This is in fact proved by the solntiou of Lecture TV. expressed by (14) in terms

of an arbitrary function.
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ori£>'in of an independent sequence of light may be like a tuning-fork. Molar.

Two bodies, joined by a spring would be more symmetrical than a

tuning-fork. Two rigid globes joined by a spring—that will give

you the idea ; or (which will be a vibration of the same type still)

one elastic spherical body vibrating from having been drawn into

an oval shape, and let go.

I will look, immediately, at a set of vibrations produced in an

elastic solid by a sample vibrator. But suppose you produce

vibrations in your jelly elastic solid by taking hold of this ball

and moving it to-and-fro horizontally, or again moving it up and

down vertically and think of the kinds of vibrations it will make

all around. Think of that, in connection with the formulas, and

it will help us to interpret them. This is in fact the kind of

vibration produced in the ether by the rigid spherical containing

shell of our complex molecule (Lecture II.). Or think of the

vibrations due to the higher though simpler order of vibrator, of

which we have taken as an example a very dense elastic globe

vibrating from prolate to oblate and back periodically. We might

also have those torsional vibrations ; but among all the possible

vibrations of atoms in the clang and clash of atoms that there is

in a flame, or other source of light, a not very rare case I think

would be that which I am going to speak of now. It consists of

opposite torsional vibrations at the two ends of an elongated mass.

To simplify our conception for a moment, imagine two globes con-

nected by a columnar spring; twist them in opposite directions, and

let them go. There you have an imaginable source of vibrations.

If in any one of our cases the potential energy of the spring is very

large in comparison with the energy that is carried off in a

thousand, or a hundred thousand vibrations, you will have a

nearly uniform sequence of vibrations such as those we have been

considering, but gradually dying down.

Before passing on to the to-and-fro vibrator we will think of

this motion for a moment, but we will not work it out, because it

is not so interesting. To suit our drawing we shall suppose one

globe here, and another upon the opposite side on a level with the

first, so that the line of the two is perpendicular to the board.

Give these globes opposite torsional vibrations about their common

axis, and what will the result be ? A single one produces zero

light in the axis and maximum light in the equatorial plane. The

two going in opposite directions will produce zero light in the
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equatorial plane and zero light in the axis ; so that you will

proceed from zero in the equatorial plane to a maximum between

the equatorial plane and the poles, and zero at the poles ; and you

will have opposite vibrations in each hemisphere. That constitutes

a possible case of vibrations of polarized light, proceeding from a

possible independent vibrator.

One of the most simple and natural suppositions in respect to

an independent vibrator is afforded by the illustration of a bell, or

a tuning-fork, or an elastic body deformed from its natural shape

and left to vibrate. In all these cases, as also in the case of our

supposed complex molecule (Lecture I.), remark that the centre

of gravity of the vibrator is at rest ; except for the comparatively

very small reaction of the ether upon it ; and this is essential to an

independently acting vibrator. The vibrator must have potential

energy in itself, for many thousand vibrations generating waves

travelling outwards through ether ; and its centre of gravity must

be at rest, except in so far as the reaction of the medium upon

it causes a slight motion of the centre of gravity.

I will put down the solution which corresponds to a to-and-fro

vibration in the axis of ^, viz.:

^ ~
A,''

^ dx^

'

dydx '

dzdx

'

is our old friend,

but with n now in place of the n + |A' which we had formerly when

we were dealing with condensational waves. First remark that

we know that

P ^~2 = «V ^. etc.,

are satisfied, because ^ and all its differential coefficients satisfy

this relation. We have therefore only to verify that the dilatation is

zero. Instead of merely going through the verification, I wish to help

you to make the solution your own by showing you how I obtained

it. I will not say that there is anything novel in it, but it is simply

the way it occurred to me. I obtained it to illustrate Stokes'

explanation of the blue sky. I afterwards found that Lord Rayleigh

had gone into the subject even more searchingly than Stokes, and

1 read his work upon it.
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The way I found the solution was this : ^ is clearly the dis- Molar

placement-potential for an elastic fluid, corresponding to a source

of the kind, constituted by an immersed solid moving to-and-fro

along the axis of x. The displacement function of which the

displacements are the differential coefficients would take simply that

form if the question were of sound in air or other compressible

fluid, and not of light, or of waves in an incompressible solid, or of

waves of distortion in a compressible solid. It was a question of

condensational vibrations wdth us several days ago. I did not go

into the matter in detail then, but we saw that for condensational

vibrations proceeding from a vibrator vibrating to-and-fro along

the axis of x that , was the displacement potential ; and it is

obvious, if we start from the very root of the matter that it must be so.

Hence we may judge that the differential coefficients j~ »
j~ >

j~

of -^ , with n in place of n + ik, must therefore be at all events
dx ^ ^

constituents of the components of displacement in the case of

light, or of distortional waves, from such a source : but neither they

nor the differential coefficients of any function can be simply

equal to the displacement-components of our present problem, in

which the motion is essentially rotational. The irrotational dis-

placements in the condensational wave problem are displacements

which fulfil certain of the conditions of our present problem : but

they do not fulfil the condition of giving us a purely distoi'tional

wave, unless we add a term or terms in order to make the dilata-

tion zero. This is done in fact, as I found, by the addition of the

spherically symmetric term —2
(f>

to -^ -^ , for the ^--component of

displacement. Just try for the dilatation. We have

47J-2

in which we may substitute j- for 0. Thus

dx ~ \^ ' dx
'
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We verify therefore in a moment that the displacements given by

the formulas satisfy

dx dy dz '

and thus Ave have made up a solution which satisfies the con-

ditions of being rigorously non-condensational, (no condensation

or rarefaction anyw^here,) and of being symmetrical round the axis

oi oc.

In the first place, taking the distant terms only, we have

47r^ xy .

4, 47r^iC.2r .

It is easy to verify that these displacements are perpendicular to

the radius vector, i. e. that we have x^ + yi] + 2^=0. Just look at

the case along the axis of x, and again in the plane yz. It is

written down here in mathematical words painting as clearly and

completely as any non-mathematical words can give it. Take

y = 0,z^O, and that makes ^ = 0, v ^^> ^ = 0. Therefore, in the

direction of the axis of x there is no motion. That is a little

startling at first, but is quite obviously a necessity of the funda-

mental supposition. Cause a globe in an elastic solid to vibrate

to-and-fro. At the very surface of the globe the points in which

it is cut by Ox have the maximum motion ; and throughout the

whole circumference of the globe, the medium is pulled, by hypo-

thesis, along with the globe. But this is not a solution for that

comparatively complex, though not difficult, problem. I am only

asking you to think of this as the solution for the motion at a great

distance. It may not be a globe, but a body of any shape moved to-

and-fro. To think of a globe will be more symmetrical. In the im-

mediate neighbourhood of the vibrator there is a motion produced in

the line of vibration ; the motion of the elastic solid in that neigh-

bourhood consists in a somewhat complex, but very easily imagined

state of things, in which we have particles in the axis of x, moving

out and in directly along the radius vector ; in all other places

except the plane of yz, slipping around with motions oblique to the

radius vector ; and in the plane of yz moving exactly perpendicular
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to the radius vector. All, however, except motions perpendicular Molar,

to the radius vector, become insensible at distances very great in

comparison with the wave-length. We have taken, simply, the

leading terms of the solution. These represent the motion at

great distances, quite irrespectively of the shape of the body,

and of the comparatively complicated motion in the neighbourhood

of the vibrating body.

Take now ^- = 0, and think of the motions in the plane yz.

The vibrator is supposed to be vibrating perpendicular to this

plane. We have

^=^-sin(/, 1)^0, ^=0.
A, /

What does that mean ? Clearly, that the vibrations are perpen-

dicular to the plane yz. We have the wave spreading out uni-

formly in all directions in that plane, and " polarized in " that

plane, the vibrations being perpendicular to it. That is exactly

what Stokes supposed was of necessity the dynamical theory of

the blue light of the sky. Lord Rayleigh showed that it was not

so obvious as Stokes had supposed. He elaborately investigated

the question, " Whether is the blue light of the sky, (which we

assume to be owing to particles in the air,) due to the particles

being of density different from the surrounding luminiferous ether,

or being of rigidity different from the surrounding luminiferous

ether?" The question would really be, If the particles are water,

what is the theory of waves of light in water ; does it differ from

air in being, as it were, a denser medium with the same effective

rigidity, or is it a medium of the same density and less effective

rigidity, or does it differ from ether both as to density and as to

rigidity ?

Lord Rayleigh examined that question very thoroughly, and

finds, if the fact that the cause were, for instance, little spherules

of water, and if in the passage of light through water the propaga-

tion is slower than in air were truly explained by less rigidity and

the same density we should have something quite different in the

polarization of the sky from what we would have on the other

supposition. On the other hand, the observed polarization of the

sky supports the other supposition (as far as the incertitude

of the experimental data allows us to judge) that the particles,

whether they be particles of water, or motes of dust, or whatever
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they may be, act as if they were little portions of the luminiferous

ether of greater density than, and not of different rigidity from,

the surrounding ether. Hence our present solution, which has for

us such special interest as being the expression of the disturbance

produced in the ether by our imbedded spring-molecule, acquires

farther and deeper interest as being the solution for dynamical

action which according to Stokes and Rayleigh is the origin cause

of the blue light coming from the sky. I will call attention a

little more to Lord Rayleigh's dynamics of the blue sky in a

subsequent lecture. Meantime, returning to our solution, we

may differentiate once more with respect to x, in order to get

a proper form of function to express the motion from a double

vibrator vibrating to-and-fro like this—vibrating my hands to-

wards and from each other. Then we shall have a solution which

will express another important species of single sequence of vibra-

tions, of which multitudes may constitute the whole, or a large

part, of the light of any ordinary source.

A question is now forced upon us,—what is the velocity of a

group of waves in the luminiferous ether disturbed by ordinary

matter ? With a constant velocity of propagation, as in pure ether,

each group remains unchanged. But how about the propagation

of light-sequences in a transparent medium like glass ? It is a

question that is more easily put than answered. We are bound

to consider it most carefully. I do not despair of seeing the

answer. I think, if we have a little more patience with our

dynamical problem we shall see something towards the answer.

Here is a perfectly parallel problem. Commence suddenly to

give a simple harmonic motion through the handle P to our

system of particles m^, m^,...mj, which play the part of a molecule.

If you commence suddenly imparting to the handle a motion of

any period whatever, only avoiding every one of the fundamental

periods, if there be a little viscosity it will settle into a state of

things in which you have perfectly regular simple harmonic vibra-

tion. But if there be no viscosity whatever, what will the result

be ? It will be composed of simple harmonic motions in the

period of our applied motion at the bell-handle P ; with the ampli-

tude of each calculated from our continued fraction ; and super-

imposed upon it, a jangle as it were, consisting of coexistent simple

harmonic vibrations of all the fundamental periods. If there is no

viscosity, that state of things will go on for ever. I cannot satisfy
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myself with viscous terms in these theories not only because the Molecular.

assumption of viscosity, in molecular dyixamics, is a theoretic

violation of the conservation of energy ; but because the smallest

degree of viscosity of ether sufficing to practically rid us of any

of this jangling, or to have any sensible influence in any of the

motions we have to do with in sources or waves of light, would not

allow a light-sequence through ether to last, as we know it lasts,

through millions of millions of millions of millions of vibrations.

But if we have no viscosity at all, whatever energy of any vibra-

tions, regular or irregular, we have at any time in our complex

molecule must show in the vibrations of something else, and

that is what ? In studying that sort of vibration with which we

have been occupied in the molecular part of our course, we must

account for these irregular vibrations somehow or other. The

viscous terms which Helmholtz and others have introduced re-

present merely an integral effect, as it were, of actions not followed

in detail, not even explained, in the theory. By viscous terms, I

mean terms that assume a resistance in simple proportion to

velocity.

But the state of things with us is that that jangling will go on

for ever, if there is no loss of energy; and we want to coax our

system of vibrators into a state of vibration with an arbitrarily

chosen period without viscous consumption of energy. Begin

thus: commence suddenly acting on P just as we have already

supposed, but with only a very small range of motion of P. The

result will be just as I have said, only with very small ranges

of all the constituent motions. After waiting a little time increase

the range of the motion of P ; after waiting a little longer, in-

crease the range farther, and so go on, increasing the range by

successive steps. Each of those will superimpose another state of

vibration. There would be, I believe, virtually an addition of the

energies, not of the amplitudes, of the several janglings if you make
these steps quite independent of one another.

For example, suppose you proceed thus : In the first place,

start right off into vibrations of your handle P through a space,

say of 80 inches. You will have a certain amount of energy, J,

in the irregular vibrations (the "jangling"). In the second place,

commence with a range of three inches. After you have kept

P vibrating three inches through many periods, suddenly increase

its range by three inches more, making it six inches. Then, some-
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Molecular, time after, suddenly increase the range to nine inches ; and so on

in that way by ten steps. The energy of the jangle produced by

suddenly commencing through the range of three inches, which

is one-tenth of 30 inches, will be exactly one-hundredth of /, the

energy of jangle which you would have if you commenced right

away with the vibration through 30 inches. Each successive

addition of three inches to the range of P will add an amount

of energy of jangling of which the most probable value is the one-

hundredth of J; and the result is that if you advance by these

steps to the range of 30 inches, you will have in the final jangle

ten-hundredths, that is to say one-tenth, of the energy of jangle

which you would get if you began at that range right away.

Thus, by very gradually increasing the range, the result will be

that, without any viscosity at all there will be infinitely little of

the irregular vibrations.

But there are cases in which we have that tremendous jangling

of the molecules concerned in luminous vibrations ; for instance,

the fluorescence of such a thing as uranium glass or sulphate

of quinine which lasts for several thousandths of a second after

the exciting light is taken away, and then again in phosphorescence

that lasts for hov^rs and days. There have been exceedingly

interesting beginnings, in the way of experiments already made,

in these subjects, but nobody has found whether initial refraction

is exactly the same as permanent refraction. For this purpose

we might use Becquerel's phosphoroscope or we might use methods

such as those of Fizeau or Foucault, or take such an appliance as

Prof. Michelson has been recently using, for finding the velocity of

light, and so get something enormously more searching than even

Becquerel's phosphoroscope, and try whether in the first hundredth

of a second, or the first millionth of a second, there is any

indication of a different wave velocity from that which we find

from the law of refraction, when light passes continuously through

a transparent liquid or solid. If, with the methods employed for

ascertaining the velocity of light in a transparent body (to take

account of the criticisms that they have received at the British

Association meeting, to which I have referred several times), we
combine a test for instantaneous refraction, it seems likely that

we should not get negative results, but rather find phenomena

and properties of ultimate importance. We might take not only

ordinary transparent sulids and liiiuids, but also bodies in which,
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like uranium glass, the phosphorescence lasts only a few Molecular.

thousandths of a second ; and then again bodies in which phos-

phorescence lasts for minutes and hours. With some of those

we should have anomalous dispersion, gradually fading away after

a time. I cannot but think that by experimenting, in some such

way, we should find some very interesting and instructive results

in the way of initial fluorescence.



LECTURE IX.

Wednesday, Oct. 8, 5 p.m.

We shall go on for the present with the subject of the

propagation of waves from a centre. Let us pass to the case of

two bodies vibrating in opposite directions, by superposition of

solutions such as that which we have already found for a single

to-and-fro vibrator, which was expressed by

t _ ^^^
A,

d d4> _ d d(f) d d(f>

V ^ doc dx' dy dx

'

dz dx'

We verified that

dx dy dz

so that this expresses rigorously a distortional wave. It is obvious

that this expresses the result of a to-and-fro motion through the

origin in the line OX. Remark, for one thing, that in the

neighbourhood of the origin, at such moderate distance from it

that the component motion in the direction OX is not insensible,

we have on the two sides of the origin simultaneously positive

values. ^ is the same for a positive value of x as for the negative

of that value. At distances from the origin in the line OX which

are considerable in comparison with the wave-length the motion

vanishes as we have seen.

Pass on, now, to this case: a positive to-and-fro motion on the

one side of the origin, and a simultaneous negative to-and-fro

motion on the other side of the origin ; that is to say, two simul-

taneous co-periodic vibrations of portions of matter on the two

sides of the origin moving simultaneously in opposite directions.

I will indicate these motions by arrow-heads, contiinious arrow-

heads to indicate directions of motion at one instant of the period.
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and dotted at the instant half a period earlier or later. The first Molar,

case already considered

Fig. 1.

y

^>^— X;

the second case

The effect in the first case being expressed by the displacements

f, 7), ^, already given, the effect in the second case will be

expressed by displacement-coefiicients respectively equal to

d^ dr] d^

dx^ dx' dx'

This configuration of displacement clearly implies a motion of

which the component parallel to OX has opposite signs, and the

components perpendicular to OX are equal with the same sign, for

equal positive and negative values oi x; it is a simultaneous out

and in vibration on the two sides of the origin in the line OX, and

a simultaneous in and out vibration perpendicular to OX, every-

where in the plane yz. A motion of the matter at distances from

the origin moderate in comparison with the wave-length will be

accurately expressed by these functions. Passing now from Fig. 2

which shows the germ from which we have developed the idea of

this configuration of motion, and the functions expressing it; look



96 LECTURE IX. PART I.

Molar. to Fig. 3 illustrating the in and out vibration perpendicular to OX
which accompanies the out and in vibration along OX from which

we started. The configuration of arrow-heads on the circle in

Fig. 3 shows the component motions perpendicular to the radius

vector at any distance, small or great, from the origin ; which

constitute sensibly the whole motion at the great distances. To

express this motion, take only the " distance -terms " (as in previous

- Stt'
cases,) and drop the factor —-3 ,

from the differential coefficients
A.

indicated above. We thus find, for the three components of the

displacement at great distances from the origin,

J, .
(a? — r^) . x^y ^ a?z

^ = oc—-^— cos q, ri=^ cos q, ^ -^ cos q.

To satisfy ourselves that the radial component of the displace-

ment is zero verify that we have xl^-\- y'r]-\- zt, = 0.

To think of the kind of " polarization " that will be found, when

the case is realized in a sequence of waves of light, remark that the

motion is everywhere symmetrical around the axis of x, and is in

the radial plane through OX. Therefore, we have light polarized

in the plane through the radius to the point considered and

perpendicular to the plane through OX.

This is, next to the effect of a single to-and-fro rigid vibrator,

the simplest set of vibrations that we can consider as proceeding

from any natural source of light. As I said, we might conceive of

a pair of equal and opposite torsional motions at the two ends of

a vibrating molecule. That is one of the possibilities, and it

would be rash to say that any one possible kind of motion does not

exist in so remarkably complex a thing as the motion of the

particles from which light originates.

The motion we have just now investigated is perhaps the most

interesting, as it is obviously the simplest kind of motion that can

proceed from a single independent non-rotating vibrator with

unmoved centre of inertia. If you consider the two ends of a

tuning-fork, neglecting the prongs, so that everything may be

symmetrical around the two moving bodies, you have a way by

which the motion may be produced. Or our source might be

two balls connected by a spring and pulled asunder and set to

vibrating in and out ; or it might be an elastic sphere which has

experienced a shock. An infinite number of modes of vibration

are generated when an elastic ball is struck a blow, but the gravest
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mode, which is also no doubt the one in which the energy is Molar.

greatest, if the impinging body be not too hard, consists of the

globe vibrating from an oblate to a prolate figure of revolution

;

and this originates in the ether the motion with Avhich we have

just now been occupied.

The kind of thing that an elemental source of light in nature

consists of, seems to me to be a sudden initiation of a set of

vibrations and a sequence of vibrations from that initiation which

will naturally become of smaller and smaller amplitude. So that

the graphic representation of what we should see if we could see

what proceeds from one element of the source, the very simplest

conceivable element of the source, would consist of polarized waves

of light spreading out in all directions according to some such law

as we have here. In any one direction, what will it be ? Suppose

that the wave advances from left to right
;
you will then see what

is here represented on a magnified scale.

I have tried to represent a sudden start, and a gradual falling

off of intensity. Why a sudden start ? Because I believe that

the light of the natural flame or of the arc-light, or of any other

known source of light, must be the result of sudden shocks upon

a number of vibrators. Take the light obtained by striking two

quartz pebbles together. You have all seen that. TJiere is one

of the very simplest sources of light. Some sort of a chemical or

ozoniferous effect connected with it which makes a smell, there must

be. As to what the cause of this peculiar smell may be, I suppose

we are almost assured, now, that it proceeds from the generation

of ozone. What sort of a thing can the light be that proceeds

from striking two quartz pebbles together ? Under what cir-

cumstances can we conceive a group of waves of light to begin

gradually and to end gradually ? You know what takes place in

the excitation of a violin string or a tuning fork by a bow. The

vibrations gradually get up from zero to a maximum and then,

when you take the bow off, gradually subside. I cannot

see anything like that in the source of light. On the contrary,

it seems to me to be all shocks, sudden beginnings and gradual

subsidences; rather like the excitation of a harp string plucked

in the usual manner, or of a pianoforte string struck by the

T. L. 7
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Molar. hammer ; and left to itself to give away all its energy gradually

in waves of sound.

I say this, because I have just been reading very interesting

papers by Lommel and Sellmeier*, both touching upon this subject.

Helmholtz remarks that Sellmeier gets into a difficulty in his

dynamics and does not show clearly what becomes of the energy

in a certain case ; but it seems to me that Sellmeier really takes

hold of the thing with great power. He goes into this case

very fully, and in a way with which we are all now more or

less familiar. He remarks that Fizeau obtained a suite of 50,000

vibrations interfering with one another, and judges from that that,

though ordinary light consists of polarized light, circularly-, or ellipti-

cally-, or plane-polarized as I said to you myself, one or two days ago,

with (what I did not say) the plane of polarization, or one or both

axes of the ellipse if it be elliptically polarized, gradually varying,

and the amplitude gradually changing, the changing must be

so gradual that the whole amount of the change, whether of

amplitude or of mode of polarization or of phase, in the course

of 50,000 or 100,000, or perhaps several million vibrations cannot

be so great as to prevent interference. In fact, I suppose there is

no perceptible difference between the perfectness of the annul-

ments in Fizeau's experiment, with 50,000 vibrations and with

1,000 ; although I speak here not with confidence and I may be

corrected. You have seen that with your grating, have you not,

Prof. Kowland ?

Prof. Eowland. Yes; but it is very difficult to get the

interferences.

Sir Wm. Thomson. But when you do get them, the black

lines are very black, are they not 1

Prof. Rowland. I do not know. They are so very faint

that you can hardly see them.

Sir Wm. Thomson. What do you infer from that ?

Prof. Rowland. That there is a large number. The narrow-

ness of the lines of the spectrum indicates how perfectly the light

interferes ; and with a grating of very fine lines I find exceedingly

'perfect interference for at least 100,000 jjen'ods I should think.

Sir Wm. Thomson. That goes further than Fizeau. Sellmeier

says that probably a great many times 50,000 waves must pass

before there can be any great change. He goes at the thing very

* Sellmeier; Ann. der Phi/, u. Chan. 1872, Vols, cxlv., cxlvii.
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admirably for the foundation of his dynamical explanation of Molar.

absorption and anomalous refraction. The only thing that I do

not fully agree with him in his fundamentals is the gradualness of

the initiation of light at the source. I believe, in the majority of

cases at all events, in sudden beginnings and gradual endings.

Prof Rowland has just told us how gradual the endings are.

Fizeau could infer that the amplitude does not fall off greatly in

50,000 vibrations. It is quite possible from all we know, that the

amplitude may fall off considerably in 100,000 vibrations, is

it not ?

Prof. Rowland. The lines are then very sharp.

Sir Wm. Thomson. It would not depend on the sharpness of

the lines, would it ?

Prof. Rowland. O, yes. It would draw them out of

fineness.

Sir Wm. Thomson. Would it broaden them out, or Avould

it leave them fine, but throw a little light over a place that should

be dark ?

Prof. Rowland. It would broaden them out.

Sir Wm. Thomson. It is a very interesting subject ; and

from the things that have been done by Prof Rowland and others,

we may hope to see, if we live, a conquering of the difficulties

quite incomparably superior to what we have now. I have no

doubt, however, but that some now present will live to see

knowledge that we can have hardly any conception of now, of the

way of the extinction of \dbrations in connection with the origin

and the propagation of light. We are perfectly certain that the

diminution of amplitude in the majority of sequences in any

ordinary source, must be exceedingly small—practically nil—in

1,000 vibrations; we can say that probably it is practically nil

in ,50,000 vibrations ; we know that it is nearly nil in 100,000

vibrations. Is it practically nil in two or three hundred thousand

vibrations, or in several million vibrations? Possibly not. Dy-
namical considerations come into play here. We shall be able

to get a little insight into these things by forming some sort of an
idea of the total amount of energy there can possibly be in one

elemental vibrator, in a source of light, and what sequences of

waves it can supply. That the whole energy of vibration of

a single freshly excited vibrator in a source of light is many
times greater than what it parts with in the course of 100,000

7-2
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Molar. molar-vibrations, is a most interesting experimental conclusion,

drawn from Fizeau's and Rowland's grand observations of inter-

ference.

In speaking of Sellmeier's work, and Helmholtz's beautiful

paper which is really quite a mathematical gem, I must still say

that I think Helmholtz's modification is rather a retrograde step.

It is not so perhaps in the mathematical treatment; and at the

same time Helmholtz is perfectly aware of the kind of thing that

is meant by viscous consumption of energy. He knows perfectly

well that that means, conversion of energy into heat ; and in

introducing viscosity he is throwing up the sponge, as it were,

so far as the fight with the dynamical problem is concerned.

Mr Mansfield brought me another quarter hundred weight of

books on the subject last night. I have not read them all

through. I opened one of them this forenoon, and exercised

myself over a long mathematical paper. I do not think it will

help us very much in the mathematics of the subject. What we
want is to try and see if we cannot understand more fully what

Sellmeier has done, and what Lommel has done. I see that both

stick firmly to the idea that we must in the particles themselves

account for the loss of energy from the transmitted wave. That is

what I am doing; and we shall never have done with it until we
have explained every line in Prof. Rowland's splendid spectrum.

If we are tired of it, we can rest, and go at it again.

Lommell and Sellmeier do not go very fully into these

multiple modes of vibrations, although they take notice of them.

But they do indicate that we must find some way of distributing

the energy without supposing annulment of it. That is the

reason why I do not like the introducing of viscous terms in our

equations. It is very dangerous, in an ideal sense, to introduce

them at all. This little bit of viscosity in one part of the system

might run away with all our energies long before 50,000 vibrations

could be completed. If there were any sensibly effective viscosity

in any of the material connected with the moving particle it might

be impossible to get a sequence of one-hundred thousand or a million

vibrations proceeding from one initial vibration of one vibrator.

What the dynamical problem has to do for us is to show how
we can have a system capable of vibrations in itself and acted upon

by the luminiferous ether, that under ordinary circumstances does

not absorb the light in millions of vibrations, as for transparent
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liquids or solids, or in huudreds of thousands of millions of vibra- Molar,

tions as in our terrestrial atmosphere. That is the case with

transparent bodies ; bodies that allow waves to pass through them

one-hundred feet or fifty miles, or greater distances ; transparent

bodies with exceedingly little absorption. If we take vibrators,

then, that will perform their functions in such a way as to give a

proper velocity of propagation for light in a highly transparent

body, and yet which, with a proper modification of the magnitudes

of the masses or of the connecting springs, will, in certain complex

molecules, such as the molecules of some of those compounds that

give rise to fluorescence and phosphorescence, take up a large

quantity of the energy, so that perhaps the whole suite of

vibrations from a single initiation may be absolutely absorbed

and converted into vibrations of a much lower period, which will

have, lastly, the effect of heating the body, I think we shall see

a perfectly clear explanation of absorption without introducing

viscous terms at all; and that idea we owe to Sellmeier.

I would like, in connection with the idea of explaining

absorption and refraction, and lastly, anomalous refraction and

dispersion, to just point out as a matter of history, the two

names to which this is owing,—Stokes and Sellmeier. I would

be glad to be corrected with reference to either, if there is any

evidence to the contrary; but so far as I am aware, the very first

idea of accounting for absorption by vibrating particles taking up,

in their own modes of natural vibration, all the energy of those

constituents of mixed light trying to pass through, which have

the same periods as those modes, was from Stokes, He taught

it to me at a time that I can fix in one way indisputably.

I never was at Cambridge once from about June 1852 to May

1865; and it was at Cambridge walking about in the grounds

of the colleges that I learned it from Stokes. Something was

published of it from a letter of mine to Helmholtz, which he

communicated to Kirchhoff and which was appended by Kirchhoff

in his postscript to the English translation (published in Phil.

Mag., July 1860) of his paper on the subject which appeared in

Poggendorff's Annalen, Vol. Cix. p. 275.

In the postscript you will find the following statement taken

from my letter :

—

" Prof. Stokes mentioned to me at Cambridge some time ago,

probably about ten years, that Prof. Miller had made an experiment
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:\rolar. testing to a very high degree of accuracy the agreement of the

double dark line D of the solar spectrum, with the double bright

line constituting the spectrum of the spirit lamp with salt. I

remarked that there must be some physical connection between

two agencies presenting so marked a characteristic in common.
He assented, and said he believed a mechanical explanation of

the cause was to be had on some such principle as the following:

—

Vapour of sodium must possess by its molecular structure a ten-

dency to vibrate in the periods corresponding to the degrees of

refrangibility of the double line D. Hence the presence of sodium

in a source of light must tend to originate light of that quality.

On the other hand, vapour of sodium in an atmosphere round a

source must have a great tendency to retain in itself, i.e. to absorb,

and to have its temperature raised by, light from the source, of

the precise quality in question. In the atmosphere around the

sun, therefore, there must be present vapour of sodium, which,

according to the mechanical explanation thus suggested, being

particularly opaque for light of that quality prevents such of it as

is emitted from the sun from penetrating to any considerable

distance through the surrounding atmosphere. The test of this

theory must be had in ascertaining whether or not vapour of

sodium has the special absorbing power anticipated. I have the

impression that some Frenchman did make this out by experiment,

but I can find no reference on the point.

" I am not sure whether Prof. Stokes' suggestion of a me-

chanical theory has ever appeared in print. I have given it in

my lectures regularly for many years, always pointing out along

with it that solar and stellar chemistry were to be studied by

investigating terrestrial substances giving bright lines in the

spectra of artificial flames corresponding to the dark lines of the

solar and stellar spectra*."

* [The following is a note appended by Prof. Stokes to his translation of a paper

by Kirchhoff in Fhil. Mag., March 1860, p. 196:—"The remarkable phenomenon
discovered by Foucault, and rediscovered and extended by Kii-chhoff, that a body

may be at the same time a source of Ught giving out rays of a definite refrangibility,

and an absorbing medium extinguishing rays of the same refrangibility which
traverse it, seems readily to admit of a dynamical illustration borrowed fi'om sound.

We know that a stretched string which on being struck gives out a certain note

(suppose its fundamental note) is capable of being tin-own into the same state of

vibration by aerial vibrations corresponding to the same note. Suppose now a por-

tion of space to contain a great number of such stretched strings forming thus the
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What I have read thus far is with reference not to the Molar,

origin of spectrum analysis, but to the definite point, of Stokes'

suggested dynamics of absorption. There is no hint there of the

effect of the reaction of the vibrating particles in the luminiferous

ether in the way of affecting the velocity of the propagation of

the liofht through it. Sellmeier's first title has reference to that

effect ; he explains ordinary refraction through the inertia of

these jDarticles and he shows how, when the light is nearly of the

period corresponding to any of the fundamental periods of the

embedded vibrators, there will be anomalous dispersion. He gives

a mathematical investigation of the subject, not altogether satis-

factory, perhaps, but still it seems to me to formulate a most

valuable step towards a wholly satisfactory treatment of the thing.

Lord Rayleigh, Helmholtz and others have quoted Sellmeier.

Lommel begins afresh, I think, but he notices Sellmeier also, so

the idea must have originated with Sellmeier, and it seems to me
a very important new departure with respect to the dynamical

explanation of light.

Ten minutes interval.

Now, let us look at this problem of vibrating particles once Molecular,

more. I have a little exercise to propose for the ideal arithmetical

laboratory. Just try the arithmetical work for this problem for

7 particles. I do not know whether it will work out well or not.

I have not the time to do it myself, but perhaps some of you may
find the time, and be interested enough in the thing, to do it.

Take the m'^ in order, proceeding by ratios of 4 ; and the c's in

order, proceeding by differences of 1 :

Wj, m.^, m^, m^, m^, m^, m^ = 1, 4, 16, 64, 256, 1024, 4096,

Ci- c.,, C3, c^, Cj, Cg, c,, C3= 1, 2, 3, 4, 5, 6, 7, 8.

There will be 7 roots to find by trial. I would like to have

some of you try to find some of these, if not all ; also the energy

ratios. You will probably find it an advantage in the calculation

if you proceed thus : put -^= z, and by " roots " let us understand

analogue of a "medium." It is evident that such a medium, on being agitated,

would give out the note above mentioned, while on the other hand, if that note were

sounded in air at a distance, the incident vibrations would throw the strings into

vibration and consequently would themselves be gradually extinguished since other-

wise there would be a creation of vis viva. The optical application of this illustra-

tion is too obvious to need comment.—G. G. S." H.]
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Molecular, values of z, making | = 0, which implies, and is secured by, ii^ = 0.

We have

a^ = z — S, a^ = 4!Z-5, a^ = 16z — 7, a^ = 64^ - 9,

a^=2o6z-ll, ae= 1024^-13, a, = 4096^-15.

You will have to take values of z by trial until you get near a

root. The convergence of the continued fraction (p. 39) will be

so rapid that you will have very little trouble in getting the

largest roots. Begin then with the largest 2^-root, corresponding

to the shortest of the critical periods t, and proceed downwards,

according to the indications of pp. 55—58. In the course of

the process, you will have the whole series of the w's for each

root ; by multiplying these in order, you have the xs for each par-

ticular root, and then you can calculate the energy ratios for each

root. We shall then be able to put our formula into numbers ; and

I feel that I understand it much better when I have an example

of it in numbers than when it is merely in a symbolic form.

I want to show you now the explanation of ordinary refraction.

Let us go back to our supposition of spherical shells, or, if you like,

our rude mechanical model. Suppose an enormous number of

spherical cavities distributed equally through the space we are con-

cerned with. Let the quantity of ether thus displaced be so

exceedingly small in proportion to the whole volume that the

elastic action of the residue will not be essentially altered by that.

These suppositions are perfectly natural. Now, what is unnatural

mechanically, is, that we suppose a massless rigid spherical lining to

this spherical cavity in the luminiferous ether connected with an

interior rigid massive shell, m^, by springs—in the first place

symmetrical. We shall try afterwards to see if we cannot do some-

thing in the way of aeolotropy ; but as I have said before I do not

see the way out of the difficulties yet. In the meantime, let us

^•'-'"^^-"v,^^ suppose this first shell m^ to

?^\Sericlf'cavl?^Sj /A^i;^ be isotropically connected by
luminiferous ether. ) / /^r^^^^ \ \ • •,i .i • -j i n

L I t ^ \ \ \ springs With the rigid shell

Shell No. 1, mi p. Pg J / 7 liiiiiig of the spherical cavity

Shell No. 2, m. Va^^.^-^^ / i^ the ctlier. When I say

\^^[^[^^]^^^^^ isotropically connected I

mean distinctly this: that if you draw this first shell m^ aside

through a certain distance in any direction, and hold it so, the
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required force will be independent of the direction of the displace- Molecular.

ment. Certain springs in the drawing—the smallest number

would be three—placed around in proper positions will rudely

represent the proper connections for us. Similarly, let there

be another shell here, m^, in the interior of u\, isotropically

connected with it by springs ; and so on.

This is the simplest mechanical representation we can give of a

molecule or an atom, imbedded in the luminiferous ether, unless

we suppose the atom to be absolutely hard, which is out of the

question. If we pass from this problem to a problem in which we :j ^^

shall have continuous elastic denser matter instead of a series of

connections of associated particles, we shall be, of course, much

nearer the reality. But the consideration of a group of particles

has great advantage, for we are more familiar with common algebra

than with the treatment of partial differential equations of the

second order with coefficients not constant, but functions of the

independent variable,—which are the equations we have to deal

with if we take a continuous elastic molecule, instead of one made

up of masses connected by springs as we have been supposing.

Let us suppose the diameters of these spherical cavities to be

exceedingly small in comparison with the wave length. Practically

speaking, we suppose our structure to be infinitely fine-grained.

That will not in the least degree prevent its doing what we want.

The distance also from one such cavity, containing within it a

series of shells, to another such cavity, in the luminiferous ether, is

to be exceedingly small in comparison with the wave length, so

that the distribution of these molecules through the ether leaves

us with a body which is homogeneous when viewed on so coarse a

scale as the wave length ; but it is, if you like, heterogeneous

when viewed with a microscope that will show us the millionth or

million-millionth of a wave length. This idea has a great advan-

tage over Cauchy's old method, in allowing an infinitely fine-

grainedness of the structure, instead of being forced to suppose

that there are only several molecules, ten or twelve, to the wave

length, as we are obliged to do in getting the explanation of

refraction by Cauchy's method.

I wish to show you the effect of molecules of the kind now

assumed upon the velocity of light passing through the medium.

Let -~ denote the sum of all the masses of shells No. 1 m any
47r
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Molecular, volume divided by the volume; let j-^ denote the sum of the masses

of No. 2 interior shell in any volume divided by the volume ; and

so on. We will not put down the equations of motion for all

directions, but simply take the equations corresponding to a set of

plane waves in which the direction of the vibration is parallel to

OX, and the direction of the propagation is parallel to OY.

If we denote by -~,^ the density of the vibrating medium, (I am

taking -—^ instead of the usual p for the reason you know, viz. : to

get rid of the factor 47r^ resulting from differentiation). Let

——J,, (instead of n as formerly,) denote the rigidity of the

luminiferous ether. The dynamical equation of motion of the ether

and embedded cavity-linings will clearly be

For waves of period T, we have f = const. Jf sin 27r
[
- —

^J

.

The second differential coefficients of this with respect to t and cc

f 47r^

r2 ^> —rs" f respectively. Ther
A,

I /. x,\ ^ . ^ ^r

47r^ 4'7r^

will be —^2 ^y —^2" f respectively. Therefore our equation be-
1 A,

comes 7^2 = r-2 + Cj ( 1 — -^ j . Let us find —^ , which is the reciprocal

of the square of the velocity of propagation. You may write it-j

if you like, or fi^, the square of the refractive index. We have,

r 1

Substitute our value (Lecture VII.) for — xj^-,

and this becomes

)

This is the expression for the square of the refractive index as

it is affected by the presence of molecules arranged in the Avay we
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have supposed. It is too late to go into this for interpretation Molecular,

just now, but, I will tell you that if you take T considerably less

than /Cj, and very much greater than k.^, you will get a formula

with enough of disposable constants to represent the index of

refraction by an empirical formula, as it were; which, from what we
know, and what Sellmeier and Ketteler have shown, we can accept

as ample for representing the refractive index of ordinary trans-

parent substances.

We shall look into this farther, a little later, and I will point

out the applications to anomalous dispersion. We must think a

good deal of what can become of vibrations in a system of that

kind when the period of the vibration of the luminiferous ether

is approximately equal to any one of the fundamental periods that

the internal complex molecule could have were the shell lining in

the ether held absolutely at rest.



LECTURE X.

Thursday, October 9, 5 p.m.

We shall now think a little about the propagation of waves

with a view to the question, what is the result as regards waves

at a distance from the source, the source itself being discontinuous

in its action. In the first place, we will take our expression for a

plane wave. The factor in our formulas showing diminution of

amplitude at a distance from a source does not have effect

when we come to consider plane waves. So we just take the

simple expression for plane harmonic waves propagated along the

axis of y with velocity v
;

^ = a cos -z—{y — vt).

Let us consider this question:—what is the work done per

period by the elastic force in any plane perpendicular to the line

of propagation of the wave. We shall think of the answer to

that question with the view to the consideration of the possibility

of a series of waves advancing through space previously quiescent.

Suppose I draw a straight line here for the line of propagation

and let this curve represent a succession of waves travelling from

left to right and penetrating into an elastic solid previously

JET

It

quiescent. Take a plane perpendicular to the line of propa-

gation of the waves, and think of the work done by the elastic

solid upon one side of this plane upon the clastic solid on the
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other side, in the course of a period in the vibration. We shall Molar,

take an expression for the tangential force in the plane XOZ,
and in the direction OX, which we denote by T (according

to our old notation of *Si, T, U, P, Q, R). We shall virtually in-

vestigate here the formula for the propagation of the wave in-

dependently of our general formula in three dimensions. Taking

T to denote the tangential force of the elastic medium on the one

side of the plane XOZ, the downward direction of the arrow-head

which I draw being that direction in which the medium on the

left pulls the medium on the right, I put infinitely near that in

the medium on the right another arrow-head. Imagine for the

moment a split in the medium to indicate the reaction which the

medium on the right exerts on the medium on the left by this

plane ; and imagine the medium on the left taken away, and that

you act upon the plane boundary of the medium on the right,

with the same force as in the continuous propagation of waves.

The medium upon the left acts in this way upon the plane inter-

face :—that is an easy enough conception. I correctly represent

it in my diagram by an arrow-head pointing down infinitely near

to the plane on the left-hand side. The displacement of the

medium is determined by a distortion from a square figure to an
oblique figure, and there is no inconsistency in putting into this

little diagram an exaggeration of the obliquity, so as to

I r'''
|

|

show the direction of it. The force required to do that

.,-- is clearly as our diagram lies, upward on the right and

downward on the left.

Let us consider now the work done by that force. Calling

^ the displacement of a particle from its mean position, T. | is

the work done by that tangential force per unit of time. — is

the shearing strain experienced in the medium so that

n$ = -T.
dy

In this particular position which we have taken, ^ increases with y
so that the sign minus is correct according to the arrow heads.

Let there be simple harmonic waves propagated from left to

right with velocity v. This is the expression for it

indicating | = ^ cos— {y — vt)
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Hence,

j: 27r . d^ 27r

^ X ^ dy \

and the rate of doing work is

—-^ a vn sm q.
A,

a sm q ;

That is the rate at which this plane, working on the elastic solid

on the right-hand side of it, does work ("per unit area of the

plane" understood). Multiply this by dt and integrate through

a period t = X/v. Now
/•t frl f'^l 1
I sin^ qdt =1 ^ (1 — cos 2q) dt= \ ^ dt = g r.

The rate of doing work then, per period, is

27r'' „ 27r^a^n

X^ X

If it is possible for a set of waves to advance uniformly into

space previously undisturbed, then it is certain that the work done

per period must be equal to the energy in the medium per wave

length. Let us then work out the energy per wave length.

It is easily proved that, in waves in a homogeneous elastic

solid, the energy is half potential of elastic stress, and half kinetic

energy ; and it will shorten the matter, simply to calculate the

kinetic energy and double it, taking that as the energy in the

medium per wave length. In our notation of yesterday, we took

J'-r, as the density. Multiply this by dy, to get the mass of an

infinitesimal portion (per unit of area in the plane of the wave).

The kinetic energy of this mass is

Integrating this through a wave length, and doubling it so as to
-I 2 2

get the whole energy, we have -
. Compare that with the

Ij X
1 a^ I

work done per period, viz. - — /, if j—2 denote as yesterday the

rigidity instead of n. We see that they are equal, because (velocity
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of propagation) v = a/ - as we find from the elementary equation Molar.

r

of the wave motion,

df p dif

'

Thus the work done per period is equal to the energy per wave

length.

This agrees with what we know from the ordinary general

solution of the equation of motion by arbitrary functions that it

is possible for a discontinuous series of waves to be propagated

into the elastic medium, previously quiescent :—and is coex-

tensive with the case of velocity of propagation independent of

wave length, for a regular simple harmonic endless succession of

waves. But if our present energy equation did not verify, it

would be impossible to have a discontinuous series of waves

propagated forward without change of form into a medium

previously quiescent. I wanted to verify the energy equation for

the case of the homogeneous elastic solid, because we are con-

cerned with a case in which this is not verified ; that is to say,

when we put in our molecules. In this case, the work done per

period is less than the energy in the medium per wave length,

and therefore it is impossible for the waves to advance without

change of form.

Before we go on to that, let us stay a little longer in a

homogeneous elastic solid, and look at the well-known solution by

discontinuous functions. The equation of motion is

P df~ df
'

Although I said I would not formally prove this now, it is in

reality proved by our old equation

I took the liberty of asking Professor Ball two days ago whether

he had a name for this symbol y^; and he has mentioned to me

nabla, a humorous suggestion of Maxwell's. It is the name of an

Egyptian harp, which was of that shape. I do not know that

it is a bad name for it. Laplacian I do not like for several reasons

both historical and phonetic. [Jan. 22, 1892. Since 1884 I have

found nothing better, and I now call it Laplacian.]
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I should have told you that this is the case of a plane wave

propagated in the direction of OY, with the plane of the wave

parallel to XZ; for which case, nahla of ^ (that is to say y^^)

becomes simply , \ . The time-honored solution of this equa-

tion is

^=f(y-vt) + F(ij + vt),

where f and F are arbitrary functions. You can verify that by

differentiation. This solution in arbitrary functions proves that a

discontinuous series of waves is possible ; and knowing that a discon-

tinuous series is possible, you could tell without working it out, that

the work done per period by the medium on the one side of the

plane which you take perpendicular to the line of propagation

must be equal to the energy of the medium per wave length.

Before passing on to the energy solution for the case in which

we have attached molecules, in which this equality of energy and

work does not hold, with the result that you cannot get the

discontinuous single pulse or sequence of pulses, I want to suggest

another elementary exercise for the anticipated arithmetical labo-

ratory. It is to illustrate the propagation of waves in a medium

in which the velocity is not independent of the wave length, and

to contrast that with the propagation of waves when the velocity

is independent of the wave length in order that you may feel

for yourselves what these two or three symbols show us, but which

we need to look at from a good many points of view before we

can make it our own, and understand it thoroughly. To realize

that this equation -~ = const, x ,--2 gives us constant velocities

for all wave lengths, and that constant velocities for all wave

lengths implies this equation, and to see that that goes along with

the propagation of a discontinuous pulsation without change of

figure, or a discontinuous succession of pulsations without change

of character, I want an illustration of it, by the consideration of a

case in which the condition of constancy of velocity for different

wave lengths is not fulfilled.

1 ask you first to notice the formula

1
( 1 _ g2N

S=^— 1^ ^
., =^ + ecos<7 + e'* cos 27-1- ...

1 — 2e cos q + e
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which is familiar to all mathematical readers as leading up to Molar.

Fourier's harmonic series of sines and cosines. It is proved by

taking

2 cos 5 = €'9 + e-'?,

and resolving ^S' into two partial fractions. Poisson and others*

make this series the foundation of a demonstration of Fourier's

theorem. If e < 1 the series is convergent ; when e = 1 it ceases

to converge. If we take q = ^^-^ and draw the curve whose de-

pendent coordinate is x = S, what have we ?

Take t = and measure off lengths from the origin

2/
= a, 2a, ...

The curve represented will be this (heavy curve).

The heavy curve is

X =
28

{a = l, e = i).

5 — 3 cos 27rj/

It is here drawn by the points

{y,x) = iO,l),{h^)AhU(hi),
and symmetrical continuation.

The dotted curve is

3/2
X = (a = l, e = i).

5 — 4 cos 27ry

It is here drawn by the points

(y, ^) = (o, f), (h T^), a, ^), (h, i),

and symmetrical continuation.

I want the arithmetical laboratory to work this out and give

* See Thomson and Tait's Natural Philosophy, § 77.

T. L. 8
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Molar. graphic representations of the periodic curves for several different

values of e. The particular numerical case

that I am going to suggest is one in which

the curve will be more like this second

curve which I draw ; it is much steeper

and comes down more nearly to zero. Take
the extreme case of e = 1, and what happens ?

>S' is infinitely great for q infinitely small, and

is infinitely small for all other values of q less

than a. For any value of e, the maximum
and minimum ordinates of the curve (corre-

sponding respectively to q = 0°, and q= 180°)

are

J
1 + e 1 J

1 - 6_
9 • ^ ! and -g-

,

*

^ \-e ^ 1 +e'

_ and therefore the minimum is

il-eri{l + ey

of the maximum. Thus, if for example we take e = '9, we find the

minimum ordinate to be 1/361 of the maximum. I suggest, as a

mathematical exercise, to draw the curve for this case by the

finite formula: and, as an arithmetical exercise, to calculate as

many as you please of the ordinates by the series. You will find

its convergence tediously slow.

[(•9)« = -0108, (-9)^^ = -0097]:

you must take more than 43 or 44 terms to reach an accuracy of

one per cent, in the result. So I do not think you will be inclined

to calculate very many of the ordinates by the series.

I would also advise those who have time to read Poisson's and

Cauchy's great papers on deep-sea waves. (Poisson's Memoire sur

la theorie des ondes. Paris, Mem. Acad. Sci. i., 1816, pp. 71—186
;

Annal. de Chemie, v., 1817, pp. 122—142. Cauchy, Memoire sur la

theorie de la propagation des ondes a la surface d'nn fluide pesant

d'une profondeur indefinie [1815], Paris, Mem. Sav. Strang, i.,

1827, pp. 3—312.) Those papers are exceedingly fine pieces of

true mathematics ; and they are very strong. But you might

have the hydrodynamical beginnings presented much more fasci-

natingly. If you know the elementary theory of deep-sea waves,

well and good : then take Poisson and Cauchy for the higher

analytical treatment. Those who do not know the theory of
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deep-sea waves may read it up in elementary books. The best ^^<^l^r •

^^"

. .
gression,

text-books I know for Hydrokinetics are Besant's and Lamb's. Deep-sea

The great struggle of 1815, not that fought out on the plains
"^^^^•

of Belgium, was, Avho was to rule the waves, Cauehy or Poisson.

Their memoirs seem to me of very nearly equal merit. I have no

doubt the judges had good reason for giving the award to Cauehy,

but Poisson's paper also is splendid. I can see that the two writers

respected each other very much, and I suppose each thought the

other's work as good as his own (? and sometimes better !).

The problem which they solve is this, in their high analytical

style : Every portion of an infinite area of water is started initially

with an arbitrarily stated infinitesimal displacement from the

level and an arbitrarily stated velocity up or down from the level,

and the inquiry is, what will be the result ? It is obvious that

3^ou have the solution of that problem from the more elementary

problem, what is the result of an infinitesimal displacement at

a single point, such as may be produced by throwing a stone

into water ? Let a solid, say, cause a depression in any place, the

velocity of the solid performing the part of giving velocity and

displacement to the surface of the water : then consider the solid

suddenly annulled. The same thing in two dimensions is exceed-

ingly simple. Take, for example, waves in an infinitely deep

canal with vertical sides. Take a sudden disturbance in the canal,

equal over all its breadth, and inquire what will the result be ?

I wish now to help you toward an understanding of Cauchy's

and Poisson's solutions. They only give symbols and occasionally

numerical results : they do not give any diagi'ams or graphical repre-

sentations ; and I think it would repay any one who is inclined to go

into the subject to work it out with graphic representations thus :

—

first I must tell you that the elementary Hydrokinetic solution for

deep-sea waves is simply a set of waves, or a set of standing vibra-

tions (take which you please): the propagational velocity of the waves

being
f. hL- , and therefore for different waves directly propor-

tional to the square root of the wave-length ; and the vibrational

, also

y
directly proportional to the square root of the wave-length.

Thus, so far as concerns only the varying shape of the disturbed

water surface, the whole result of the elementary Hydrokinetics of

8—2
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Molar
:

Di- deep-sea Avave-motion is expressed by one or other of these
gression, ^

. .

^ ''

Deep-sea equations which 1 write down ;

—

, 27r / _ , /^M , sin Stt?/ sin , /^Trr/
X = /' cos — ?/ + ^ , / i^

;
or x = h —-^ ^ ^ / —^ .

X V V 27r/ cos \ cos V X

Superposition of two motions represented by either formula

gives a specimen of single motion represented by the other, as you
all know well by your elementary trigonometry.

And now, in respect to Poisson's and Cauchy's gi-eat mathe-

matical work on deep-sea waves, it will be satisfactory to you

to know that it consists merely in the additions of samples

represented by whichever of these formulas you please to take.

The simple formula, or summation of it with different values of h

and \, represents waves with straight ridges, or generally straight

lines of equal displacement : or, as we may call it, two-dimensional

wave-motion. Every possible case of three-dimensional wave-

motion (including the circular waves produced by throwing a

stone into water) is represented by summation of the samples of

the formula, as it stands, and with z substituted for y ; y and z

representing Cartesian coordinates in the horizontal plane of the

undisturbed water-surface, and x representing elevation of the

disturbed water-surface above this plane.

And now, confining ourselves to the two-dimensional wave-

motion, I suggest to our arithmetical laboratory, to calculate and

draw the curve represented by

s = -| 4- e cos q^ + e" cos 2^2 + e^ cos 3^3 -\- ... & cos iqi + ...

where qi= — {y — Vjt) ; with Vi= -p.

Calculate the curve corresponding to any values you please of

e and of t. Also calculate and draw curves representing the sum

of values of s with equal positive and negative values of vi.

I suggest particularly that you should perform this last

described calculation for the cases, e=^ and e = ^. You have

already the curves for ^ = in these cases shown on the diagram

of page 113, and you will find it interesting to work out, in con-

siderable detail, curves for other values of t which you can do

without inordinately great labour, as the series are very rapidly

convergent. You will thus have graphic repi-esentations of the

two-dimensional case of Cauchy and Poisson's problem for infinitely

deep water between two fixed parallel vertical planes.
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Lastly, I may say that if there are some among you who Molar: Di-

will not shrink from the labour of calculating and adding forty or fJeep-sea

fifty terms of the series, I advise you to do the same for e = '9 ;
Waves.

and you will have splendid graphical illustrations of the two-

dimensioual problem of deep-sea waves initiated by a single

disturbance along an endless straight line of water. If you do so,

or if you spend a quarter-of-an-hour in planning to begin doing so,

you will learn to thank Cauchy and Poisson for their magnificent

mathematical treatment of their problem by definite integrals,

and for their results from which, with very moderate labour, you

may calculate the answer to any particular question that may be

reasonably put with reference to the subject ; and may work out

very thorough graphical illustrations of all varieties of the problem

of deep-sea waves*.

We are going to take our molecules again, and put them in the Molecular,

ether; and look at the question, what is the velocity of propagation

of waves through it under some suppositions which we shall make

as to the masses of these embedded molecules, and how much they

will modify the velocity of propagation from what it is in pure

ether. Then we shall look at the matter, with respect to the

question of the work done upon a plane perpendicular to the line

of propagation, and we shall see that the energy per wave-length

is greater than the work done per period, and that therefore it is

impossible under these conditions for waves to advance uniformly

into space previously occupied by quiescent matter.

You wall find, in Lord Rayleigh's book on sound, the question

of the work done per period, and the energy per wave length, gone

into : and the application of this principle, with respect to the

possibility of independent suites of waves travelling without change

of form, thorovighly explained.

To-morrow we shall consider investigations respecting the

difference of velocity of propagation in different directions in an

aeolotropic elastic solid, for the foundation of the explanation of

double refraction on mere elastic solid idea. The thing is quite

* [Note of May, 1898. For some of these see my papers:—"On Stationary

Waves in Flowing Water," Phil. Mag. 1886, Vol. 22, pp. 353, 445, 517; 1887,

Vol. 23, p. 52. "On the Front and Rear of a Free Procession of Waves in Deep

Water," Phil. Mag. 1887, Vol. 23, p. 113; and, "On the Waves produced by a

Single Impulse in Water of any depth or in a Dispersive Medium," Phil. Mag.

1887, Vol. 23, p. 252.]
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Molecular, familiar to many of you, no doubt, and you also know that it is a

failure in regard to the explanation of the propagation of light in

biaxal crystals. It is, however, an important piece of physical

dynamics, and I shall touch upon it a little, and try to show it in

as clear a light as I can.

Ten minutes interval.

Now for our proper molecular question. The distance from

cavity to cavity in the ether is to be exceedingly small, in

comparison with the wave-length, and the diameter of each

cavity is to be exceedingly small, in comparison with the distance

from cavity to cavity. Let the lining of the cavity be an

ideal rigid massless shell. Let the next shell within be a rigid

shell of mass -t\. I represent the thing in this diagram as
T?7r

if we had just two of these massive shells

and a solid nucleus. The enormous mass of

the matter of the grosser kind which exists

in the luminiferous ether when permeated

by even such a comparatively non-dense

body as air, would bring us at once to very

great numbers in respect to the masses which

we will suppose inside this cavity, in comparison with the masses

of comparable bulks of the luminiferous ether. If there is time

to-morrow, we shall look a little to the possible suppositions as to

the density of the luminiferous ether, and what limits of greatness

or smallness are conceivable in respect to it. At present we have

enough to go upon to let us see that, even in air of ordinary

density, the mass of air per cubic centimetre must be enormously

great, in comparison with the mass of the luminiferous ether per

cubic centimetre. We must therefore have something enormously

massive in the interior of these cavities. We shall think a good

deal of this yet, and try to find how it is we can have the large

quantity of energy that is necessary to account for the heating of

a body such as water by the passage of light through it, or for

the phosphorescence of a body which is luminous for several days

after it has been excited by light. I do not think we shall have

the slightest difficulty in explaining these things. These are not
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the difficulties. The difficulties of the wave theory of light are Molecular,

difficulties which do not strike the popular imagination at all.

They are the difficulties of accounting for polarization by reflection

with the right amount of light retiected ; and of accounting for

double refraction with the form of wave-surface guessed by

Huyghens and proved experimentally by Stokes. With the

general character of the phenomena we have no difficulty what-

ever ; the great difficulty, in respect to the wave theory of light,

is to bring out the proper quantities in the dynamical calculation

of these effects.

There is no difficulty in explaining the energy required for

heating a body by radiant heat passing through it, nor how it is

that it sometimes comes out as visible light and, it may be, so

slowly that it may continue appearing as light for two or three

days. All these properties, wonderful as they are, seem to come

as a matter of course from the dynamical consideration. So much

so that any one not knowing these phenomena would have dis-

covered them on working out the subject dynamically. He would

discover anomalous dispersion, fluorescence, phosphorescence, and

the well-knowu visible and invisible radiant heat of longer periods

emitted by a body which has been heated and left to cool. All

these phenomena might have been discovered by dynamics ; and

a dynamical theory that discovers what is afterwards verified by

experiment is a very estimable piece of physical dynamics.

I speak with confidence in this subject because I am ashamed -/-

to say that I never heard of anomalous dispersion until after I

found it lurking in the formulas. And, when I looked into the

matter, I found to ray shame that a thing which had been known

by others for fifteen or twenty years* I had not known until I

found it in the dynamics.

Take our concluding formula of yesterday (p. 106 above), with

some changes of notation

1 e + ^.-
J _ 1 + ?if (^^

^ + -f^^ + &c)\

,

^- )i n [ nil \T^ — K^ -r — k; ))

where ^ denotes the propagational velocity of waves of period t
;

* Leroux, "Dispersion anomale de la vapeur d'iode," Coviptes Rendus, lv., 1862,

pp. 126—128: Fogg. Ann. cxvii., 1862, pp. 659, 660. Christiansen, "Ueber die

Brechungsverbaltnisse einer weingeistigen Losung des Fuchsins," Ann. Phys. Chem.

cxLi, 1870, pp. 479, 480: Fhil. Mag., xli., 1871, p. 244; Annales de Chimie, xxv.,

1872, pp. 213, 214.
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Molecular, n, p, and Till denote now respectively the rigidity of the ether,

the mass of the ether in unit volume of space, and the sum

of the masses of the first interior shells of the embedded

molecules in unit volume of space

;

Ci the force of the first spring, per unit elongation, multiplied by

the number of molecules embedded in the ether per unit

volume of space

;

/c, K^, K^^, &c., in order of ascending magnitude, the fundamental

periods of the molecule when the outer shell is held fixed

;

R, R^, R^^, &c., denote for the separate fundamental vibrations the

ratio of the energy of the first interior shell to the whole

energy of the complex vibrator.

Let us consider what the wave-period r may be relatively to

the fundamental periods k, k^, k^^, ... of the vibrator on the sup-

position of the bounding shell held fixed, to give us a good

reasonable explanation of dispersion, in accordance with the facts

of observation with respect to the difference of velocity for

different periods. To help us with this consideration, take our

previous auxiliary formulas

1 _ P ClT- foe, _ ^
^' n iir-'n \ ^

k-Rt' k'^Rj'^ „ ,

where ^ and Xj^ denote respectively the simultaneous maximum
displacements of the outermost massless shell and the first of the

massive shells within it.

If T were less than the smallest of the fundamental periods,

-^ would be negative, the wave-velocity would be greater than in

free ether, and the refractive index would be less than unity.

But in all known cases the refractive index is greater than unity

;

and when this is so, -^ — 1 must be positive. I want to see if

we can get our formula to cover a range, including all light from

the highest ultra-violet photographic light of about half the

wave-length of sodium light down to the lowest we know of,

which is the raeliant heat from a Leslie cube with a wave-length
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that I hear from Prof. Langley since I spoke to you on the Molecular,

subject a week ago is about -^q^xj
of a centimetre or 17 times the

wave-length of sodium light. That will be a range of about

forty to one. The highest invisible ultra-violet light hitherto

determined, by its photographic action, has a period about 1/40

of the period of the lowest invisible radiation of radiant heat that

has yet been experimented upon.

It is probable that all or many colourless transparent liquids

and solids are mediums for which throughout every part of that

range there are no anomalous dispersions. I think it is almost

certain that for rock-salt, in the lower part of the range, there

are no anomalous dispersions at all. In fact Langley 's experiments

on radiant heat are made with rock-salt ; and in all experiments

made with rock-salt, it seems as if little or no radiant heat is

absorbed by it. At all events, we could not be satisfied unless we

can show that this kind of supposition will account for dispersion

through a range of period from one to forty. It is obvious that

if we are to have continuous refraction without anomalous dis-

persion through that wide range of periods, there cannot be any

of the periods k, k^, k,^, ... within it.

To-morrow we shall consider the case in which the wave-period

is longer than the longest of the molecular periods ; and we shall

find that on this supposition our formula serves well to represent

all we have hitherto known by experiment regarding ordinary

dispersion. \_Added Jidy 7, 1898. This was true in October 1884
;

but measurements by Langley of the refractivity of rock-salt for

radiant heat of wave-lengths (in air or ether) from '43 of a mikron

to 5"3 miki'ons, (the " mikron " being lO"*^ of a metre or 10""^ of a

centimetre), published in 1886 {Phil. Mag. 1886, 2nd half-year),

showed that there must be a molecular period longer than that

corresponding to wave-length 5'3. In an addition to Lecture

XII, Part II, we shall see that subsequent measurements of

refractivity by Rubens, Paschen, and others, extend the range

of ordinary dispersion by rock-salt to wave-lengths of 23 mikrons

;

and give results in splendid agreement with our formula, which

is identical with Sellmeier's expression of his own original theory,

through a range of from '4 of a mikron to 23 mikrons, and
indicate 56 mikrons as being the probable wave-length of radiant

heat in ether of which the period is a critical period for rock-salt.]
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Friday, October 10, 3.30 p.m.

We shall now take up the subject of an elastic solid which is

not isotropic. As I said yesterday, we do not find the mere

consideration of elastic solid satisfactory or successful for explain-

ing the properties of crystals with reference to light. It is, how-

ever, to my mind quite essential that we should understand all

that is to be known about homogeneous elastic solids and waves

in them, in order that we may contrast waves of light in a crystal

with waves in a homogeneous elastic solid.

Aeolotropy is in analogy with Cauchy's word isotropy which

means equal properties in all directions. The formation of a word

to represent that which is not isotropic was a question of some

interest to those who had to speak of these subjects. I see the

Germans have adopted the term anisotropy. If we used this in

English we should have to say :
" An anisotropic solid is not an

isotropic solid "
; and this jangle between the prefix an (privative)

and the article an, if nothing else, would prevent us from adopting

that method of distinguishing a non-isotropic solid from an

isotropic solid. 1 consulted my Glasgow University colleague

Prof. Lushington and we had a good deal of talk over the subject.

He gave me several charming Greek illustrations and wound up

with the word aeolotropy. He pointed out that aloXo^ means

variegated; and that the Greeks used the same word for variegated

in respect to shape, colour and motion ; example of this last, our

old friend " KopvOaioXo^ "EKrcop." There is no doubt of the

classical propriety of the word and it has turned out very con-

venient in science. That which is different in different directions,

or is variegated according to direction, is called aeolotropic.

The consequences of aeolotropy upon the motion of waves, or

the equilibrium of particles, in an elastic solid is an exceedingly
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interesting fundamental subject in physical science ; so that there Molar.

is no need for apology in bringing our thoughts to it here except,

perhaps, that it is too well known. On that account I shall be

very brief and merely call attention to two or three fundamental

points. I am going to take up presently, as a branch of molar

dynamics, the actual propagation of a wave; and in the mathe-

matical investigation, I intend to give you nothing but what is

true of the propagation of a plane wave in an elastic solid, not

limited to any particular condition of aeolotropy ; in an elastic solid,

that is to say, which has aeolotropy of the most general kind.

Before doing that, which is strictly a problem of continuous or

molar dynamics, I want to touch upon the somewhat cloud-land

molecular beginning of the subject, and refer you back to the old

papers of Navier and Poisson, in which the laws of equilibrium or

motion of an elastic solid were worked out from the consideration

of points mutually influencing one another with forces which are

functions of the distance. There can be no doubt of the mathe-

matical validity of investigations of that kind and of their interest

in connection with molecular views of matter; but we have long

passed away from the stage in which Father Boscovich is accepted

as being the originator of a correct representation of the ultimate

nature of matter and force. Still, there is a never-ending interest

in the definite mathematical problem of the equilibrium and motion

of a set of points endowed with inertia and mutually acting upon

one another with any given forces. We cannot but be conscious

of the one splendid application of that problem to what used to be

called physical astronomy but which is now more properly called

dynamical astronomy, or the motions of the heavenly bodies. But

it is not of these grand motions of mutually attracting particles

that we must now think. It is equilibriums and infinitesimal

motions which form the subject of the special molecular dynamics

now before us.

Many waiters [Navier (1827), Poisson (1828), Cauchy, F. Neu-

mann, Saint-Venant, and others] who have worked upon this

subject have come upon a certain definite relation or set of

relations between moduluses of elasticity which seemed to them

essential to the hypothesis that matter consists of particles acting

upon one another with mutual forces, and that the elasticity of a

solid is the manifestation of the forcive required to hold the

particles displaced infinitesimally from the position in which the
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mutual forces will balance. This, which is sometimes called

Navier's relation, sometimes Poisson's relation, and in connection

with which we have the well-known "Poisson's ratio," I want to

show you is not an essential of the hypothesis in question. Their

supposed result for the case of an isotropic body is interesting,

though now thoroughly disproved theoretically and experimentally.

Doubtless most of you know it ; it is in Thomson and Tait, and

I svipjjose in every elementary book upon the subject. I will just

repeat it.

An isotropic solid, according to Navier's or Poisson's theory,

would fulfil the following condition : if a column of it were pulled

lengthwise, the lateral dimensions would be shortened by a

quarter of the proportion that is added to the length ; and the

proportionate reduction of the cross-sectional area would therefore

be half the proportion of the elongation. Stokes called attention

to the viciousness of this conclusion as a practical matter in

respect to the realities of elastic solids. He pointed out that jelly

and india-rubber and the like, instead of exhibiting lateral

shrinkage only to the extent of one quarter of the elongation, give

really enough of shrinkage to cause no reduction in volume at all.

That is to say, india-rubber and such bodies vary the area of the

cross-section in inverse proportion to the elongation so that the

product of the length into the area of the cross-section remains

constant. Thus the proportionate linear contraction across the

line of pull is half the elongation instead of only quarter as

according to Navier and Poisson,

Stokes* also referred to a promise that I made, I think it

was in the year 1856, to the effect that out of matter fulfilling

Poisson's condition a model may be made of an elastic solid,

which, when the scale of parts is sufficiently reduced, will be a

homogeneous elastic solid not fulfilling Poisson's condition. That

promise of mine which was made 30 years ago, I propose this

moment to fulfil, never having done so before.

Let this box help us to think of 8 atoms placed at its 8

corners, with the box annulled. The kind of elastic model I am
going to suppose is this : particles or atoms arranged equidistantly

in equidistant parallel rows and connected by springs in a certain

* [Report to Brit. Association, Cambridge, 1862. " Uu JJouble Kefraction,

"

p. 262, at bottom.]
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definite way. I am going to show you that we can connect Molar.

neighbouring particles of a Boscovich elastic solid with a special

appliance of cord, and a sufficient number of springs, to fulfil the

condition of giving 18 independent moduluses ; then by trans-

forming the coordinates to an orientation in the solid taken at

random, we get the celebrated 21 coefficients, or moduluses, of

Green's theory. I suppose you all know that Green took a short-

cut to the truth ; he did not go into the physics of the thing at

all, but simply took the general quadratic expression for energy in

terms of the 6 strain components, with its 21 independent coeffi-

cients, as the most general supposition that can be made with

regard to an elastic solid.

To make a model of a solid having the 21 independent coeffi-

cients of Green's theory, think of how many disposable springs we

have with which to connect 8 particles at the corners of a parallel-

epiped. Let them be connected by springs first along the 12

edges of the parallelepiped. That clearly will not be sufficient to

give any rigidity of figure whatever, so far as distortions in the

principal planes are concerned. These 12 springs connecting in

this way the 8 particles would give resistances to elongations

in the directions of the edges ; but no resistance whatever to

obliquity
;
you could change the configuration from rectangular,

if given so as in the box before you, into an oblique parallelepiped,

and alter the obliquity indefinitely, bringing if you please all

the 8 atoms into one plane or into one line, without calling any

resisting forces into play. What then must we have, in order

to give resistance against obliquity ? We can connect particles

diagonally. We have in the first place, the two diagonals in each

face although we shall see that the two will virtually count as but

one ; and then we have the four body diagonals.

Now let me see how many disposables we have got. Remark

that each edge is common to four parallelepipeds of the Boscovich

assemblage. Hence we have only a quarter of the number of

the twelve edge springs independently available. Thus we have

virtually three disposables from the edge springs. Each face is

common to two parallelepipeds ; therefore from the two diagonals

in each face we have only one disposable, making in the six faces,

six disposables. We have the four body diagonals not common to

any other parallelepipeds and therefore four disposables fiom them.

We have thus now 13 disposables in the stiffnesses of 13 springs.
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And we have two more disposables in the ratios of edges of

the parallelepiped. Lastly we have three angles of three of the

oblique parallelograms constituting the faces of our oblique parallel-

epiped. Thus we have in all 18 disposables. But these 18

disposables cannot give us 18 independent moduluses because it is

obvious that they cannot give us infinite resistance to compression

with finite isotropic rigidity, a case which is essentially included

in 18 independent moduluses. Hence I must now find some

other disposable or disposables that will enable me to give any

compressibility I please in the case of an isotropic solid, and to

give Green's 21 independent coefficients, for an aeolotropic solid.

For this purpose we must add something to our mechanism that

can make the assemblage incompressible or give it any compres-

sibility we please ; so that, for example, we can make it represent

either cork or india-rubber, the extremes in respect to elasticity of

known natural solids.

I must confess that since 1856 when I promised this result I

have never seen any simple definite way of realising it until a few

months ago when in making preparations for these lectures I

found I could do it by running a cord twice round the edges of

our parallelepiped of atoms as you see me now doing on the model

before you. It is easier to do this thus with an actual cord and

with rings fixed at the eight corners of a cubic box, than to

imagine it done. There is a vast number of ways of doing it

:

I cannot tell you how many, I wish I could. It is a not unin-

teresting labyrinthine puzzle to find them all and to systematise

the finding. You see now we are finding 07ie way.

Here it is expressed in terms of the coordinates of the corners

as we have taken them in succession.

(000) (001) (Oil) (010) (000) (001) (011)(010)(000)(100)(110)(010)

(110)(111)(011)(111)(101)(001)(101)(111)(110)(100)(101)(100)

[April 14, 1898. For the accompanying very clear diagram

(fig. 1) representing another of the vast number of Avays of laying

a cord round the edges of a parallelepiped, I am indebted to

M. Brillouin who has added abstracts of some of the present

lectures to a translation by M, Lugol of Vol. i. of my Popular

Lectures and Addresses. M. Brillouin describes his diagram as

follows :
—

" J'ai modifie I'ordre indique par Thomson en permutant

le 6® et le 8^ sommet, pour que la corde suive chaque cote en sens
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oppose a ses deux trajets. Dans I'ordre primitif, la face (000) Molar.

(001) (Oil) (010) dtait parcourue deux fois dans le meme sens."]

You see I have drawn the cord just three times through each

corner ring and I now tighten it over its whole length and tie the

ends together. Remark now that if the cord is inextensible it

secures that the sum of the lengths of the 1 2 edges of the parallel-

epiped remains constant, whatever change be given to the relative

positions of the 8 corners. This condition would be fulfilled for

any change whatever of the configuration ; but it is understood

that it always remains a parallelepiped, because our application of

the arrangement is to a homogeneous strain of an elastic solid

according to Boscovich. A cord must similarly be carried twice

round the 4 edges of every one of the contiguous parallelepipeds
;

and eight of these have a common corner, at which we suppose

placed a single ring. Hence every ring is traversed three times

(011)

(101)

y;,(100)

(010)

Fig. 1.

by each one of eight endless cords. Each edge is common to four

contiguous parallelepipeds and therefore it has two portions of

each of four endless cords passing along it.

Suppose now for example the parallelepiped to be a cube.

Inextensible cords applied in the manner described between

neighbouring atoms, keep constant the sum of the lengths of the

12 edges of each cube, and therefore secure that its volume is

constant for every infinitesimal displacement. Consider for a

moment the assemblage of ring atoms thus connected by endless

cords. In itself and without further application to molecular

theory we see a very interesting structure which, provided the

cords are kept stretched, occupies a constant volume of space and

yet is perfectly without rigidity for any kind of distortion. You
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Molar. see if I elongate it in one of the three directions of the parallel

edges of the cubes, it necessarily shrinks in the perpendicular

directions so as to keep constant volume. This kind of deforma-

tion gives us two of the five components of distortion without

change of bulk ; and the other three are given by the shearings

which we have called a, b, c ; of which, for instance, a is a distor-

tion such that the two square parallel faces of the cube perpen-

dicular to OX become rhombuses while the other four remain

square.

[Aprill'i!, 1898. The cube (fig. 1) with an endless cord twice

along each edge is, at least mechanically, somewhat interesting in

realising an isolated mechanism for securing constancy of volume

of a hexahedron, without other restriction of complete liberty of

its eight corners than constancy of volume requires: provided only

that the hexahedron is infinitely nearly cubic, and that each face

is the (plane or curved) surface of minimum area bounded by four

straight lines. Two years ago in preparing this lecture for the

press from Mr Hathaway 's papyrograph, a much simpler mechan-

ism of cords for securing constancy of volume, occupied by an

assemblage of a vast number of points given in cubic order, than

is provided by the linking together of cubes separately fulfilling

this condition, occurred to me. It was not till some time later

Fig. 2.

that I found myself anticipated by M. Brillouin. I am much

pleased to find that he has interested himself in the subject and

has introduced a new idea, by which the condition of constant

volume is realised in the exceedingly simple and beautiful mechan-

ism of endless cords represented in the annexed diagram (fig. 2),

copied from one of his articles in the volume already referred to.

This diagram represents endless cords of which just one is shown
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complete. These cords pass through rings not shown in fig. 2. Molar.

Fig. 3 shows one of the rings viewed in the direction of a diagonal

of the cube and seen to be traversed twelve times by four endless

cords of which one is shown complete. In an assemblage of a vast

number of rings thus connected by endless cords and arranged in

cubic, or approximately cubic, order, one set of three conterminous

edges of each cube is kept constant, and therefore for the exactly

Fig. 3.

cubic order the volume is a maximum. This method, inasmuch

as it implies only two lines of cord along each edge common to

four cubes, is vastly simpler than the original method described

above as in my lecture at Baltimore, which required eight lines of

cord along each common edge. The kinematic result with its

dynamic consequences, is the same in the two methods.

To avoid the assumption of an inextensible elastic cord, place

at each corner, common to eight cubes, six bell-cranks properly

pivoted to produce the effect of cords running, as it were, round

pulleys, which we first realised by the six cords running through

the ring of fig. 3. And instead of each straight portion of cord,

substitute an inextensible bar of rigid matter, hooked at its two

ends to the arm-ends of the proper bell-cranks
;
just as are the

two ends of each copper bell-wire, so well known in the nineteenth

and preceding centuries, but perhaps to be forgotten early in the

T.L. 9
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Molar. twentieth century, when children grow up who have never seen

bell-cranks and bell-wires and only know the electric bell. Remark

now that our connecting-rods, being rigid, can transmit push as

well as pull ; instead of merely the pull of the flexible cord

with which we commenced. Our model now may be constructed

wholly of matter fulfilling the Poisson-Navier condition, and it

gives us a molecular structure for matter violating that condition.

Suppose now we ideally introduce repulsions in the lines of

the body diagonals between the four pairs of corners of each cube.

This will keep stretched, all the cords between rings, or con-

necting-rods between arm-ends of bell-cranks ; and will give a

cubically isotropic elastic solid with a certain definite aeolotropic

quality. If besides we introduce mutual forces in the edges of

the cubes between each atom and its nearest neighbour, we can

give complete isotropy, or any prescribed aeolotropy consistent

with cubic isotropy. All this is for an incompressible solid. But
lastly, by substituting india-rubber elastics for the cords, or ideal

attractions or repulsions (Boscovichian) instead of the connecting-

rods between bell-crank-arm-ends, we allow for any degree of

compressibility, and produce if we please a completely isotropic

elastic solid with any prescribed values for the moduluses of

rigidity and resistance to compression, fulfilling or not fulfilling

Poisson's ratio. It is mechanically interesting to work out details

for this problem for the case suggested by cork, that is, a perfectly

isotropic elastic solid, having rigidity much gi'eater in proportion

to resistance to compression than in the case of Poisson's ratio,

and just sufficient to produce constancy of cross-section in a

column compressed, or elongated, by forces applied to its ends.

It is also interesting to go further and produce a solid of which a

column shall shrink transversely when compressed merely by
longitudinal force.

In my lecture at Baltimore I indicated, without going into

details, how by taking a parallelepiped of unequal edges instead

of a cube and introducing different degrees of elasticity in the

portions of the cords lying along the different edges of each

parallelepiped, and by introducing also forces of attraction or

repulsion among neighbouring atoms, we can produce a model

elastic solid with the twenty-one independent moduluses of

Green's theory.

But the method by cords and pulleys or bell-cranks which we
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have been considering, though highly interesting in mechanics, Molar,

and dignified by its relationship to Lagrange's original method of

proving his theorem of " virtual velocities " (law of work done) in

mathematical dynamics, lost much of its interest for molecular

physics when I fovmd* that the restriction to Poisson's ratio in

an elastic solid held only for the case of a homogeneous assemblage

of single Boscovich point-atoms : and that, in a homogeneous as-

semblage of pairs of dissimilar atoms, laws of force between the

similar and between the dissimilar atoms can readily be assigned,

so as to give any prescribed rigidity and any prescribed modulus of

resistance to compression for an isotropic elastic solid : and for

an aeolotropic homogeneous solid, Green's 21 independent modu-

luses of elasticity, or 18 when axes of coordinates are so chosen

as to reduce the number by three.]

I want now to go through a piece of mathematical work with

you which, though indicated by Green-f, has not hitherto, so far

as I know, been given anywhere, except partially in my Article

on "Elasticity" in the Encyclopcedia Britannica. It is to find the

most general possible plane wave in a homogeneous elastic solid of

the most general aeolotropy possible, expressed in terms of Green's

21 independent moduluses :]:. Taking Green's general formula

* [_Proc. R. S. E. July 1 and 15, 1889: Math, and Phijs. Papers, Vol. iir. Art,

xcvii., p. 395 : also " On the Elasticity of a Crystal according to Boscovich," Proc.

E. S., June 15, 1893, and republished as an Appendix to present volume.]

+ Green's Mathematical Papers (Macmillan, 1871), pp. 307, 308.

X {June 16, 1898.—Through references in Todhunter and Pearson's Elasticity

I have recently found three very important and suggestive memoirs by Blanchet in

Liouville's Journal, Vols. v. and vii. (1840 and 1842), in which this problem is

treated on the foundation of 36 independent coefficients in the six linear equations

expressing each of the six stress-components in terms of the six strain-components.

In respect to the history of the doctrine of energy in abstract dynamics, it is curious

to find in a Report to the French Academy of Sciences by Poisson, Coriolis, and

Sturm {Comptes Reudus, Vol. vii., p. 1143) on the first of these memoirs (which had

been presented to the Academy on August 8, 1838), the following sentence:—"Les

equations diff^rentielles auxquelles sont assujetis les deplacements d'un point

quelconque du milieu ^carte de sa position d'equilibre renferment 36 coefficients

constants, qui dependent de la nature du milieu, et qu'on ne pourrait reduire a un

moindre nomhre sans faire des hypotheses stir la disposition des molecules et stir les

lois de leurs actions mutuelles." (The italicising is mine.) Blanchet's second

memoir, also involving essentially 36 independent coefficients, was presented to the

Academy of Sciences on June 14, 1841, and was reported on by Cauchy, Liouville,

and Duhamel without any protest against the 36 coefficients. In Green's memoir

"On the Propagation of Light in crystallized Media," read May 20, 1839 to the

Cambridge Philosophical Society, the expression for the energy of a strain as a

9—2
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.(1).

Molar. with the notation with which I put it before you in Lecture II.

Part I. (pp. 22, 23, 24), we find

P = lie + 12/+ 13^ + 14a + 156 + ie&

Q = 12e+ 22/+ 23f^ + 24a + 256 + 26c

i^ = 13e + 23/+ 33^^ + 34a + 356 + 36c

/Sf = 14e + 24/ + 34f)r + 44a + 456 + 46c

T= 15e + 2.5/+ Sag + 45a + 556 + 56c

f7 = 16e + 26/ + 36^ + 46a + 566 + 66c

Now, considering an ideal infinitesimal parallelepiped of the

solid SwSySz, remark that, in virtue of the stress components

P, Q, a, S, T, U, it experiences pairs of opposing forces parallel to

OX on its three pairs of faces as follows,

(p^ldP
\ -2dx

U +
IdU
2 dy'

IdT

Bx ] By . Sz

;

By] Sz .Sx
;

{T±l%.B^)B..Br.

and the total resultant component parallel to OX is therefore

(dP dU dT
\dx

+ (2).

Hence if we denote hy {x + ^, y -\- t], z + ^) the coordinates at

time ^ of a point of the solid of which {x, y, z) is the equilibrium,

we have, as we found in Lecture II. (p. 26 above).

dP dU dT]

dx dy dz

d^_dU dQ dS\

df"

d'^

Pdt^

dx

dT

dz

_ dS dR
dx dy dz

.(3).

Now a plane wave, or a succession of plane waves, or the

motion resulting from the superposition of sets of plane waves

quadratic function of the six strain-components had been fundamentally used ; and

by it the fifteen equalities among the 36 coefficients in the linear equations for stress

in terms of strain, reducing the number of independent coefficients to 21, had been

demonstrated without hypothesis.]
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travelling in the same or in contrary directions, may be defined Molar,

generally as any motion of the solid in which every infinitely thin

lamina parallel to some fixed plane experiences a motion which is

purely translational ; or in other words, a motion in which ^, rj, ^

are functions of {p, t), where p denotes the perpendicular from

to the plane through (x, y, z) parallel to the wave-front. If I, m, n

denote the direction-cosines of this perpendicular, we have

p = lx + my -\- nz .(4),

and therefore

d _ J
d

dx dp'
A- A.
dy dp '

d _ d

dz dp'
•(5),

when these symbols are applied to any function of {p, t).

Hence, according to the definitions of e, f, g, a, h, c which I

gave you in Lecture II. (pp. 22, 23), we have

e = l

dp'
f=m

dt]

dp
g = n

d^

dp

dv dK 7 ,rfC d^ dP ,dr]

dp dp dp dp dp dp

Hence by (8), (5), (1) and (6) we find

.(6).

•in

dr^^d^
dt^ dp

(B'^ + A'rj + COl

where

A = 11^- + 66»i2 + Don" + 2 X 16/m 4- 2 x 56mn + 2x lonl

B = 6QI' + 227?r + Un- + 2 x 26/»i + 2 x 24mn + 2 x mnl

C = 551' + 44^2 + Son- + 2 x 4^5lm + 2 x Mmn +2x '35nl

A' = 5QI- + 24»i- 4- 34/1- + (25 + 46) Im + (23 -f- U)mn +(S6+4<5)nl

B' =151" + 46m^ + 35n2 + (14 -f 56) Im + (36 -t- 45)m;i -h(13 + 55) nl

C = 161^ + 26m-' + 45n- + (12-1-66) Im + (25 + 46)7/m +( 14 + 56) n^

(8)-

Now, for our plane waves travelling in either direction, ^, tj, ^
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Molar. must each be a function of (p + vi), where v denotes the propaga-

tional velocity of the wave : hence

d^^ ^dr^ d'v_ .d^ d^_ ^dr^

dt^ ''dp'' dt'~'"'dp^' dt'~'"'dp''
^^^•

Hence if we denote the acceleration components by ^, Vj, t„

equations (7) become

{A-pv^)'i-\- G'r, + B% =0\

C''^+(B-pv')v+ ^'l =0> (10).

The determinant of these equations equated to zero gives, for

v', three essentially real values v^, v^^, v^-; which are essentially

positive if the coefficients 11, 6Q, &c., are of any values capable of

representing the elastic properties of a stable elastic solid. And
for each value of v'^, equations (10) give determinate values, X, /x,

for the ratios tj/^, ^/^ which we may denote by Xj, /x^; X^, /u^;

X3, /JL3; so that finally we have, for the complete solution of our

problem, superimposed sets of three waves expressed as follows,

^:=<p,(p + v,t) + c^2 {p + V2O + </>3 (i? + v,t)

+ fi (p - V,t) + y\r, (p - v.,t) + -</r3 {p - v^t)

rj = \, ((f>,
+ ^|r,) + Xo (<^o + a/r.) + X3 (0. + yjr,)

K= H-i (<^i + "^i) + ^^2 (<^2 + -^'^ + /A3 (</>3 + -^z)

where (/>!, ^^,, ^3, -v|ri, -v/r.^, -v^^ denote arbitrary functions.

This solution and the relative formulas will be very useful to

us to-morrow when we shall be considering the corresponding
" wave-surface " in all its generality ; that is to say, the surface

touched by planes perpendicular to {I, m, ?t) and at distances from

an ideal origin of disturbance equal to v^t, vJ,, v^t.

•(11)>



LECTUEE XII.

Friday, October 10, 5 p.m.

We will look a little more at this wave problem. Our conclusion Molar,

is, that if you choose arbitrarily, in any position whatever relatively

to the elastic solid, a set of parallel planes for wave-fronts, there

are three directions at right angles to one another (each generally

oblique to the set of planes) which fulfil the condition, that the

elastic force is in the direction of the displacement ; and the

equations we have put down express the wave-motion. Each of the

three waves will be a wave in which the oscillation of the matter

in its front is as I am performing it now, i.e., an oscillation to and

fro in a line oblique to the plane of the wave-front, represented by

this piece of cardboard which I hold in my hand. You will find

the vibrations of the three waves corresponding to the three roots

of the determinantal cubic, whether they are oblique or not oblique

to the wave-front, are in directions at right angles to one another.

[Thirteen and a half years interval. Here is a very short

proof In equations (10) of Lecture XL, put

and ^=^va + 7;\/y8 + ^\/7 i

With this notation equations (10) give

^-py-^-A + a' '^ pv'-B + /3' ^ pv'-G + y ^ ^•

Multiplying these by J a, J^, Jy respectively and adding; and

dividing both sides of the resulting equation by S, we find

1 = «
+ ^

^.
y

(14)
pv^- A + a pv^-B + l3 pv^-G + j
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This is a form of the determinantal cubic for the reduction of

a homogCDeous quadratic function of three variables, which I gave

fifty-three years ago in the Cambridge Mathematical Journal

{Math, and Physical Papers, Art. XV. Vol. I. p. 55).

Writing down this equation for roots Vj^, v^, and taking the

difference, we find

+

{pv^ - ^ + a) {pvi - ^ + a)

^

Hence if v^, v^ are equal, the second factor of this expression may
have any value. If they are unequal it must be zero, and (13)

gives

y2 + ^i^2 + ?iC2 = (16),

which shows that the lines of the vibration in any two of our

three waves are necessarily perpendicular to one another*, except

in the case when the two propagational velocities are equal. In

this case the two waves become one, and the line of vibration may
be in any direction in a plane perpendicular to the line given by

the third root. The case of three equal roots may also occur : in

it the three waves become one, and the line of vibration may be

in any direction whatever. Both in this case and in the case of

two equal roots, each particle may describe a circular or elliptic

orbit, or may move to and fro in a straight Hue. One equation

among {I, m, n) gives a cone, such that, for the plane wave-front

perpendicular to any one of its generating lines, two of the three

wave-velocities are equal. Two equations among (l, m, n) give a

line normal to a wave-front, or wave-fronts, for which the three

wave-velocities are equal.]

The consideration of the three sets of plane waves with three

different propagational velocities, but with their fronts all parallel

to one plane, leads us to a wave-surface different, so far as I know,

* This important proposition does not hold for the three directions of vibration

found by Blanchet (footnote above), which, for three unequal roots of his cubic,

are necessarily not all at right angles to one another unless Green's fifteen

equalities are all fulfilled. Compare Thomson and Tait's Natural Philosophy,

§§ 344, 345.
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from anything that has been worked out hitherto in the dynamics Molar.

of elastic solids—a wave-surface in which there will be three

sheets instead of only two, as in Fresnel's wave-surface : and in

which there will be condensation and rarefaction at each point of

each sheet, instead of the pure distortion of the ether at every

point of each of the two sheets of Fresnel's wave-surface. It is

a geometrical problem of no contemptible character to work out

this wave-surface.

[Mai/ 1^' 1898. Here is the problem fully worked out, except

the performance of the final elimination of I, in, n. In (14)

above, for v put Ix -}- my -h nz and for n, wherever it occurs, put

J\ —P — m^. Let ^ (I, m, x, y, z) denote what the second member

of (14) then becomes. Take the following three equations :

—

*=i^ f =«^ st=« (i^)'

and eliminate I, m between them. The resulting equation ex-

presses the wave-surface; that is to say, the surface, whose tangent

plane at points of it where the direction cosines are I, m, n, is at

distance v from the origin. I need scarcely say that a symmetrical

treatment of I, m, n may be preferred in the process of the elimin-

ation.]

The wave-surface problem, in words, is this :—Let the solid

within any small volume of space round the origin of coordinates,

0, be suddenly disturbed in any manner and then left to itself.

It is required to find the surface at every point of which a pulse

of disturbance is experienced at time t\t—\'\n the mathematical

solution above].

[June 16, 1898. This problem I now find was stated very clearly

and attacked with great analytical power by Blanchet in his

" Memoire sur la Propagation et la Polarisation du Mouvement

dans un milieu elastique indefini, cristallise d'uue maniere quel-

conque," the first of the three memoirs referred to in the footnote

above. At the end of this paper he sums up his conclusion as

follows

:

" 1". Dans un milieu elastique, homogene, indefini, cristal-

lise d'une maniere quelconque, le mouvement produit par un

ebranlement central se propage par une onde plus ou moins

compliquee dans sa forme.
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" 2". Pour chaque nappe de I'onde, la vitesse de propagation

est constante dans une meme direction, variable avec la direction

suivant une loi qui depend de la forme de I'onde.

" 3°. Pour une meme direction, les vitesses de vibration

sont constamment paralleles entre elles dans une meme nappe

de I'onde pendant la duree du mouvement, et paralleles a des

droites differentes pour les differentes nappes, ce qui constitue

une veritable polarisation du mouvement."

In 2° and 3° of this statement " direction " must be interpreted as

meaning direction of the perpendicular to the tangent plane, and

to S° it is to be added that the three " droites differentes " mentioned

in it are mutually perpendicular, because of the fifteen necessary

equalities not assumed by Blanchet among the thirty-six coefficients.

The second and third of Blanchet's memoirs (Liouville's Journal,

Vol. VII., 1842) are entitled " Memoire sur la Delimitation de I'onde

dans la propagation des Mouvements Vibratoires," and " Memoire

sur une circonstance remarquable de la Delimitation de I'onde."

They contain some exceedingly interesting conclusions, which

Blanchet on the invitation of Liouville had worked out as ex-

tensions to a crystallised body of results previously found by

Poisson for an isotropic solid, regarding the space throughout

which there is some movement of the elastic solid at any time

after the cessation of the disturbing action within a small finite

space. Cauchy had also worked on the same subject and had

given an analytical method, his " Calcul des Residus," which

Blanchet used with due acknowledgment. The two authors,

working nearly simultaneously, seem to have found, each for him-

self, all the main results, and each to have appreciated loyally the

other's work. It is interesting also to find Poisson, Coriolis, Sturm,

Cauchy, Liouville, and Duharael reporting favourably and suggest-

ively on Blanchet's memoirs, and Liouville helping him with advice

in the course of his investigations.

As part of his conclusion regarding " delimitation " Blanchet

says, " II n'y a, en general, ni ddplacement ni vitesse au-dela de

la plus grande nappe des ondes " ; and Cauchy on the same

subject in the Comptes Rendus, xiv. (1842), p. 13, excluding

condensational-rarefactional waves, says, "Les deplacements et

par suite les vitesses des molecules s'6vanouiront par tons les

points situes en dehors ou en dedans des deux ondes propagees.
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M. Blanchet a remarque avec justesse qu'on ne pouvait, en Molar.

general, en dire autant des points situds entre les deux ondes.

Toutefois il est bon d'observer que, meme en ces derniers points,

les deplacements et les vitesses se reduisent a zero quand on

suppose nulle la dilatation du volume..., c'est a dire, en d'autres

termes, quand les vibrations longitudinales disparaissent."*]

Green treats the subject of waves in an aeolotropic elastic

solid in a peculiar and most interesting manner for the purpose of

forming a dynamical theory of " the propagation of light in

crystallized media." He investigates conditions f that "transverse

vibrations shall always be accurately in the front of the wave," or,

in modern language, that the wave may be purely distortional.

He finds j 14 relations among his 21 coefficients by which this is

secured for a double-sheeted wave-surface, which he finds to be

identical with Fresnel's. There is necessarily a third sheet,

although Green does not mention it at all. It is ellipsoidal, and

corresponds essentially to a condensatioual-rarefactional wave with

vibrations at every point perpendicular to the tangent plane.

It is quite disconnected from the double-sheeted surface of the

distortional wave; and a disturbing source can be so adjusted as

to produce only distortional wave-motion with the double-sheeted

wave-surface, or only the condensatioual-rarefactional wave-motion

with the ellipsoidal wave-surface, or both kinds simultaneously.

The three principal axes of the ellipsoidal wave-surface coincide

with the three axes of symmetry found for the wave-surface of the

distortional Fresnel-Green wave-motion.

This dynamics of waves in an elastic solid is a fine subject for

investigation, and I am sorry now to pass from it for a time.

But if the war is to be directed to fighting down the difficulties

which confront us in the undulatory theory of light it is not of

the slightest use towards solving our difficulties, for us to have

a medium w^hich kindly permits distortional waves to be pro-

pagated through it, even though it be aeolotropic. It is not

enough to know that though the medium be aeolotropic it can let

purely distortional waves through it, and that two out of the

* These quotations are copied from a very interesting accoiint of the work of

Blanchet and Cauchy on this subject on pp. 627—634 of Todhunter and Pearson's

Elasticity, Vol. i.

+ Green's Mathematical Papers :
" On Propagation of Light in Crystallized

Media," p. 293 : Keprint from Trans. Cambridge Philosophical Society, May 20, 1839.

X Ibid. p. 309.
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three waves will be purely distortional. What we want is a

medium which, when light is refracted and reflected, will under

all circumstances give rise to distortional waves alone. Green's

medium would fail in this respect when waves of light come to a

surface of separation between two such mediums. All that Green

secures is that there can be a purely distortional wave ; he does

not secure that there shall not be a condensational wave. There

would generally be condensational waves from the source. White-

hot bodies, flames as of candles or gaslights, electric light of

all kinds, would produce condensational waves, whether in an

aeolotropic or isotropic medium, so far as Green's conditions here

spoken of, go. What we want is a medium resisting condensation

sufficiently ; a medium with an infinite or practically infinite

bulk-modulus—so great that the amount of energy, developed

in the shape of condensational waves, has not been discovered

by observation.

As an essential in every reflection and refraction there may
be a little loss of energy from the want of perfect polish in the

surface, but as a rule, we have practically no loss of light in

reflection and refraction at surfaces of glass and clear crystals.

There perhaps is some but we have not discovered it. The

medium that gives us the luminiferous vibrations must be such

that if there is any part of the energy of the wave expended in

condensational waves after refraction and reflection, the amount of

it must be so small that it has not been discovered. Numerical

observations have been made with great accuracy, in which, for

example, Fresnel's formula for the ratio of normally incident and

reflected light (-—=-] is verified within closer than one per cent,

I believe. Still a half per cent or a tenth per cent of the energy

may for oblique incidences be converted into condensational waves,

for all we know. Bat if any large percentage were converted into

condensational waves, there would be a great deal of energy in

condensational waves going about through space, and (to use for a

moment an absurd mode of speaking of these things) there would

be a " new fuixe " that we know nothing of. There would be some

tremendous action all through the universe produced by the enei'gy

of condensational waves if the energy of these were one-tenth, or

one-hundredth per cent of the energy of the distortional waves.

I believe that if in oblique reflection and refraction of light at
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any surface, or in case of violent action in the source, there are Molar,

condensational Avaves produced with anything like a thousandth

or a ten-thousandth of the energy of the light and radiant heat

which we know, we should have some prodigious effect, but which

might, perhaps, have to be discovered by some other sense than

we have. The want of indication of any such actions is sufficient

to prove that if there are any in nature, they must be exceedingly

small. But that there are such waves, I believe ; and I believe

that the velocity of the unknown condensational wave that we are

speaking of is the velocity of propagation of electro-static force.

I say " believe " here in a somewhat guarded manner. I do

not mean that I believe this as a matter of religious faith, but

rather as a matter of strong scientific probability. If this is true

of propagation of electro-static force, it is true that there is

exceedingly little energy in the waves corresponding to the

propagation of an electro-static force. That is however going

beyond our tether of Molecular Dynamics. What I proposed

in the introductory statement with reference to these Lectures

was to bring what principles and results of the science of molecular

dynamics I could enter upon, to bear upon the wave theory of

light. We are sticking closely to that for the present, and we

may say that we have nothing to do with condensational waves.

Our medium is to be incompressible, and instead of Green's

fourteen equations, we have merely one condition,—that the

medium is incompressible. It is obvious that this condition

suffices to prevent the possibility of a wave of condensation at all

and reduces our wave-surface to a surface with two sheets, like

the Fresnel surface. But before passing away from that beautiful

dynamical speculation of Green's, if we think of what the con-

densational wave must be in an aeolotropic solid fulfilling Green's

condition that it can have purely distortional waves proceeding in

all directions—the condition that two of the three waves which

we investigated three-quarters of an hour ago shall be purely

distortional—I think we shall find also condensational waves, and

that the wave-surfaces for them will be a set of concentric ellipsoids.

It will be a single-sheeted surface, that is certain, because you

have only one velocity corresponding to each tangent plane at the

wave-surface.

I shall now leave this subject for the present. We shall come
back upon it again, perhaps, and look a little more into the
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question of moduluses of elasticity. We shall work up from an

isotropic solid to the most general solid ; and we shall work do^\Ti

from the most general solid to an isotropic solid. We shall take

first the most general value for the compressibility ; we shall then

come to this subject again of assuming incompressibility. We
shall then begin with the most general solid possible, and see what

conditions we must impose to make it as symmetrical as is necessary

for the Fresnel wave-surface. The molecular problem will prepare

your way a good deal for this.

I had intended to prepare something about the mass of the

luminiferous ether. I have not had time to take it up, but I

certainly shall do so before we have done with the subject. We
shall go into the question of the density of the luminiferous ether,

giving superior and inferior limits. We shall also consider what

fraction of a gramme may be in one of these molecules and show

what an enormously smaller fraction of a gramme we may suppose

it to displace in the luminiferous ether. We shall try to get into

the notion of this, that the molecule must be elastic and that there

must be an enormous mass in its interior. Its outer part feels

and touches the kiminiferous ether. It is a very curious sup-

position to make, of a molecular cavity lined with a rigid spherical

shell ; but that something exists in the luminiferous ether and

acts upon it in the manner that is faultily illustrated by our

mechanical model, I absolutely believe.

Just think of the effect of a shock consisting say of a collision

between that and another molecule. Instead of its being broken

into bits, let us suppose an unbroken spherical sheath around it.

It will bound away, vibrating. Just imagine the central nucleus

vibrating in one direction while the shell vibrates in the other, and

you have a molecule with two parts going in opposite directions

;

but differing from what I thought of the other day (Lecture IX.

p. 96 above) in that one part is inside the other. The ether gets

its motion from the outside part. Therefore I say that the most

fundamental supposition we can make with reference to the origi-

nating source of a sequence of waves of light is that illustrated

by a globe vibrating to and fro in a straight line.

We have already investigated (Lecture VIII. pp. 86—89) the

solution corresponding to that. Consider the spherical waves ; no

vibrations for points in one certain diameter of the sphere ; maxi-

mum vibrations in all points of the equatorial plane of that
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diameter and perpendicular to that plane ; for all points in the Molecular.

quadrant of an arc of the spherical surface extending from axis to

equator, vibrations in the plane of and tangential to the arc; and

of magnitude proportional to the cosine of the latitude or angular

distance from the equator and of intensity proportional to the

square of the cosine of the latitude. Then in a wave travelling

outwards, let the amplitude vary inversely as the distance from

the centre, and therefore the intensity inversely as the square of

the distance from the centre ; and you have a correct word-painting

of the very simplest and most frequent sequence of vibrations

constituting light.

Ten minutes interval.

Let us return to the consideration of the dynamics of refraction,

ordinary dispersion, anomalous dispersion, and absorption. Begin-

ning with our formulas as we left them yesterday (p. 120 above),

let us consider what they become for the case t = oo
; that is to

say, for static displacement of the containing shell. The inertia

of the molecules will now not be called into play, and the case

becomes simply that of the equilibrium of the set of springs whose

stiffnesses we have denoted by Cj, C2, ... , Cj, Cj+i, when S, the end

of Ci remote from nii, is displaced through a space ^, and F, the

end of Cj+i remote from nij, is fixed.

C;+l

Denoting by X the force with which S pulls and F resists,

which, as inertia does not come into play, is therefore the force

with which each spring is stretched, we have

X = Cj+iXj = Cj (ccj_-^ -Xj)= ... = c.2 (^1 - oe^) = Cj (^ - ^1). . .(1 )

;

or, as we may write it,

OCj Xj_, -Xj _ x,-x, ^-x,

T^~l^
— •••"

1
~^^ ^^^'

Cj+1 Cj C2 Ci

whence

i
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ilolecular. Hence, unless at least one of Cj, c^, ... , C;-|_i is zero, ^ — 1 is

negative for t = oo , and therefore y, diminishes to — oo as t- in-

creases to + 30 . Hence a large enough finite value of t makes

p^=0, and all larger values of r" make -p„ negative. This is a

particular, and an extreme, case of a very important result with

which we shall have much to do later, in following the course of

our formula when the period of the light is increased from any

molecular period to the next greater molecular period ; and we
may get quit of it for the present by assuming Cj+i to be zero. We
may recover it again, and perceive its true physical significance,

by supposing nij to be infinitely great ; and therefore we lose

nothing of generality by taking Cj^-i = 0. This, in our formulas of

to-day, makes X = and ^^ = 1- The latter, by putting t = oo in

our last formula of Lecture X. (p. 120 above), gives

Subtracting this from our last formula of Lecture X. with

T general, we find

whence, by the preceding formula of Lecture X., (p. 120)

Q~ n l07r*mi?i \T^ — «- r — k/ r — K^; J

A convenient modification of this formula is got by putting in it

H'-' <^>'

and 0. =^- (8).

Thus jji denotes the refractive index of the medium; and k^

denotes the period which m^ would have as a vibrator, if the

shell lining the ether were held fixed, and if the elastic connection

between m-^ and interior masses were temporarily annulled. With
these notations (6) becomes

^^^^^^^ „_VC^^ ™^^



DYNAMICS OF DISPERSION. 145

When the period of the light is very long in comparison with Molecular.

the longest of the molecular periods of the embedded molecules, it

is obvious that each material particle will be carried to and fro

with almost exactly the same motion as the shell, in fact almost

as if it were rigidly connected with the shell ; and therefore the

velocity of light will be sensibly the same as if the masses of the

particles were distributed homogeneously through the ether without

any disturbance of its rigidity.

Let us consider now how, when the period of the light is not

infinitely long in comparison with any one of the molecular periods,

the internal vibrations of the molecule modify the transmission

of light through the medium. For simplicity at present let us

suppose our molecule to have only one vibrating particle, the mj of

our formulas, which we will now call simply m,

being the sum of the masses of the vibrators

per unit volume of the ether. Imagine it con-

nected with the shell or sheath, 8, surrounding

it, by massless springs (as in the accompanying

diagram), through which it acts on the ether

surrounding the sheath. Its influence on the

transmission of light through the medium can

be readily understood and calculated from the diagrams of p. 147,

representing the well-known elementary dynamics of a pendulum

vibrating in simple harmonic motion, when freely hung from a

point S, (corresponding to the sheath lining our ideal cavity in

ether), which is itself compelled by applied forces to move horizon-

tally with simple harmonic motion. Figs. 1 and 2 illustrate the

cases in which the period of the point of suspension, *S^, is longer

than the period of the suspended pendulum with 8 fixed ; and

figs. 3 and 4 cases in which it is shorter. In each diagram OM
represents the length of an undisturbed simple pendulum whose

period is equal to that of the motion of 8, the point of support of

our disturbed pendulum SM. Thus if we denote the periods by

T and K respectively, we have 03I/8M=t^Ik^. Hence if | and x

denote respectively the simultaneous maximum displacements of

8 and M, we have

e = M=_ZL_ (10)

If now for a moment we denote by w the mass of the single

vibrating particle of our diagrams, the horizontal component of the

T. L. 10
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Molecular, pull exerted by the thread MS on S at the instant of maximum

displacement is w(27r/Tyx ; and with m in place of w, we have

the sum of the forces exerted by all the molecules per unit volume

of the ether at the instant of maximum displacement of ether and

molecules at any point. This force is subtracted from the re-

stitutional force of the ether's elasticity, when the period of the

light is greater than the molecular period (figs. 1 and 2) ; and is

added to it, when the period of the light is less than the molecular

period (figs. 3 and 4).

Now if the rigidity of the ether be taken as unity, its elastic

force per unit of volume at any point at the instant of its maximum
displacement is {^irjlf, where I is the wave-length of light in

the ether with its embedded molecules. Hence the total actual

restitutional force on the ether is

mf-™fvT-
which must be equal to (—

j
^ if the density of the ether be

taken as unity. Hence dividing both members of our equation by

{^TrJTf^, and denoting by ^ the velocity of light through the

medium consisting of ether and embedded molecules, and by /i its

refractive index, we have

whence by (10),

'''=p=(iy=i+'"^' (12).

By quite analogous elementary dynamical considerations we find

^,'^=\ + ,n^^^m,^^^+ m,,-^^^^^^^^ (13),

if, instead of one set of equal and similar molecules, there are

several such sets, the molecules of one set differing from those

of the others. The period k, or k,, or k„, &c., of any one of the

sets is simply the period of vibration of the interior mass,

when the rigid spherical lining of the ether around it, which for

brevity we shall henceforth call the sheath of the molecule, is

held fixed. Instead of calling this sheath massless as hitherto

we shall suppose it to have mass equal to that of the displaced
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Molecular.
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Molecular, ether ; so that if there were no interior masses the propagation

of light would be sensibly the same as in homogeneous un-

disturbed ether. The condition which we originally made, that

the distance from molecule to molecule must be very great in

comparison with the diameter of each molecule and very small

in comparison with the wave-length, must be fulfilled in respect

to the distances between molecules of different kinds. The

number of molecules of each kind in a cube of edge equal to

the wave-length must be very great ; and the numbers in any

two such cubes must be equal, this last being the definition of

homogeneity. These are substantially the' conditions assumed by

Sellmeier*, and our equation (13) is virtually identical with his

original expression for the square of the refractive index.

It is interesting to remark that our formula (9) for the effect

on the velocity of regular periodic waves of light, of a multitude

of equal and similar complex vibrating molecules embedded in

the ether, shows that it is the same as the effect of as many
sets of different simple vibrators as. there are fundamental periods

in our one complex vibrator : and that the masses of the equi-

valent simple vibrators are given by the equations

m^K^R tUiKi^R, m,K,^R,, „ ,, ..m = —!—-; m, = ^~^': m„ = --^' \ Sic.....{l^).
p/C,' pic,' pK,'

But although the formula for the velocity of regular periodic

waves is the same, the distribution of energy, kinetic and potential,

is essentially different on the two suppositions. This difference

is of great importance in respect to absorption and fluorescence,

as we shall see in considering these subjects later.

[Added Sept. 23f, 1898. The dynamical theory of dispersion,

as originally given by Sellmeier*, consisted in finding the velocity

of light as affected by vibratory molecules embedded in ether,

* Sellmeier, Fogg. Aim., Vol. 145, 1872, pp. 399, 520 ; Vol. 147, 1872, pp. 387,

525.

t [The substance of this was communicated to Sec. A of the British Association

at Bristol on September 9, 1898, in two papers under the titles " The Dynamical

Theory of Refraction, Dispersion, and Anomalous Dispersion," and " Continuity in

Undulatory Theory of Condensational-rarefactional Waves in Gases, Liquids, and

Solids, of Distortional Waves in Solids, of Electric and Magnetic Waves in all

Substances capable of transmitting them, and of Radiant Heat, Visible Light,

Ultra-Violet Light and Rontgen Rays."]
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such as those which had been suggested by Stokes* to account Molecular.

for the dark lines of the solar spectrum. Sellmeier's mathematical

work was founded on the simplest ideal of a molecular vibrator,

which may be taken as a single material particle connected by a

massless spring or springs with a rigid sheath lining a small vesicle

in ether. He investigated the propagation of distortional waves,

and found the following expression (which I give with slightly

altered notation) for the square of the refractive index of light

passing through ether studded with a very large number of

vibratory molecules in every volume equal to the cube of the

wave-length :

—

fi-=l + 1)1 — + m, ^ + m„— + &c.
t^—k' r- — k,- r — K,,

where t denotes the period of the light ; k,k,, k„, &c., the vibratory

periods of the embedded molecules on the supposition of their

sheaths held fixed; and m, m,, m„, &c., their masses. He showed

that this formula agreed with all that was known in 1872 regard-

ing ordinary dispersion, and that it contained what we cannot

doubt is substantially the true dynamical explanation of anomalous

dispersions, which had been discovered by Fox-Talbot-f* for the

extraordinary ray in crystals of a chromium salt, by Leroux j for

iodine vapour, and by Christiansen§ for liquid solution of fuchsin,

and had been experimentally investigated with great power by

Kundt**.

Sellmeier himself somewhat marredff the physical value of his

mathematical work by suggesting a distinction between refractive

and absorptive molecules (" refractive und absorptive Theilchen "),

and by seeming to confine the application of his formula to cases

in which the longest of the molecular periods is small in com-

parison with the period of the light. But the splendid value

to physical science of his non-absorptive formula has been quite

wonderfully proved by Rubens (who, however, inadvertently

* See Kirchhoff-Stokes-Thomson, Phil. Mag., March and July 1860.

t Fox-Talbot, Proc. Roy. Soc. Edin., 1870—71.

X Leroux, Comptes rendus, 55, 1862, pp. 126—128.

§ Christiansen, Ann. Phys. Chem., 141, 1870, pp. 479, 480; Phil. Mag., 41,

1871, p. 244 ; Annales de Chimie, 25, 1872, pp. 213, 214.

** Kundt, Pogg. Ann., Vols. 142, 143, 144, 145, 1871—72,

ft Pogg. Ann., Vol. 147, 1872, p. 525.
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lolecular. quotes* it as if due to Ketteler). Fourteen years ago Langleyf

had measured the refractivity of rock-salt for light and radiant

heat of wave-lengths (in air or ether) from -43 of a mikrom| to

5-3 mikroms (the mikrom being 10"*' of a metre, or 10~^ of a

centimetre), and without measuring refractivities further, had

measured wave-lengths as great as 15 mikroms in radiant heat.

Within the last six years measurements of refractivity by Rubens,

Pasehen, and others, agreeing in a practically perfect way with

Laugley's through his range, have given us very accurate know-

ledge of the refractivity of rock-salt and of sylvin (chloride of

potassium) through the enormous range of from A of a mikrom to

23 mikroms.

Rubens began by using empirical and partly theoretical

formulas which had been suggested by various theoretical and

experimental writers, and obtained fairly accurate representations

of the refractivities of flint-glass, quartz, fluorspar, sylvin, and

rock-salt through ranges of wave-length from "4 to nearly 12

mikroms§. Two years later, further experiments extending the

measure of refractivities of sylvin and rock-salt for light of wave-

lengths up to 23 mikroms, showed deviations from the best of the

previous empirical formulas increasing largely with increasing

* Wied. Ann., Vol. 53, 1894, p. 267. In the formula quoted by Rubens from

Ketteler, substitute for yuQothe value of /x. found by putting r=ooin Sellmeier's

formula, and Ketteler's formula becomes identical with Sellmeier's. Remark that

Ketteler's " M" is Sellmeier's " mk"^ " according to my notation in the text.

t Langley, Phil. Mag., 1886, 2nd half-year.

J [For a small unit of length Langley, fourteen years ago, used with great

advantage and convenience the word "mikron" to denote the millionth of a

metre. The letter n has no place in the metrical system, and I venture to suggest

a change of spelling to "mikrom" for the millionth of a metre, after the analogy

of the English usage for millionths (mikrohm, mikro-ampere, mikrovolt). For a

conveniently small corresponding unit of time I further venture to suggest

" michron " to denote the period of vibration of light whose wave-length in ether

is 1 mikrom. Thus, the velocity of light in ether being 3 x 10** metres per second,

the michron is i x 10~" of a second, and the velocity of light is 1 mikrom of space

per michron of time. Thus the frequency of the highest ultra-violet light investi-

gated by Schumann ('1 of a mikrom wave-length, Sitzungsber. d. k. Gesellsch. d.

Wissensch. zu Wien, cii. pp. 415 and 625, 1893) is 10 periods per michron of time.

The period of sodium light (mean of lines D) is •58J32 of a michron ; the periods

of the " Reststrahlen " of rock-salt and sylvin found by Rubens and Aschkinass

{Wied. Ann. lxv. (1898), p. 241) are 51-2 and 61-1 michrons respectively. No

practical inconvenience can ever arise from any possible confusion, or momentary

forgetfulness, in respect to the similarity of sound between michrons of time and

mikroms of space.—K.]

§ Rubens, Wied. Ann., Vols. 53, 54, 1894—95.
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wave-lengths. Rubens then fell back* on the simple unmodified Molecular.

Sellmeier formula, and found by it a practically perfect expression

of the refractivities of those substances from "434 to 22'3 mikroms.

And now for the splendid and really wonderful confirmation of

the dynamical theory. One year later a paper by Rubens and

Aschkinass"f* describes experiments proving that radiant heat after

five successive reflections from approximately parallel surfaces of

rock-salt; and again of sylvin ; is of mean wave-length 51'2 and

61"1 mikroms respectively. The two formulas which Rubens had

given in February 1897, as deduced solely from refractivities

measured for wave-lengths of less than 23 mikroms, made yu,^

negative for radiant heat of wave-lengths from 37 to 55 mikroms

in the case of reflection from rock-salt, and of wave-lengths

from 45 to 67 mikroms in the case of reflection from sylvin!

{fi? negative means that waves incident on the substance cannot

enter it, but are totally reflected).

These formulas, written with a somewhat important algebraic

modification serving to identify them with Sellmeier's original

expression, (13) above, and thus making their dynamical meaning

clearer, are as follows :

—

Rock-salt fx? = 1-1875 + 11410 -

—

J" ^^^ + 2-8504
T^- -01621 T-- 3419-3"

Sylvin ^^ = 1-5329 + -6410 ^^.-^^ + 2-3792^^^^ •

The accompanying diagi-ams (pp. 152, 153) represent the squares of

the refractive index of rock-salt and sylvin, calculated from these

formulas through a range of periods from -434 of a michron to

100 michrons. In each diagram the scale both of ordinate and

abscissa from to 10 michrons is ten times the scale of the

continuation from 10 to 100 michrons. Additions and sub-

tractions to keep the ordinates within bounds are indicated on

the diagrams. The circle and cross, on portion b of each curve,

represent respectively the points where
fj?
= 1 and /x- = 0. The

critical periods exhibited in the formula are

for rock-salt,

-1273 and 56-116, being the square roots of '01621 and 3149-3

;

for sylvin,

•1529 and 67-209, „ „ „ „ '0234 „ 4517-1.

* Rubens and Nichols, Wted. Ann., Vol. 60, 1896—97, p. 454.

+ Rubens and Aschkinass, Wied. An)i., Vol. 65, 1898, p. 241.
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Molecular. The value of fjb- passes from — ao to + oo as t rises through these

values, and we have accordingly asymptotes at these points,

represented by dotted ordinates in the diagrams.

The agreement with observation is absolutely perfect through

the whole range of Langley, Rubens, and Paschen from •434 of a

michron to 22'3 michrons. The observed refractivities are given

by them to five significant figures, or four places of decimals ; and

in a table of comparison given by Rubens and Nichols* the

calculated numbers agree with the observed to the last place of

decimals, both for rock-salt and sylvin.

While in respect to refractivity there is this perfect agreement

with Sellmeier's formula through the range of periods from "434

of a michron to fifty-one times this period (corresponding to

nearly six octaves in music), it is to be remarked that with

radiant heat of 22 3 michrons period, Rubens found, both for

rock-salt and sylvin, so much absorption, increasing with increasing

periods, as to prevent him from carrying on his measurements

of refractivity to longer periods than 22 or 23 michrons, and to

extinguish a large proportion of the radiant heat of 23 michrons

period in its course through his prisms. Hence although Sellmeier's

formula makes no allowance for the large absorptivity of the trans-

parent medium, such as that thus proved in rock-salt and sylvin with

radiant heat of periods less than half the critical period k in each

case, it is satisfactory to know that large as it is the absorptivity

produces very little effect on the velocity of propagation of radiant

heat through the medium. This indeed is just what is to be

expected from dynamical theory, which shows that the velocity

of propagation is necessarily affected but very little by the forces

which produce absorption, unless the absorptivity is so great that

the intensity of a ray is almost annulled in travelling three or

four times its wave-length through the medium.

In an addition to a later lecture I intend to refer again to

Helmholtz's introduction of resisting forces in simple proportion

to velocities, by which he extended Sellmeier's formula to include

true bodily absorption, and to recent modifications of the extended

formula by himself and by Ketteler. Meantime it is interesting,

and it may correct some misapprehension, to remark that so far

* Wied. Ann., Vol. 60, 1896-97, p. 454.
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as the dynamics of Sellmeier's single vibrating masses, or of my Molecular.

complex molecule, goes, there is no necessity to expect any

absorption at all, even for light or radiant heat of one of the chief

critical periods k, as we shall see by the following general view of

the circumstances of this and other critical periods. We shall see

in fact that there are three kinds of critical period,

(1) a period for which yu,- = 1, or velocity in the medium

equal to velocity in pure undisturbed ether

;

(2) a period for which /*' = 0, or wave-velocity infinite in

the medium
;

(8) a period (any one of the /c-periods) such that if we

imagine passing through it with augmenting period, yu,' changes

from — 00 to + 00 .

The dynamical explanation of points where fx?=\ (marked

by circles on the curves), is simpler with my complex molecule

than with Sellmeier's several sets of single vibrators. With my
complex molecule it means a case in which No. 1 spring, that

between m-^ and the sheath, experiences no change of length. In

order that this may be the case, the period of the light must be

equal to some one of the free periods of the complex molecule,

detached from the sheath (Ci temporarily annulled). With Sell-

meier's arrangement, it is a case in which tendency to quicken

the vibrations of the ether by one set of vibrators, is counter-

balanced by tendency to slow them by another set, or other sets.

It is a case which could not occur with only one set of equal and

similar simple vibrators.

The case we have next to consider, /t^ = (or ^" = oo ), marked

with crosses on the curve, occurs essentially just once for a single

set of simple vibrators ; and it occurs as many times as there are

sets of vibrators, if there are two or more sets with different

periods; or, just once for each of the critical periods k, k,, k„, Szc.

of my complex molecule. The dynamical explanation is particu-

larly simple for a single set of Sellmeier vibrators ; it is the whole

ether remaining undistorted and vibrating in one direction, while

the masses m all vibrate in the opposite direction; the whole

system being as it were two masses E and M connected by

a single massless spring, and vibrating to and fro in opposite

directions in a straight line with their common centre of inertia
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Molecular, at rest. Thus we see exactly the meaning of wave-velocity

becoming infinite for the critical cases marked with a cross on

the curves.

Increase of the period beyond this critical value makes /*-

negative until we reach the next one of our critical values k, k,,

K„, &c., or the one of these, if there is only one. The meaning

clearly is that light cannot penetrate the medium and is totally

reflected from it wherever it falls on it. Thus for light or radiant

heat of all periods corresponding to the interval between a point

on one of our curves marked with a cross and the next asymptotic

ordinate, the medium acts as silver does to visible light; that

is to say, it is impervious and gives total reflection. When we

increase the period through one of our chief critical values k, k,,

K,,, &c., jjT passes from — oo to + oo . With exactly the critical

period we have infinitely small velocity of propagation of light

through the medium, and still total reflection of incident light.

There would be infinitely great amplitude of the molecular

vibrators, if the light could get into the medium ; but it cannot

get in. With period just a little greater than one of these critical

values, the reflection of the incident light is very nearly total

;

the velocity of propagation of the light which enters is very

small; and the energy (kinetic and potential) of the molecular

vibrators is very great in comparison with the energy (kinetic

and potential) of the ether.

Lastly, if there were no greater critical period than this which

we have just passed, we should now have ordinary refraction with

ordinary dispersion, at first large, becoming less and less with

increased period, and /x- diminishing asymptotically to the value

~--— , where p denotes the density of the ether, and M the

sum of all the masses within the sheaths and connected to

them by springs. But when we consider that the whole mass

of the ponderable matter is embedded in the ether, and we
cannot conceive of merely an infinitesimal portion of it clogging

the ether in its luminiferous or electric vibrations, and that

therefore for glass, or water, or even for rarefied air, M must be

millions of millions of times p, we see how utterly our dynamical

theory fails to carry us with any tolerable comfort, in trying to

follow and understand the nature of waves and vibrations of

periods longer than the 60 michrons (or 2 x 10~" of a second)
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touched by Rubens and Aschkinass*, up to 10"" of a second, or Molar,

further up to one thousandth of a second, or up to still longer

periods.

Yet we must try somehow to find and thoroughly understand

continuity in the undulatory theory of condensational-rarefactional

waves in gases, liquids, and solids, of distortional waves in solids,

of electric and magnetic waves in all substances capable of trans-

mitting them, and of radiant heat, visible light, ultra-violet light

and Rontgen rays.

Consider the following three analogous ca.ses :—I. mechanical

;

II. electrical ; III. electromagnetic.

I. Imagine an ideally rigid globe of solid platinum of 12

centim. diameter, hung inside an ideal rigid massless spherical

shell of 13 centim. internal diameter, and of any convenient

thickness. Let this shell be hung in air or under water by a very

long cord, or let it be embedded in a great block of glass, or rock,

or other elastic solid, electrically conductive or non-conductive,

transparent or non-transparent for light.

I. (1) By proper application of force between the shell and

the nucleus cause the shell and nucleus to vibrate in opposite

directions with simple harmonic motion through a relative total

range of 10~^ of a centimetre. We shall first suppose the shell

to be in air. In this case, because of the small density of air

compared with that of platinum, the relative total range will be

practically that of the shell, and the nucleus may be considered

as almost absolutely fixed. If the period is gL of a second,

(frequency 32 according to Lord Rayleigh's designation), a humming

sound will be heard, certainly not excessively loud, but probably

amply audible to an ear within a metre or half a metre of the

shell. Increase the frequency to 256, and a very loud sound of

the well-known musical character (Case) will be heard f.

Increase the frequency now to 32 times this, that is to 8192

periods per second, and an exceedingly loud note 5 octaves higher

will be heard. It may be too loud a shriek to be tolerable ; if so,

* Wied. Ann., Vol. 64, 1898.

t Lord Kayleigh has found that with frequency 256, periodic condensation and

rarefaction of the marvellously small amount 6 x 10"^ of an atmosphere, or

"addition and subtraction of densities far less than those to be found in our highest

vacua," gives a perfectly audible sound. The amplitude of the aerial vibration, on

each side of zero, correspondincr to this, is 1-27 x 10"^ of a centimetre.

—

Sound, Vol. ii,

p. 439 (2nd edition).
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diminish the range till the sound is not too loud. Increase the

frequency now successively according to the ratios of the diatonic

scale, and the well-known musical notes will be each clearly and

perfectly perceived through the whole of this octave. To some

or all ears the musical notes will still be clear up to the G (24756

periods per second) of the octave above, but we do not know
from experience what kind of sound the ear would perceive

for higher frequencies than 25000. We can scarcely believe

that it would hear nothing, if the amplitude of the motion is

suitable.

To produce such relative motions of shell and nucleus as we
have been considering, whether the shell is embedded in air, or

water, or glass, or rock, or metal, a certain amount of work, not

extravagantly great, must be done to supply the energy for the

waves (both condensational and rarefactional), which are caused

to proceed outwards in all directions. Suppose now, for example,

we find how much work per second is required to maintain vibra-

tion with a frequency of 1000 periods per second, through total

relative motion of 10~^ of a centimetre. Keeping to the same

rate of doing work, raise the frequency to 10^ 10^ 10^ 10^ 10'-,

500 X 10'^ We now hear nothing ; and we see nothing from any

point of view in the line of the vibration of the centre of the

shell which I shall call the axial line. But from all points of

view, not in this line, we see a luminous point of homogeneous

polarized yellow light, as it were in the centre of the shell, with

increasing brilliance as we pass from any point of the axial line

to the equatorial plane, keeping at equal distances from the centre.

The line of vibration is everywhere in the meridional plane, and

perpendicular to the line drawn to the centre.

When the vibrating shell is surrounded by air, or water, or

other fluid, and when the vibrations are of moderate frequency, or

of anything less than a few hundred thousand periods per second,

the waves proceeding outwards are condensational-rarefactional,

with zero of alternate condensation and rarefaction at every point

of the equatorial plane and maximum in the axial line. When
the vibrating shell is embedded in an elastic solid extending to

vast distances in all directions from it, two sets of waves, distor-

tional and condensational-rarefactional, according respectively to

the two descriptions which have been before us, proceed outwards

with different velocities, that of the former essentially less than
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that of the latter in all known elastic solids*. Each of these Molar.

propagational velocities is certainly independent of the frequency

up to 10^ 10^ or 10", and probably up to any frequency not so

high but that the wave-length is a large multiple of the distance

from molecule to molecule of the solid. When we rise to fre-

quencies of 4 X 10l^ 400 X 10l^ SOO x lO'-, and 3000 x 10>-, cor-

responding to the already known range of long-period invisible

radiant heat, of visible light, and of ultra-violet light, what

becomes of the condensational-rarefactional waves which we have

been considering ? How and about what range do we pass from

the propagational velocities of 3 kilometres per second for distor-

tional waves in glass, or 5 kilometres per second for the condensa-

tional waves in glass, to the 200,000 kilometres per second for

light in glass, and, perhaps, no condensational wave ? Of one

thing we may be quite sure ; the transition is continuous. Is it

probable (if ether is absolutely incompressible, it is certainly

possible) that the condensational-rarefactional wave becomes less

and less with frequencies of from 10" to 4 x 10", and that there is

absolutely none of it for periodic disturbances of frequencies of

from 4 X 10'- to 3000 x 10'- ? There is nothing unnatural or

fruitlessly ideal in our ideal shell, and in giving it so high a

frequency as the 500 x 10'" of yellow light. It is absolutely

certain that there is a definite dynamical theory for waves of

light, to be enriched, not abolished, by electromagnetic theory

;

and it is interesting to find one certain line of transition from our

distortional waves in glass, or metal, or rock, to our still better

known waves of light.

I. (2) Here is another still simpler transition from the dis-

tortional waves in an elastic solid to waves of light. Still think

of our massless rigid spherical shell, 13 centim. internal diameter,

with our solid globe of platinum, 12 centim. diameter, hung in its

interior. Instead of as formerly applying simple forces to produce

contrary rectilinear vibrations of shell and nucleus, apply now

a proper mutual forcive between shell and nucleus to give them

oscillatory rotations in contrary directions. If the shell is hung

in air or water, we should have a propagation outwards of dis-

turbance due to viscosity, very interesting in itself; but we should

have no motion that we know of appropriate to our present

subject until we rise to frequencies of 10^ 10 x 10'-, 400 x 10'-,

* Math, and Phys. Papers, Vol. iii. Art. civ. p. 522.
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800 X 10'^ or 3000 x 10^-, when we should have radiant heat, or

visible light, or ultra-violet light proceeding from the outer surface

of the shell, as it were from a point-source of light at the centre,

with a character of polarization which we shall thoroughly con-

sider a little later. But now let our massless shell be embedded

far in the interior of a vast mass of glass, or metal, or rock, or of

any homogeneous elastic solid, firmly attached to it all round, so

that neither splitting away nor tangential slip shall be possible.

Purely distortional waves will spread out in all directions except

the axial. Suppose, to fix our ideas, we begin with vibrations of

one-second period, and let the elastic solid be either glass or iron.

At distances of hundreds of kilometres (that is to say, distances

great in comparison with the wave-length and great in comparison

with the radius of the shell), the wave-length will be approxi-

mately 3 kilometres*. Increase the frequency now to 1000

periods per second : at distances of hundreds of metres the wave-

length will be about 3 metres. Increase now the frequency to

10" periods per second; the wave-length will be 3 millim., and

this not only at distances of several times the radius of the shell,

but throughout the elastic medium from close to the outer surface

of the shell; because the wave-length now is a small fraction

of the radius of the shell. Increase the frequency further to

1000 X 10® periods per second ; the wave-length will be 3 x 10~^ of

a millim., or 3 mikroms, if, as in all probability is the case, the

distance between the centres of contiguous molecules in glass and

in iron is less than a five-hundredth of a mikrom. But it is

probable that the distance between centres of contiguous molecules

in glass and in iron is greater than 10~' of a mikrom, and there-

fore it is probable that neither of these solids can transmit waves

of distortional motion of their own ponderable matter, of so short

a wave-length as 10~^ of a mikrom. Hence it is probable that if

we increase the frequency of the rotational vibrations of our shell

to one hundred thousand times 1000 x 10^ that is to say, to

100 X 10'^ no distortional wave of motion of the ponderable

matter can be transmitted outwards ; but it seems quite certain

that distortional waves of radiant heat in ether will be produced

close to the boundary of the vibrating shell, although it is also

probable that if the surrounding solid is either glass or iron,

these waves will not be transmitted far outwards, but will be

* Math, and Phijs. Papers, Vol. iii. Art. civ. p. 522.
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absorbed, that is to say converted into non-undulatory thermal Molar,

motions, within a few mikroms of their origin.

Lastly, suppose the elastic solid around our oscillating shell

to be a concentric spherical shell of homogeneous glass of a few

centimetres, or a few metres, thickness and of refractive index

1"5 for D light. Let the frequency of the oscillations be increased

to 5"092 X 10" periods per second, or its period reduced to •58932

of a michron : homogeneous yellow light of period equal to the

mean of the periods of the two sodium lines will be propagated

outwards through the glass with wave-length of about | x "58932

of a mikrom, and out from the glass into air with wave-length

of '58932 of a mikrom. The light will be of maximum intensity

in the equatorial plane and zero in either direction along the axis,

and its plane of polarization will be everywhere the meridional

plane. It is interesting to remark that the axis of rotation of the

ether for this case coincides everywhere with the line of vibration

of the ether in the case first considered ; that is to say, in the

case in which the shell vibrated to and fro in a straight line,

instead of, as in the second case, rotating through an infinitesimal

angle round the same line.

A full mathematical investigation of the motion of the elastic

medium at all distances from the originating shell, for each of the

cases of I. (1) and I. (2), will be found later (p. 190) in these

lectures.

II. An electrical analogy for I. ( 1
) is presented by sub-

stituting for our massless shell an ideally rigid, infinitely massive

shell of glass or other non-conductor of electricity, and for our

massive platinum nucleus a massless non-conducting globe elec-

trified with a given quantity of electricity. For simplicity we
shall suppose our apparatus to be surrounded by air or ether.

Vibrations to and fro in a straight line are to be maintained by

force between shell and nucleus as in I. (1). Or, consider simply

a fixed solid non-conducting globe coated with two circular caps of

metal, leaving an equatorial non-conducting zone between them,

and let thin wires from a distant alternate-current dynamo, or

electrostatic inductor, give periodically varying opposite electri-

fications to the two caps. For moderate frequencies we have

a periodic variation of electrostatic force in the air or ether sur-

rounding the apparatus, which we can readily follow in imagination,

and can measure by proper electrostatic measuring apparatus.

T. L. 11
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lolar. Its phase, with moderate frequencies, is very exactly the same

as that of the electric vibrator. Now suppose the frequency of

the vibrator to be raised to several hundred million million

periods per second. We shall have polarized light proceeding as

if from an ideal point-source at the centre of the vibrator and

answering fully to the description of I. (1). Does the phase of

variation of the electrostatic force in the axial line outside the

apparatus remain exactly the same as that of the vibrator ? An
affirmative answer to this question would mean that the velocity

of propagation of electrostatic force is infinite. A negative

answer would mean that there is a finite velocity of propagation

for electrostatic force.

III. The shell and interior electrified non-conducting massless

globe being the same as in II., let now a forcive be applied

between shell and nucleus to produce rotational oscillations as

in I. (2). When the frequency of the oscillations is moderate,

there will be no alteration of the electrostatic force and no

perceptible magnetic force in the air or ether around our ap-

paratus. Let now the frequency be raised to several hundred

million million periods per second ; we shall have visible polarized

light proceeding as if from an ideal point-source at the centre

and answering fully to the description of the light of I. (2).

The same result would be obtained by taking simply a fixed

solid non-conducting globe and laying on wire on its surface

approximately along the circumferences of equidistant circles of

latitude, and, by the use of a distant source (as in II.), sending

an alternate current through this wire. In this case, while there

is no manifestation of electrostatic force, there is strong alter-

nating magnetic force, which in the space outside the globe is

as if from an ideal infinitesimal magnet with alternating magneti-

zation, placed at the centre of the globe and with its magnetic

axis in our axial line.]



LECTURE XIIL

Saturday, October 11, 8 r.M.

Prof. Morley has already partially solved the definite dyna- Molecular.

mical problem that I proposed to you last Wednesday (p. 103

above) so far as determining four of the fundamental periods;

and you may be interested in knowing the result. He finds roots,

«~^ /c -^ &c., = 3-46, 1005, -298, -087; each root not being very

different from three times the next after it. I will not go into the

affair any further just now. I just wish to call your attention to what

Prof Morley has already done upon the example that I suggested

for our arithmetical laboratory. I think it will be worth while

also to work out the energy ratios* (p. 74). In selecting this

example, I designed a case for which the arithmetic would of

necessity be highly convergent. But I chose it primarily because

it is something like the kind of thing that presents itself in

the true molecule :—An elastic complex molecule consisting of a

finite number of discontinuous masses elastically connected (with

enormous masses in the central parts, that seems certain): the

whole embedded in the ether and acted on by the ether in virtue

of elastic connections which, unless the molecule were rigid and

embedded in the ether simply like a rigid mass embedded in jelly,

must consist of elastic bonds analogous to springs.

I think you will be interested in looking at this model which,

by the kindness of Prof Rowland, I am now able to show you.

It is made on the same plan as a wave machine which I made
many years ago for use in my Glasgow University classes, and

finally modified in preparations for a lecture given to the Royal

"^ This was done by Mr Morley who kindly gave his results to the "Coeffi-

cients " on the 17th Oct. See Lecture XIX. below.

11—2
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Molecular. Institution about two years ago on " The Size of Atoms*." I

think those who are interested in the illustration of dynamical

r

problems will find this a very nice and convenient method. If

you will look at it, you will see how the thing is done : Pianoforte

wire, bent around three pins in the way you

—I see here, supports each bar. These pins are

S slanted in such a way as to cause the wire

^ to press in close to the bar so as to hold it

quite firm. The wood is slightly cut away

to prevent the wire from touching it above and below the pins,

so that there may be no impairment of elastic action due to slip of

steel on wood. The wire used is fine steel pianoforte wire ; that

is the most elastic substance available, and it seems to me, indeed,

by far the most elastic of all the materials known to us [except

crystals; Jan. 19, 1899]. A heavy weight is hung on the lower

end of the wire to keep it tightly stretched.

Prof Rowland is going to have another machine made, which

I think you will be pleased with—a continuous wave machine.

This of mine is not a wave machine, but a machine for illus-

trating the vibrations of a finite group of several elastically

connected particles. The connecting springs are represented by

the torsional springiness of the three portions of connecting wire

and the fourth portion by which the upper mass is hung. In this

case gravity contributes nothing to the effect except to stretch

the wire. If we stretch the wire between two sides of a portable

* February 3, 1883 ; Proc. Royal Institution, Vol. x. p. 185 ; Popular Lectures

and Addresses, Vol. i. p. 154.
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frame, we might take our model to an ideal lecture-room at the Molecular,

centre of the earth, and it would work exactly as you see it working

now. You will understand that these upper masses correspond

to nil, in^, wij. In all we have four masses here, of which the

lowest represents the spherical shell lining the ether around

our ideal cavity. I will just apply a moving force to this lower

mass, P. To realize the circumstances of our case more fully, we

should have a spring connected with a vibrator to pull P with,

and perhaps we may get that up before the next lecture. [Done

by Professor Rowland; see Lecture XIV.] I shall attempt no

more at present than to cause this first particle to move to and

fro in a period perceptibly shorter than the shortest of the three

fundamental periods which we have when the lowest bar is held

fixed. The result is scarcely sensible motion of the others.

I do not know that there would be any sensible motion at all if

I had observed to keep the greatest range of this lowest particle

to its original extent on the two sides of its mean position.

The first part of our lecture this evening I propose to be a

continuation of our conference regarding seolotropy. The second

part will be molecular dynamics. I propose to look at this question

a little, but I want to look very particularly to some of the points

connected with the conceivable circumstances by which we can

account for not merely regular refraction, but anomalous dispersion,

and both the absorption that we have in liquids and very opaque

bodies and such absorption as is demonstrated by the very fine

dark lines of the solar spectrum which are now shown more

splendidly than ever by Prof Rowland's gratings.

I shall speak now of seolotropy. The equations by which Molar.

Green realized the condition that two of the three waves having

fronts parallel to one plane shall be distortional, are in this respect

equivalent to a very easily understood condition that I may

illustrate first by considering the more general problem. That

problem is similar to another of the very greatest simplicity,

which is the well-known problem of the displacement of a particle

subject to forces acting upon it in different directions from fixed

centres. An infinitesimal displacement in any direction being

considered, the question is, when is the return force in the

direction of the displacement ? As we know, there are three

directions at right angles to one another, in which the return

force is in the direction of the displacement. The sole difference
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between that very trite problem and our problem of yesterday

(Lecture XII. p. 135), is that in yesterday's the question is

put with reference to a whole infinite plane in an infinite

homogeneous solid, which is displaced in any direction between

two fixed parallel planes on its two sides, to which it is always

kept parallel. Considering force per unit of area, we have the

same question, when is the return force in the direction of the

displacement ? And the answer is, there are three directions

at right angles to one another in which the return force is in

the direction of the displacement. Those three directions are

generally oblique to the plane ; but Green found the conditions

under which one will be perpendicular to the plane, and the

other two in the plane.

I shall now enter upon the subject more practically in

respect to the application to the wave theory of light, and begin

by preparing to introduce the condition of incompressibility.

Take first the well-known equations of motion for an isotropic

solid and express in them the condition that the body is incom-

pressible. The equations are

:

dt^ ^ ^ ^ dx

d^V / 7 ^ .d8 _„

d^t ,, ,
^d8 ^ ^

Suppose now the resistance to compression is infinite, which

means, make A; = oo at the same time that we have S = 0. What
then is to become of the first term of the second members of

these equations? We simply take (k+ ^n)8=2h and write the

second members -i^ + nV"-|, &c., accordingly. This requires no

hypothesis whatever. We may now take k = co , 8 = 0, without

interfering with the form of our equations. These equations,

without any condition whatever as to ^, rj, ^, with the condition

p = {k-\-^n)8, are the equations necessary and sufficient for the

problem. On the other hand, if k = qc , the condition that that

involves is

dx dy dz '
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which gives four equations in all for the four unknown quantities Molar.

I. V, ?, im-

precisely the same thing may be done in respect to equations

(1), (2), (3) of p. 182 above for a solid with 21 independent

coefficients. We will have this equation, S = 0, again for an

seolotropic body, and a corresponding equality to infinity. I am
not going to introduce any of these formulas at present. In

the meantime, I tell you a principle that is obvious. In

order to introduce the condition ^ + ^~ + ^ = into our
ax ay dz

general equation of energy with its 21 coefficients, which involves

a quadratic expression in terms of the six quantities that we

have denoted by e, f, g, a, b, c, we must modify the quadratic

into a form in which we have {e+f+gf with a coefficient. That

coefficient equated to infinity, and e+f+g = 0, leave us the

general equations of equilibrium of an incompressible seolotropic

elastic solid.

I want to call your attention to the kind of deviation from

isotropy which is annulled by Green's equations among the

coefficients expressing that two out of the three waves shall be

purely distortional, and the third shall be condensational-rare-

factional.

The next thing to an isotropic body is one possessing what

Eankine calls cyboid asymmetry. Rankine marks an era in

philology and scientific nomenclature. In England, and I

believe in America also, there has been a classical reaction,

or reform, according to which, instead of taking all our

Greek words through the French mill changing k (kappa) into

c, and V (upsilon) into y, we spell in English, and we pronounce

Greek words, and even some Latin words, more nearly according

to what we may imagine to be the actual usage of the ancients.

We cannot however in the present generation get over Kuros

instead of Cyrus, Kikero instead of Cicero. Rankine is a curious

specimen of the very last of the French classical style. Rankine

was the last writer to speak of cinematics instead of kinematics.

Cyboid, which he uses, is a very good word, but I do not know

that there is any need of introducing it instead of Cubic. Cubic

is an exception to the older classical derivation in that u is not

changed into y; it should be cybic, and cube should be cybe

(I suppose a:u/3o9 to be the Greek word), Cyboid obviously means
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Molar. cube-like, or cubic, and it is taken from the Greek in Rankine's

manner, now old-fashioned.

Rankine gives the equations that will leave cubic asymmetry.

He afterwards makes the very apposite remark that Sir David

Brewster discovered that kind of variation from isotropy in

analcime. I only came to tins in Rankine two or three days ago.

But I remember going through the same thing m3^self not long

ago, and I said to Stokes— (I always consult my great authority

Stokes whenever I get a chance)—" Surely there may be some-

thing found in nature to exemplify this kind of asymmetry;

would it not be likely to be found in crystals of the cubic class ?"

Stokes—he knows almost everything—instantly said, " Sir David

Brewster thought he had found it in cubic crystals, but there

is another explanation ; it may be owing to the effect of the

cleavage planes, or the separation of the crystal into several

crystalline laminas"—I do not remember all that Stokes said,

but he distinctly denied that Brewster's experiment showed a true

instance of cubic optical asymmetr}''. He pointed out that an

exceedingly slight deviation from cubic isotropy would show

very markedly on elementary phenomena of light, and might be

very readily tested by means of ordinary optical instruments.

The fact that nothing of the kind has been discovered is

absolute evidence that the deviation, if there is any, from optic

isotropy in a crystal of the cubic class, is exceedingly small in

comparison with the deviation from isotropy presented by ordinary

doubly refracting crystals.

Molecular. As a matter of fact, square seolotropy is found in a pocket

handkerchief or piece of square-woven cloth, supposing the warp

and woof to be accurately similar, a supposition that does not

hold of ordinary cloth. Take wire- cloth carefully made in

squares; that is symmetrical and equal in its moduluses with

reference to two axes at right angles to one another. There

will be a vast difference according as you pull out one side

and compress the other, or pull out one diagonal and compress the

other. Take the extreme case of a cloth woven up with inex-

tensible frictionless threads, and there is an absolute resistance to

distortion in two directions at right angles to one another, and

no resistance at all to distortion of the kind that is presented

in changing it from square to rhombic shape. That is to say, a

framework of this kind has no resistance to shearing parallel
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to the sides ; in other words, to the distortion produced Molecular.

by lengthening one diagonal and shortening the

other. Now imagine cut out of this pocket hand-

kerchief, a square with sides parallel to the dia-

gonals, making a pattern of this kind. There is

a square that has infinite resistance to shearing parallel to its

sides, and zero resistance to pulling out in the

direction perpendicular to either pair of sides. This

is not altogether a trivial illustration. Surgeons

make use of it in their bandages. A person not

familiar with the theory of elastic solids might cut a strip of

cloth parallel to warp or woof; but cut it obliquely and you have

a conveniently pliable and longitudinally seraielastic character

that allows it to serve for some kinds of bandage.

Imagine an elastic solid made up in that kind of way, with

that kind of deviation from isotropy ; and you have clearly two

different rigidities for different distortions in the same plane.

I remember that Rankine in one of his early papers proved this

to be impossible ! He proved a proposition to the effect that

the rigidity was the same for all distortions in the same plane.

That was no doubt founded on some special supposition as to

arrangement of molecules and may be true for the particular

arrangement assumed ; but it is clearly fallacious in respect to

true elastic solids. Rankine in his first paper made too short work

of the elastic solid in respect to possibilities of »olotropy. He
soon after took it up very much on the same foundation as Green

with his 21 coefficients, but still under the bondage of his old

proposition that rigidity is the same for all distortions in the

same plane. Yet a little later he escaped from the yoke, and

took his revenge splendidly by giving a fine Greek name " cyboid

asymmetry" to designate the special crystalline quality of which

he had proved the impossibility !

I must read to you some of the fine words that Rankine has Molar,

introduced into science in his work on the elasticity of solids.

That is really the first place I know of, except in Green, in

which this thing has been gone into thoroughly. It is not

really satisfactory in Rankine except in the way in which he

carries out the algebra of the subject, and the determinants

and matrices that he goes into so very finely. But what I want

to call attention to now is his grand names. I do not know
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whether Prof. Sylvester ever looked at these names ; I think he

would be rather pleased with them. " Thlipsinomic transforma-

tions," " Umbral surfaces," and so on. Any one who will learn the

meaning of all these words will obtain a large mass of knowledge

with respect to an elastic solid. The simple, good words, " strain

and stress," are due to Rankine ; "potential" energy also. Hear

also the grand words " Thlipsinomic, Tasinomic, Platythliptic,

Euthytatic, Metatatic, Heterotatic, Plagiotatic, Orthotatic, Pan-

tatic, Cybotatic, Goniothliptic, Euthythliptic," &c.

You may now understand what cyboid asymmetry is, or as I

prefer to call it, cubic aeolotropy. Rankine had not the word

seolotropy; that came in from myself* later. Cyboid or cubic

aeolotropy is the kind of jBolotropy exhibited by a cubic grating

;

as it were a structure built up of uniform cubic frames. There

[Feb. 14, 1899; a skeleton cube, of twelve equal wooden rods with

their ends fixed in eight india-rubber balls forming its corners]

is a thing that would be isotropic, except for its smaller rigidity

for one than for the other of the two principal distortions in each

one of the planes of symmetry.

I will go no further into that just now; but I hope that in

the next lecture, or somehow before we have ended, we may be

able to face the problem of introducing the relations among the

21 moduluses which are sufficient to do away with all obliquities

with reference to three rectangular axes. But you can do this in

a moment—equate to zero enough of the 21 coefficients to fulfil

two conditions, (1) that if you compress a cube of the body by

three balancing pairs of pressures, equal or unequal, perpendicular

to its three pairs of faces, it will remain rectangular, and (2) that

if you apply, in four planes meeting in four parallel edges, balanc-

ing tangential forces perpendicular to these edges, the angles at

these edges will be made alternately acute and obtuse, and the

angles at the other eight edges will remain right angles. [Feb. 14,

1899 ; here are the required annulments of coefficients to fulfil

those two conditions, with OX, OY, OZ taken jjarallel to edges of

the undisturbed cube, and with the notation of Lecture II. p. 23 :

—

42 = 0; 43 = 0; 51=0; 53 = 0; 61 = 0; 62 = 01

41=0; 52 = 0; 63 = 0; 56 = ; 64 = ; 45 = 0j""^ ^'

* See p. 118 above.
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Thus the formula for potential energy becomes reduced to Molar.

2^= lle^ + 22/-= + 33(7^ + 2 (23/y7 + Slge + 12ef)

.(2).

With these nine coefficients, 11, 22, 33; 23, 31, 12; 44, 55,

66 ; all independent; the elastic solid would present two different

rigidities for the two distortions of each of the planes (yz), {zx), {xy),

one by shearing motion parallel to either of the two other planes,

the other by shearing motion parallel to either of the planes

bisecting the right angles between those planes. The values of

these rigidities are as follows for the cases of shearing motions

parallel, and at 45°, to our principal planes :

—

Distortion Plane of Distortion Line of Motion Rigidity

a

f-9
(f)

y or z

45° to y and z

44

i{i(22 + 33)-23}

h

g-e
(zx)

z OV X

45° to z and x

55

1(1(33 + 11) -31}

c

e-f
i^y)

.r or y

45° to .:;; and y

66

Hi (11 + 22) -12}

From the fact that squares only of a, h, c appear in the equa-

tion of energy, we see that in equilibrium* these distortions are

separately balanced by the tangential stresses S, T, U. And we

conclude that there can be plane waves of purely longitudinal

motion (condensational-rarefactional) and waves of pure distortion

travelling in the directions x, y, z with their fronts perpendicular

to these directions ; and that their velocities
"f"

are as shown in the

following table :

—

* Lecture LI. p. 24.

t Equations (1) above, with equations (4), (7), (8) of Lecture XL p. 133, applied

respectively to the cases

m= 0, n=0,|= 0; n=0, J = 0, i?:=0 j 1 = 0, m=^0, g^^Q.
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Wave-front Line of Vibration Quality Velocity

X condensational-rarefactional ^7
{y^) y purely distortional

zee

V7
z ^^ » Vf
y condensational-rarefactional

x/f

{zx) z purely distortional V?
X » j>

/66

V7

z condensational-rarefactional
x/?

i^-y) X purely distortional
/55

V P

y jj >»

/44

V7

Selecting from these the purely distortional waves, and taking

them in pairs having equal velocities, we have the following

convenient table :

—

Wave-front Line of Vibration Plane of Distortion Velocity

k^y)

{xz)

y

z

(y^) ^'i

z

X
(zx) ^1

{zx)

i^y)

X

y

{xy) V?
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In this table we find one and the same velocity, V44//3, for two Molar.

different waves with fronts parallel to x, and having their lines of

vibration parallel to y and z respectively, and therefore each having

yz for its plane of distortion. If now we apply the formulas of

Lecture XI., p. 133, to investigate the velocities of other waves

having the same plane of distortion—for instance, waves with

fronts parallel to x and lines of vibration at 45° to y and z,—we

find different propagational velocities unless

44 = 1(1(22 + 33) -23}*,

which makes them all equal. Thus, and by similar considerations

relatively to y and z, we see that each of the three propagational

velocities given in the preceding table is the same for all waves

having the same plane of distortion, if the following conditions

are fulfilled :

—

44 = i{i(22 + 33)-23h
55=i{n33 + ll)-31} (3).

66 = i{Hn + 22)-12})

These three equations simply express the condition that in

each of the three coordinate planes the rigidity due to a shear

parallel to either of the two other coordinate planes is equal to

the rigidity due to a shear parallel to either plane bisecting the

right angle between them.

Green-j- found fourteen equations among his 21 coefficients to

express that there can be a purely distortional wave with wave-

front in any plane whatever. Three more equations^ express

further that the planes chosen for the coordinates are planes

of symmetry. The conditions which we have considered have

given us, in (1) and (3) above, fifteen equations which are identical

with fifteen of Green's. His other two are

11 = 22 = 33 (4).

With all these seventeen equations among the coefficients, the

equation of energy becomes reduced to

2^=ll(e+/+(7)-+44(a2-4/5r)+55(6"-4^e)-f-66(o2-4e/)...(5).

* Compare with formula ?i= J (^ - 13) in Lecture II. p. 25, which is the condition

that the rigidity is the same for all distortions in any one of the three coordinate

planes for the case of 11 = 22 = 33, there considered.

t Collected Papers, p. 309.

+ Ibid., pp. 303, 309.
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It is easy now to verify Green's result. Remember that if we

denote by ^, t), ^ infinitesimal displacements of a point of the

solid from its undisturbed position {w, y, z), we have

dx' 9 =
dX
dz

dy dz ' dz dx
^^dri_^dl

dx dy

.(6).

Denoting now by 1 1 1 dxdydz integration throughout a volume

V, with the condition that f, r], ^ are each zero at every point of

the boundary, we find by a well-known method of double integra-

tion by parts*,

\\\dxdydz 1 f^\l\d.dydz g 1
1 1 dxdydz -^ -^ = dxdydz -j- -j-

JJJ ^ dz dx JJJ ^ dx dz
^ (7)

jfjd.dyd. 1 |=///rf^rfy& 1 g
\.iid by aid of this transformation we find

2fjjd.dyd. E=jfjd.dyd. n(| +| +fy

H-(f/......j«(|-t)%5.(|-DV6e(|-|

(8).

Let now V be the space between two infinite planes, parallel

to the fronts of any series of purely distortional waves traversing

the space between them, these planes being taken at places at

which for an instant the displacement is zero. They may, for

instance, be the planes, half a wave-length asunder, of two

consecutive zeros of displacement in a series of simple harmonic

waves. Let P be any plane of the vibrating solid parallel to

them ; let p be its distance from the origin of coordinates ; and

q, its displacement at any instant. Then ^ -j^ is the molecular

* Compare Math, and Phys. Papers, Art. xcix. Vol. iii. p. 448 ; and " On the

Reflexion and Refraction of Light," Phil. Mag. 1888, 2nd half-year.
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rotation of the solid infinitely near to this plane on each side ; and Molar,

by the rectangular resolution of rotations, we have

ldq^d^_dv^ ^^^dq^d^_dX. ^^^^_^ /gx

dp dy dz ' dp dz dx' dp dec dy '"
'

where I, m, n denote the direction cosines of the line in P perpen-

dicular to the direction of q, this being the axis of the molecular

rotation. Using these new values in (8), and remarking that the

first chief term vanishes because the displacement is purely

distortional, we have

2
III

dxdydzE = (UP + 5om- + 66n')
|[[

dxdydz (^\\ . .(10).

Hence we see that no condensation or rarefaction accompanies

our plane distortional waves, and that their velocity of propagation

is

''44/^ + 55/71^ + 66n-

^/- •(11).

This is Fresnel's formula for the propagational velocity of a

plane wave in a crystal with (I, m, n) denoting the direction of

vibration ; while in Green's theory (I, m, n) is the line in the

wave-front perpendicular to the direction of vibration. The
wave-surface is identical with Fresnel's.]

I will read to you Green's own statement of the relative

tactics of the motion in his and in Fresnel's waves. Here it

is at the bottom of page 304 of Green's Collected Papers :
" We

" thus see that if we conceive a section made in the ellipsoid

"to which the equation (10) belongs, by a plane passing through

"its centre and parallel to the wave's front, this section, when
" turned 90 degrees in its own plane, will coincide with a similar

"section of the ellipsoid to which the equation (8) belongs, and
" which gives the directions of the disturbance that will cause

" a plane wave to propagate itself without subdivision, and the

"velocity of propagation parallel to its own front. The change
" of position here made in the elliptical section is evidently

" equivalent to supposing the actual disturbances of the ethereal

" particles to be parallel to the plane usually denominated as the

"plane ofpolarization."

Before we separate this evening, return for a few minutes

to our problem of vibratory molecules embedded in an elastic
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Molecular, solid ; and let us consider particularly the application of this

dynamical theory to the Fraunhofer double dark line D of sodium-

vapour.

\^March 1, 1899.* For a perfectly definite mechanical repre-

sentation of Sellmeier's theory, imagine for each molecule of

sodium-vapour a spherical hollow in ether, lined with a thin rigid

spherical shell, of mass equal to the mass of homogeneous ether

which would fill the hollow. This rigid lining of the hollow we

shall call the sheath of the molecule, or briefly the sheath.

Within this put two rigid spherical shells, one inside the other,

each moveable and each repelled from the sheath with forces, or

distribution of force, such that the centre of each is attracted

towards the centre of the hollow with a force varying directly as

the distance. These suppositions merely put two of Sellmeier's

single-atom vibrators into one sheath.

Imagine now a vast number of these diatomic molecules, equal

and similar in every respect, to be distributed homogeneously

through all the ether which we have to consider as containing

sodium-vapour. In the first place, let the density of the vapour

be so small that the distance between nearest centres is great in

comparison with the diameter of each molecule. And in the

first place also, let us consider light whose wave-length is very

large in comparison with the distance from centre to centre of

nearest molecules. Subject to these conditions we have (Sellmeier's

formula)

- =1+ -—.+ o-^-:, (1);
Vol T- — K- T- — K,"

where m, m^ denote the ratios of the sums of the masses of one

and the other of the moveable shells of the diatomic molecules in

any large volume of ether, to the mass of undisturbed ether filling

the same volume ; k, k^ the periods of vibration of one and the

other of the two moveable shells of one molecule, on the supposition

that the sheath is held fixed ; Vg the velocity of light in pure

undisturbed ether; Vg the velocity of light of period r in the

sodium-vapour.

* This replaces the concluding portion of the Lecture as originally delivered. It

was read before the Royal Society of Edinburgh on Feb. 6, 1899, and reprinted in

PJnl. Miifj. for March, 1S99, under the title " Application of Sellmeier's Dynamical

Theory to the Dark Lines D,, J*^ produced by Sodium-Vapour."
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For sodium-vapour, according to the measurements of Rowland Molecular.

and Bell*, published in 1887 and 1888 (probably the most

accurate hitherto made), the periods of light corresponding to the

exceedingly fine dark lines D^, D^ of the solar spectrum are

•589618 and '589022 of a michronf. The mean of these is so

nearly one thousand times their difference that we may take

K=\{K]rK){\-,^^ K=^{K + K)(l + ,.^.^ (2).
2000y' '

'^ "\ 2000y

Hence if we put

T = i(« + o(i + ii^) (3);

and if x be any numeric not exceeding 4 or 5 or 10, we have

©'^'

-

im^^^^y' (^'T^ 1- roVo(2--i> w;

whence

T^ ^ 1000 r-
.

1000

T* - /c2
~^

2a; + 1 ' T- - a:/^ 2a; - 1 ^
''

Using this in (1), and denoting by /i the refractive index from

ether to an ideal sodium-vapour with only the two disturbing

atoms m, m^, we find

' „ , 1000m 1000m,
= '''=i+5^i+^^:rT' (6)-

When the period, and the corresponding value of x according

to (3), is such as to make /x^ negative, the light cannot enter the

sodium-vapour. When the period is such as to make ^"^ positive,

the proportion, according to Fresnel and according to the most

probable dynamics, of normally incident light which enters the

vapour would be

-e-iir (^>'

if the transition from space, where the propagational velocity is

Ve, to medium in which it is Vg, were infinitely sudden.

Judging from the approximate equality in intensity of the

* Rowland, Phil. Mag. 1887, first half-year; Bell, Phil. Mag. 1888, first half-

year.

t See footnote, p. 150.

T. L. 12

vj
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Molecular, bright lines Dj, D.^ of incandescent sodium-vapour; and from the

approximately equal strengths of the very fine dark lines D^, D^

of the solar spectrum ; and from the approximately equal strengths,

or equal breadths, of the dark lines D^, D^ observed in the

analysis of the light of an incandescent metal, or of the electric

arc, seen through sodium-vapour of insufficient density to give

much broadening of either line ; we see that m and m, cannot be

very different, and we have as yet no experimental knowledge to

show that either is greater than the other. I have therefore

assumed them equal in the calculations and numerical illustrations

described below.

At the beginning of the present year I had the great pleasure

to receive from Professor Henri Becquerel, enclosed with a letter

of date Dec. 81, 1898, two photographs of anomalous dispersion

by prisms of sodium-vapour*, by which I was astonished and

delighted to see not merely a beautiful and perfect demonstration

of the "anomalous dispersion" towards infinity on each side of the

zero of refractivity, but also an illustration of the characteristic

nullity of absorption and finite breadth of dark lines, originally

shown in Sellmeier's formula f of 1872 and now, after 27 years,

first actually seen. Each photograph showed dark spaces on

the high sides of the Z)j, D^ lines, very narrow on one of the

photographs ; on the other much broader, and the one beside

the D^ line decidedly broader than the one beside the D^ line
;

just as it should be according to Sellmeier's formula, according

to which also the density of the vapour in the prism must have

been greater in the latter case than in the former. Guessing

from the ratio of the breadths of the dark bands to the space

between their D^, D^ borders, and from a slightly greater breadth

of the one beside D.^, I judged that m must in this case have been

not very different from "0002 ; and I calculated accordingly from

(6) the accompanying graphical representation showing the value

of 1
, represented by y in fig. 1. Fig. 2 represents similarly

the value of 1— for in = '001, or density of vapour five times
r'

* A description of Professor Beequerel's experiments and results will be found

in Comptes Rendus, Dec. 5, 1898, and Jan. 16, 1899.

t Sellmeier, Fogg. Ann. Vol. cxlv. (1872) pp. 399, 520; Vol. cxlvii. (1872)

pp. 387, 525.
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Fip. 1*. w = -0002. Molecular.

1

t>. 0,

y\

c

v:
.

9! 6 9< \7 9! 'f) 9< 19 L° V. A. ym/} r^^ff 4'= 0302

y O.A f^m, 7^^ .

K I0(

n
1 001 1 002 1 003

^

Fig. 2. 7) = •001.

1

1
D.

V

ir'
« P6 9 P7 Q 58 1

\"^ V, — A. y^/ icie, $.-(^0. V>t

—

).y5iy nptc "? lOO'O 1 001 1m 1 003 1 004
-rz

\

:

1
1
V-

* In figs. 1 and 2 the Dj , D2 lines are touched by curves of finite curvature at

2/ = + 1 ; and in figs. 3, 4, and 5 at 2/ = 0. The left-hand side of each dark band is

an asymptote to the curves of figs. 1 and 2, and a tangent aty — Q to the curves of

figs. 3, 4, and 5. The diagrams could not show these characteristics clearly unless

• on a much larger scale.

12—2
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Molecular, that in the case represented by fig. 1. Figs. 3 and 4 represent

the ratio of intensities of transmitted to normally incident light

Fig. 3. m= -0002.

m
99Q S99 Of iO30 D, 1001 1002

Fig. 4. m = '001.

1

~m
f-1

rP99 8 999 [j>j 10 30 0), 10 01 10 0? X

Fig. 5. m = -003.

J '^ 1

\/o.un
\ 1

^/^ n. ,r^ _, ,-.no ^
996 9S7 998 999 ^ 1000 °i 1001 WZ

for the densities corresponding to figs. 1 and 2, and fig. 5 repre-

sents the ratio for the density corresponding to the value m = '003.

The following table gives the breadths of the dark bands for

densities of vapour corresponding to values of m from '0002 to

fifteen times that value ; and fig. 6 represents graphically the

breadths of the dark bands and their positions relatively to the

bright lines Dj, Dg for the first five values of m in the table.

Values of m

Breadths of Bands

-Di D,

•0002 -09

•217

•293

•340

-371

•392

•408

•419

•11

•383

•707

1^060

1-429

1-808

2-192

2-581

•0006

•0010

•0014

•0018

•0022

•0026

•0030
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According to Sellmeier's formula the light transmitted through Molecular.

a layer of sodium-vapour (or any transparent substance to which

Fig. 6.

VaWIS trin

the formula is applicable) is the same whatever be the thickness

of the layer (provided of course that the thickness is many times

the wave-length). Thus the Di, Do lines of the spectrum of solar

light, which has traversed from the source a hundred kilometres

of sodium-vapour in the sun's atmosphere, must be identical

in breadth with those seen in a laboratory experiment in the

spectrum of light transmitted through half a centimetre or a

few centimetres of sodium-vapour, of the same density as the

densest part of the sodium-vapour in the portion of the solar

atmosphere traversed by the light analysed in any particular

observation. The question of temperature cannot occur except

in so far as the density of the vapour, and the clustering in groups

of atoms or non-clustering (mist or vapour of sodium), are con-

cerned.

A grand inference from the experimental foundation of Stokes'

and Kirchhoff's original idea is that the periods of molecular

vibration are the same to an exceedingly minute degree of

accuracy through the great differences of range of vibration pre-

sented in the radiant molecules of an electric spark, electric arc,

or flame, and in the molecules of a comparatively cool vapour

or gas giving dark lines in the spectrum of light transmitted

through it.

It is much to be desired that laboratory experiments be made,

notwithstanding their extreme difficulty, to determine the density

and pressure ofsodium-vapour through a wide range of temperature,

and the relation between density, pressure, and temperature of

saseous sodium.
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Passing from the particular case of sodium, I add an applica-

tion of Sellmeier's formula, (1) above, to the case of a gas or

vapour having in its constitution only a single molecular period k.

Taking m, = in (1), we see that the square of the refractive

index for values of r very large in comparison with /c is 1 + m.

And remembering that the dark line or band extends through

the range of values for which {Vejvsf is negative, and that {Velv^Y

is zero at the higher border, we see from (1) that the dark band

extends through the range from

T = K to T =
VH-

.(8).

m

As an example suitable to illustrate the broadening of the

dark line by increased density of the gas, I take m = a x 10~*,

and take a some moderate numeric not greater than 10 or 20.

This gives for the range of the dark band from

T = K to T = /c(l-ia X 10-^) (9);

and for large values of t it makes the refractive index

l-l-^axlO~^ and therefore the refractivity, ^a x 10~*. If for

example we take a = 6, the refractivity would be '0003, which is

nearly the same as the refractivity of common air at ordinary

atmospheric density.

Fig. 7.

998 999 1000 1001 1002
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Taking /c = 1000, we have, for values of r not differing from Molecular.

1000 by more than 10 or 20,

T^ ^ 1000

Thus we have

where ^ = t-1000 (10).

^ = \/l + 20.
^11>-

In fig. 7 the curve marked /j, represents the values of the refractive

index corresponding to values of t through a small range above

and below k, taking a = 4. The other curve represents the

proportionate intensity of the light entering the vapour, calculated

from these values of /u, by (7) above.

The table on next page shows calculated values for the ordi-

nates of the two curves ; also values (essentially negative) for the

formvila of intensity calculated from the negative values of /j,

algebraically admissible from (11).

The negative values of /j, have no physical interpretation for

either curve ; but the consideration of the algebraic prolongations

of the curves through the zero of ordinates on the left-hand side

of the dark band illustrates the character of their contacts. The

physically interpreted part of each curve ends abruptly at this

zero ; which for each curve corresponds to a maximum value of x.

The algebraic prolongation of the fi curve on the negative side is

equal and similar to the curve shown on the positive side. But

the algebraic prolongation of the intensity curve through its zero,

as shown in the table, differs enormously from the curve shown on

the positive side. To the degree of approximation to which we
have gone, the portions of the intensity curve on the left and

right hand sides of the dark band are essentially equal and

similar. This proves that so far as Sellmeier's theory represents

the facts, the penumbras are equal and similar on the two sides

of a single dark line of the spectrum uninfluenced by others. It

is also interesting to remark that according to Sellmeier as now
interpreted, the broadening of a single undisturbed dark line,

produced by increased density of the gas or vapour, is essentially

on the high side of the finest dark line shown with the least

density, and is in simple proportion to the density of the gas.]
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-1-0

-•9

8

7

6

5

4

3

2

-•1

+ •1

+ •2

+ •3

+ •4

+ •5

+ •6

+ •7

+ •8

+ •9

+ 1-0

M

•894

•882

•866

•845

•816

•774

•707

•577

imaginary

•732

•414

•291

•247

•183

•155

•134

•118

•105

095

\M+lj

/i positive

•993

•988

•984

•971

•928

imaginary

•928

•971

•984

•988

•993

fx negative

- 141^9

-82-3

-61^5

-335

-12-9

imaginary

-12-9

-335

-61^5

-82^3

-141-9



LECTURE XIV.

Monday, October 13, 8 p.m.

At this lecture were seen, immediately behind the model Molecular,

heretofore presented, two wires extending from the ceiling and

bearing a long heavy bar about three feet above the floor by
means of closely-fitting rings. By slipping these rings along the

bar, the period of vibration of this bifilar suspension could be

altered at will. Two parallel pieces of wood, jointed at each end.
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[olecular. served to transmit the azimuthal motion of this vibrator to the

lower bar P of the model.

Let us look at this and see what it does. I have not seen it

before, and it is quite new to me. Oh, see, you can vary the

period; that is very nice, that is beautiful. We are going to

study these vibrations a little, just as illustrations. Prof Rowland
has kindly made this arrangement for us, and I think we will all

be interested in experimenting with it. We have this bar P,

moved by this bifilar pendulum H, which is so massive that its

period is but little affected, I suppose, by being connected with P.

It takes some time before the initial free vibrations in the model

are got quit of and the thing settles into simple harmonic motion

corresponding to the period of the bifilar pendulum. If we keep

this pendulum going long enough through nearly a constant range,

the masses P, m^, mg, mg will settle into a definite simple har-

monic motion, through the subsidence of any free vibrations which

may have been given to them in the start. We see the whole

apparatus now performing very nearly a simple harmonic motion.

We will now superimpose another vibration on this by altering

the period of the pendulum very slightly. That, you see, seems

to have diminished very much the vibrations of the system. They
are now increasing again. That will go on for a long time. I

shall give this pendulum a slight impulse when I see it flagging,

to keep its range constant. When it is in its middle position,

I apply a working couple. We will give no more attention to it

than just to keep it vibrating, while we look at these notes which

you have in your hands, and which I have prepared for you so

as to shorten our work on the black-board.

[These notes related to the tasinomic treatment of seolotropy.

The discussion of them was interrupted at intervals to continue

experiments and observations on Professor Rowland's model. That

part of the Lecture has been omitted from the print as the subject

has been treated in the addition of date February 14, 1899 to

Lecture XIIL, pp. 170—175.]

Let us stop and look at our vibrating apparatus. It has been

going a considerable time with the exciter kept vibrating through

a constant range, and you see but small motion transmitted to

the system. That is an illustration of the most general solution

of our old problem*. Our " handle " P is in firm connection with
* Lecture III. Pt. 2, p. 38.
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the bifilar pendulum (the exciter) and is forced to agree with it. Molecular.

Let us bring the system to rest. Now start the exciter and keep

it going. In time the viscosity will annul the system of vibrations,

representing the difference between zero and the permanent state

of vibration which the three particles will acquire. If there were

no loss of energy whatever, the result would be that this initial

jangle, which you now see, would last for ever ; consisting of

a simple harmonic motion in the exciter and a compound of the

three fundamental modes of these three particles viewed as a

vibrating system with the bar P held fixed. Let the system with

the bar P held fixed be set to vibrate in any way whatever; then its

motion will be merely a compound of those three fundamental

modes. But now set the exciter going, and the state of the case

may be looked on as thus constituted ;—the exciter and the whole

system in simple harmonic motion of the same period, and, superim-

posed upon that, a compound of the three modes of simple harmonic

vibration that the system can perform with the exciter fixed. We
cannot improve on the mathematical treatment by observation

;

and really a model of this kind is rather a help or corrective to brain

sluggishness than a means of observation or discovery. In point

of fact, we can discover a great deal better by algebra. But

brains are very poor after all, and this model is of some slight

use in the way of making plain the meaning of the mathematics

we have been working out.

The system seems to have come once more into its permanent

state. Let us stop the exciter and see how long the system will

hold its vibration. The reaction on the exciter is very slight, it is

very nearly the same as if that massive bar H were absolutely

fixed. But the motion actually communicated to it, since it is

not absolutely fixed, will correspond to a considerable loss of

energy. A very slight motion of H with its great length and

mass has considerable energy compared even with the energy of

our particle of greatest mass; so that our system will come to

rest far sooner than if H were absolutely fixed. The model is at

present illustrating phosphorescence. You see the particles {m^,

m^, rria) have gone on vibrating for a whole minute, and nii must

have performed a couple of dozen vibrations at least. A true

phosphorescence of a hundred seconds' duration is quite analogous

to the giving back of vibrations which you see in our model,

only instead of our two or three dozen vibrations, we have in
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lecular. phosphorescence 40,000 million-million vibrations during a hundred

seconds. Now, we cannot get 1000 residual vibrations in our

model because of the dissipation of energy arising from imperfect

elasticity in the wire, friction between parts of the model, and the

resistance of the air. That dissipation of energy is simply the

conversion of energy from one state of motion, (the visible motions

which we have been watching), into another (heat in the wire,

heat of frictions, and heat in the air). In molecular dynamics, we

have no underground way of getting quit of energy or carrying it

off. We must know exactly what has been done with it when the

vibration of an embedded molecule ends, even though this be

not before a thousand million-million periods have been performed.

[Marxh 6, 1899. Imagine a homogeneous mass of rock—granite or

basalt, for example—as large as the earth, or as many times larger as

you please, but with no mutual gravitation between its parts to

disturb it. Let there be, anywhere in it very far from a boundary,

a spherical hollow of 5 cms. radius, and let a violin-string be

stretched between two hooks fixed at opposite ends of a diameter

of this hollow, and tuned to vibrations at the rate of 1000 per

second. Let this string be set in vibration (for the present, no

matter how) according to its gravest fundamental mode, through a

range of one millimetre. Let the elasticit}^ of the string and of the

granite be absolutely perfect, and let there be no air in the hollow

to resist the vibrations. They will not last for ever. Why not ?

Because two trains of waves, respectively condensational-rarefac-

tional and purely distortional, will be caused to travel outwards,

carrying away with them the energy given first to the vibrating

string (see below § 28 of addition to Lecture XIV.).] We must

suppose the elasticity of our matter and molecules to be perfect, and

we cannot in any part of our molecular dynamics admit unaccounted

for loss of energy ; that is to say, we cannot admit viscous terms

unless as an integral result of vibrations connected with a part of

the system that is not convenient for us to look at.

In three minutes our system has come very nearly to rest.

We infer therefore that in three minutes from a commencement of

vibration of the exciter we shall have nearly reached the permanent

state of things.

Now we vary the period of the exciter, making it as nearly as

we can midway between two fundamental periods of our complex

molecule. We will keep this going in an approximately constant
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range for a while and look at the vibrations which it produces in Molecular,

the system.

Now you see very markedly the difference in the vibrations

of our system after it has been going for several minutes with

the exciter in a somewhat shorter period of vibration than that

with which we commenced. Here is another still shorter. In

the course of two or three minutes the superimposed vibrations

will die out. See now the tremendous difference of this case in

which the period of the exciter is approximately equal to one

of the fundamental periods of the system, or the periods for the

case in which the lowest bar is held absolutely fixed.

I had almost hoped that I would see some way of explaining

double refraction by this system of molecules, but it seems more

and more difficult. I will take you into my confidence to-morrow,

if you like, and show you the difficulties that weigh so much upon

me. I am not altogether disheartened by this, because of the

fact that such grand and complicated and highly interesting

subjects as I have named so often, absorption, dispersion and

anomalous refraction, are all not merely explained by their

means but are the inevitable results of this idea of attached

molecules.

There is one thing I want to say before we separate, and that

is, when I was speaking last of the subject, I saw what seemed

to me to be a difficulty, but on further consideration, I find it

no difficulty at all. Not very many hours after I told you it

was a difficulty, I saw that I was wrong in making it appear

to be a difficulty at all. I do not want to paint the thing any
blacker than it really is and I want to tell you that that question

I put as to the ether keeping straight with the molecules is

easily answered when there is a large number. Our assumption

was a large number of spherical cavities, lined with rigid spherical

shells and masses inside joined by springs or what not : and the

distance from cavity to cavity small in comparison with the wave-

length. It then happens that the motion of the medium rela-

tively to the rigid shells will be exceedingly small and a portion

of the medium that will contain a large number of these shells will

all move together (see below, addition to Lee. XIV.). If the distance

from molecule to molecule is very small in comparison with the

wave-length, then you may look upon the thing as if the structure

were infinitely fine, and you may take it that the ether moves
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jlecular. quite straight with them all, and not in and out among them,

as I said. It is evident on the other hand, when the wave-

length of the light traversing the medium is moderate in

comparison with the distance between the molecules, that it

must move out and in among them. But if the stiffness of the

medium is such as to make the wave-length large in comparison

with the distance from molecule to molecule, this stiffness is suf-

ficient to keep them all together, and you may regard these rigid

shells as bonds of attachment by which the molecule is pulled

this way and that way, so that we may suppose our reactionary

forces, of which Cj (^ — ^i) is a sample, to be absolutely the same

in their effect upon the medium as if they were uniformly

distributed through it.

That takes away one part of our discontent. The only diffi-

culty that I see just now is that of explaining double refraction.

The subject grows upon us terribly, and so does our want of

time. If it is not too much for you I must have one of our

double lectures to-morrow.

[Twice* in this Lecture, and indeed many times in preceding

and subsequent Lectures, I felt the want of a full mathematical

investigation of spherical waves originating in the application of

force to an elastic solid within a limited space. I have therefore

recently undertaken this work^f, and I give the following statement

of it as an addition to Lecture XIV.

,y^ § 1. The complete mathematical theory of the propagation of

motion through an infinite elastic solid, including the analysis of

the motion into two species, equivoluminal and irrotational, was

first given by Stokes in his splendid paper "On the Dynamical

Theory of Diffraction ij:." The object of the present communication

is to investigate fully the forcive which must be applied to the

boundary, S, of a hollow of any shape in the solid, in order to

originate and to maintain any known motion of the surrounding

solid ; and to solve the inverse problem of finding the motion

* p. 188, and pp. 189, 190.

t Communicated to R. S. E. on May 1, 1899, and published in Phil. 3Iag. May,

Aug. and Oct., 1899 under the title " On the Application of Force within a Limited

Space, required to produce Spherical Solitary Waves, or Trains of Periodic Waves,

of both species, Equivoluminal and Irrotational, in an Elastic Solid."

X Stokes, Mathematical Papers, Vol. ii. p. 2i3.
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when the forcive on, or the motion of, S is given, for the particular Molar,

case in which S is a. spherical surface kept rigid.

§ 2. Let ^, 7), ^ denote the infinitesimal displacement at any

point of the solid, of which {x, y, z) is the equilibrium position.

The well-known equations of motion* are

d^^ dS
pd=(^ +»^+nV%

dt dx

dh) /J ^ \ dS _,

dt

d^i; d8

Pdh^^ + i'^^dz+'^'^'j

(1),

where 8 denotes -r + ^ + ^ . Using the notation of Thomson
dx dy dz °

and Taitf for strain-components (elongations ; and distortions),

e, f, g; a, b, c; we have

e = dl.
dx '

dr) d^

dz dy'

J dy'

dx dz '

9 =
dX
dz'

d^ dr)

dy dx

m\

and with the corresponding notation F, Q, R; S, T, U, for stress-

components (normal and tangential forces on the six sides of an

infinitely small rectangular parallelepiped), we have

P=(k + ln)e+ (k- inXf+g); Q={k + in)f+{k - ln)(g + e);)

R = ik + in) g+{k- |w) (e +/) (3).

S=na; T=nb; U=nc J

Let now a be an infinitesimal area at any point of the surface

S; \, /M, V the direction-cosines of the normal ; and Xa, Ycr, Za
the components of the force which must be applied from within to

produce or maintain the specified motion of the matter outside.

We have

-Z=P\+ UiM+Tv\

-Y=Q^Ju+Sv +U\\ (4);

- Z = Rv + T\ + Sfx]

* See my paper " On the Reflexion and Refraction of Solitary Plane Waves, &c."

Proc. R. S. E. Dec. 1898, and Phil. Mag. Feb. 1899 ; reprinted below in the present

volume.

t Thomson and Tait's Natural Philosophy, § 669, or Elements, § 610.
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whence by (3)

- Z = (A; - |w)x8 + n (2\e + fic + vh) \

- T = {k - In) fjih + n{2fif+ va + \c)\ (5).

-Z ={k- |?i) vh + n {2vg + X6 + imo))

These equations give an explicit answer to the question, What
is the forcive ? when the strain of the matter in contact with 8 is

given. We shall consider in detail their application to the case in

which S is spherical, and the motions and forces are in meridional

planes through OX and symmetrical round this line. Without

loss of generality we may take

z^O; giving i/ = 0, a = 0, 6 = 0, Z = (6).

Equations (5) therefore become

-X = {k-ln)\h+n (2Xe + /ic)]

-Y^{k- |n) yuS + n (2//+ \c)\
.CI).

§ 3. In §§ 5—26 of his paper already referred to, Stokes gives

a complete solution of the problem of finding the displacement

and velocity at any point of an infinite solid, which must follow

from any arbitrarily given displacement and velocity at any

previous time, if after that, the solid is left to itself with no

force applied to any part of it. In a future communication I

hope to apply this solution to the diffraction of solitary waves,

plane or spherical. Meantime I confine myself to the subject

stated in the title of the present communication, regarding which

Stokes gives some important indications in |§ 27—29 of his paper.

§ 4. Poisson in 1819 gave a complete solution of the equation

^ = ^'^'^ (8)

in terms of arbitrary functions of w, y, z, representing the initial

values of w and -^ ; and showed that for every case in which w

depends only on distance (r) from a fixed point, it takes the form

'"=M^('-i)+^('+3 ^'^'

where ^ and / denote arbitrary functions. In my Baltimore

Lectures of 1884 (pp. 46, 86, 87 above) I pointed out that solutions
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expressinf^ spherical waves, whether equivoluminal (in which there Molar,

is essentially different range of displacement in different parts of

the spherical sinface) or ii'rotational (for which the displacement

may or may not be different in different parts of the spherical

surface), can be very conveniently derived from (9) by differen-

tiations with respect to x, y, z. It may indeed be proved, although

I do not know that a formal proof has been anywhere published, that

an absolutely general solution of (8) is expressed by the formula

r = sj\_{x-xj^{y-yj^{z-z)^ (10),

where S denotes sums for different integral values of h, i, j, and

for any different values of cc', y', z .

§ 5. I propose at present to consider only the simplest of all

the cases in which motion at every point {x, 0, 0) and (0, y, z) is

parallel to X'X ; and for all values of y and z, ^ is the same for

equal positive and negative values of x. For this purpose we of

course take x' = y' = z' = 0; and we shall find that no values of h,

i,j greater than 2 can appear in our expressions for ^, t], ^, because

we confine ourselves to the simplest case fulfilling the specified

conditions. Our special subject, under the title of this paper,

excludes waves travelling inwards Irom distant sources, and there-

fore annuls f{t + rjv).

§ 6. In §§ 5—8 of his paper Stokes showed that any motion

whatever of a homogeneous elastic solid may, throughout every

part of it experiencing no applied force, be analysed into two

constituents, each capable of existing without the other, in one of

which the displacement is equivoluminal, and in the other it is

irrotational. Hence if we denote by (^j, t^i, ^j) the equivoluminal

constituent, and by (^o, t).^, Q the irrotational constituent, the

complete solution of (1) may be written as follows :

—

f=li + e.; v = v.-\-v.\ r = ?: + ?. (11).

where ^i, 771, ^1 and fo, 772, ^2 fulfil the following conditions, (12)

and (13), respectively:

—

dx dy dz '

T. L. 13

...(12);
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_ ^""^ _ c?w _dw '

^^~^' '^'"rfy' ^"'Tz'

w being any solution of V (13).

_., dhu k + f^n

The first equation of (12) shows that in the (fi, t/j, ^i) con-

stituent of the solution there is essentially no dilatation or con-

densation in any part of the solid ;
that is to say, the displacement

is equivoluminal. The first three equations of (13) prove that in

the {^2,^2, K'i) constituent the displacement is essentially irrota-

tional.

I 7. We can now see that the most general irrotational

solution fulfilling the conditions of § 5 is

. = *^..=_iL^.. .=JL^ (14)
^^ dx" r ' '" dxdy r ' ^' dxdz r ^ ^'

giving

dx dy dz v^ dx r

and the most general equivoluminal solution fulfilling the same

conditions is

^'~dx^r u-'r'
'^' dxdyr' ^' dxdz r ^ ^'

giving

§^ + "^ + §^ = (150,
dx dy dz

where F^ and F., are put for brevity to denote arbitrary functions

of I ^ ) and f ^
j
respectively. Hence the most general solu-

tion fulfilling the conditions of § 5 is

dx^ r ?tV
' dxdy r

''

dxdz r

where for brevity <}> denotes a function of r and t, specified as

follows :

—

4>(r,t) = F,{t-'^yF,(t-l^ (17).

Denoting now by accents differential coefficients with respect to r,
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and retaining the Newtonian notation of dots to signify differential Molar,

coefficients with reference to t, we have

Working out now the differentiations in (IG), we find

I ^.3 ^,4 ^.5
J ^.2 ^.a ^^2j.

(4>" 3(f)' 3(6

.(18).

.(19).

§ 8. For the determination of the force-components by (7), we

shall want values of S, e,f, and c. Using therefore (2) and going

back to (16) we see that

" dx u- dy r
.(20).

Hence, and by (19), we find

c = yri
/^'_6^ 150'_15^\ (f>^_^ H

^*4 ^.5 ^*6 ^.7 / ,^»3 ^.4 ^»5

1 F, 1 i^i
.(21).

By (16), (W), and (15') we find

. 1 d F. /I ^. 1 F.

w- (Xa; r V?'- v^ 7'^ v^
.(22);

and by (19) directly used in (2) we find

y2 ^fS J.3 ^^:
~

(' V r* r" ?•" ?•''
)

J
j

I ^4 ^5 "" y.6 T"^ ] V^ )'* T^

yi ^.* ' ^.5 '
""

» - "^ '

(23).

Remark here how by the summation of these three formulas we

find for e +/+ g the value given for S in (22).

13—2
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§ 9. These formulas (22) and (23), used in (5), give the force-

components per unit area at any point of the boundary (/Sf of § 1)

of a hollow of any shape in the solid, in order that the motion

throughout the solid around it may be that expressed by (19).

Su^oposing the hollow to bo spherical, as proposed in § 2, lot its

radius be q. We must in (23) and (5) put

(fk; y = cnx\ z-^qv •(24);

and putting v = 0, we have, as in (7), the two force-components for

any point of the surface in the meridian z = 0, expressed as

follows :

—

X = {k- %n) av - n [^\'A + 2 (2\= + 1) 5 -f (\= -h 1) C,]

Y ={k- p) C.AfJu - nXfx {2A + 4<B + C.)

where

..(25),

A=

r

c\
qu^

t q'

3^'
-?- +

3cl>

^x
qhi''

S,

.(26),

qv^ q^v^

<l> and S^ denoting and F with q for r.

§ 10. Returning now to (19), consider the character of the

motion represented by the formulas. For brevity we shall call

XX' simply the axis, and the plane of YY', ZZ' the equatorial

plane. First take y = 0, 2^ = 0, and therefore x = r. We find by

aid of (18)

(axial) ^ = -:^^ + 4f- + -U^(i^i + i^.); ^ = 0; r=0...(27).

Next take x = and we find

(equatorial) |=-1J- 1 (^^ + f) - ^3(^1 +^0; V = 0; ^=0

(28).
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Hence for very small values of r we have Molar.

(29);

(axial)^=.^3(i^, + i^,)

(equatorial) | = - 1 (iP, + F.;}

and for very large values of r,

(axial) t=. 7

(30).

1 V
(equatorial) ^ = \

Thus we see that for very distant places, the motion in the

axis is approximately that due to the irrotational wave alone ; and

the motion at the equatorial plane is that due to the equivoluminal

wave alone : also that with equal values of F^ and Fn, the equi-

voluminal and the irrotational constituents contribute to these

displacements inversely as the squares of the propagational

velocities of the two waves. On the other hand, for places very

near the centre, (29) shows that both in the axis and in the

equatorial plane the irrotational and the equivoluminal con-

stituents contribute equally to the displacements.

§ 11, Equations (25) and (26) give us full specification of

the forcive which must be applied to the boundary of our spherical

hollow to cause the motion to be precisely through all time that

specified by (19), with F^ and F.^ any arbitrary functions. Thus

we may suppose F^ (t — qju) and F,, (t — q/v) to be each zero for all

negative values of t, and to be zero again for all values of t exceed-

ing a certain limit r. At any distance r from the centre, the

disturbance will last diirincf the time

!- (31).

from t^'^—^ to t='—^+T,
V V

V — Q V — q I

and from t = to t= + r
XL u I

Supposing V > u, we see that these two durations overlap by

an interval equal to

V u
I

.(32),
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On the other hand, at every point of space outside the radius

q + rjilju — Ajv) the wave of the greater propagational velocity

passes away outwards before the wave of the smaller velocity

reaches it, and the transit-time of each wave across it is r. The

solid is rigorously undisplaced and at rest throughout all the spaces

outside the more rapid wave,, between the two waves, and inside

the less rapid of the two.

§ 12. The expressions (25) and (26) for the components of the

surface-forcive on the boundary of the hollow required to produce

the supposed motion, involve S^i and ^2- Hence we should have

infinite values for t — or t = r, unless F^ and Fo vanish for t —
and t = T, when r = q. Subject to this condition the simplest

possible expression for each arbitrary function to represent the two

solitary waves of § 11, is of the form

S^ ={l — X'Y, where ^^ = — • 1. .(33).

Hence, by successive differentiations, with reference to t,

24

4(S

.(34).

The annexed diagram of four curves represents these four

functions (33) and (34).

§ 13. Take now definitively

i^,(i-Q=c//(l-xf)^^

.(35),

Xi= t-
2 '

r-q
x^- = [i--,—

^

It -^i.

.(36).
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Molar.

Scale of '^— \ scale of F.

J'= 1^ „ F.-jnz '»
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Consider now separately the equivoUiminal and the irrotational

motions. Using (19), (IS), (35), (34), and taking the eqni-

voluminal constituents, we have as follows :

—

(Equatorial, cc = ; »?i
= 0,

V^ r-i(T ru-T^ J

Cone of latitude 45°, x^ = xy — \r", \

( q^ 60^ 12o^ N

^i = ^1 [^ -3 ^'1 +^^ ^V-,:^ ^^^")

f
Axial, X- — r^, 'r]i = 0,

'2q^ ..
, 24>f

.(37),

.(38),

V * 1 UT ) ]

.(39);

where

^i = (1 - X^' ;
^^(=- (1 - X^-fX^ ; ^^V = - l + 6;^^^ - S^/.

. .(40)

§ 14. Similarly for the irrotational constituents;

[Equatorial, ^ = ; 7/0 = 0,

'Cone of latitude 45°, x" — xy — ^r-,
^

•(«);

7'^i;t ?'?;-T^ (*2)i

Axial, x" = r", rj., = 0,

V ?'•* r-vr rvT-

•(43);

where t^t &c. are given by (40) with ^., for ^1 ; %i and ^^2 heing

given by (36).

§ 15. The character of the motion throughout the solid, which

is fully specified by (19), will be perfectly understood after a

careful study of the details for the equatorial, conal, and axial
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places, shown clearly by (37)... (43) for each constituent, the equi- Molar,

voluminal and the irrotational, separately. The curve J^ in the

diagram of § 12 shows the history of the motion that must be given

to any point of the surface S, for either constituent alone, and

therefore for the two together, in any case in which q is exceed-

ingly small in comparison with the smaller of the two quantities

UT, VT, which for brevity we shall call the wave-lengths. The curve

S' shows the history of the motion produced by either wave when
it is passing any point at a distance from the centre very great in

comparison with its own wave-length. But the three algebraic

functions J^, S', S all enter into the expression of the motion

due to either wave when the faster has advanced so far that its

rear is clear of the front of the slower, but not so far as to make
its wave-length (which is the constant thickness of the spherical

shell containing it) great in comparison with its inner radius.

Look at the diagram, and notice that in the origin at S, a mere

motion of each point in one direction and back, represented by .3^,

causes in very distant places a motion (^) to a certain displace-

ment d, back through the zero to a displacement 1"36 x (i in the

opposite direction, thence back through zero to d in the first

direction and thence back to rest at zero. Remark that the

direction of d is radial in the irrotational wave and perpendicular

to the radius in the equivuluminal wave. Remark also that the

d for every radial line varies invex^sely as distance from the

centre.

§ 16. Draw any line OPK in any fixed direction through

0, the centre of the spherical surface S at which the forcive

originating the whole motion is applied. In the particular

case of §§ 1 2 ... 1 5, and in any case in which F^
[
^ — -

j
and

Fo{t — -\ are each assumed to be, from ^=0 to t=T, of the

form t^ {t — t)' AiP, where i denotes an integer, the time-history

of the motion of P is -Bo + ^i^+ ••• +i?a+i^"+', and its space-history

{t constant and r variable) is 6'_3?-~^-t- (7_.2r~- + ... -f- Gr^^iV^^^) the

complete formula in terms of t and r being given explicitly by (19).

The elementary algebraic character of the formula : and the exact

nullity of the displacement for every point of the solid for which

r>q + vt; and between r = q + v{t — T) and r = q-\-ut, when
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v(t — t)> lit ; and between r = q and r = q + u (t — t), when t> r;

these interesting characteristics of the solution of a somewhat

intricate dynamical problem are secured by the particular character

of the originating forcive at S, which we find according to |§ 8, 9

to be that which will produce them. But all these characteristics

are lost except the first (nullity of motion through all space out-

side the spherical surface r = q + vt), if we apply an arbitrary

forcive to 6'*, or such a forcive as to produce an arbitrary deforma-

tion or motion of 8. Let for example 8 be an ideal rigid spherical

lining of our cavity ; and let any infinitesimal arbitrary motion

be given to it. We need not at present consider infinitesimal

rotation of 8: the spherical waves which this would produce,

particularly simple in their character, were investigated in my
Baltimore Lectures f, and described in recent communications to

the British Association and Philosophical Magazine^. Neither

need we consider curvilinear motion of the centre of 8, because

the motion being infinitesimal, independent superposition of a;-, y-,

^-motions produces any curvilinear motion whatever.

§ 17. Take then definitively S{t), or simply ^, an arbitrary

function of the time, to denote excursion in the direction OX, of

the centre of 8 from its equilibrium-position. Let d~'^ S, d~-S

denote 1 dtS and I dt I dtS. Our problem is, supposing the solid
JO J J

to be everywhere at rest and unstrained when t = 0,to find (f, ij, ^)

for every point of the solid (/ > q) at all subsequent time {t posi-

tive); with

at r=q, ^=S{t), r]=0, ^=0 (44).

These, used in (19), give

^^j^_^^(0^3|ir^_^^'
+ ^.[^i(0 + ^.(0]v 15' L '^^ V J q-

(45),

* If the space inside S is filled with solid of the same quality as outside, the

solution remains alKebraic, if the forcive formula is algebraic, though discontinuous.

The displacement of S ends, not at time t — r when the forcive is stopped, but at

time t = T + 2qlu when the last of the inward travelling wave produced by it has

travelled in to the centre, and out again to r= g.

t Pp. 81—83 and 159, 160 above.

+ B. A. Report, 1898, p. 783; Fhil. Mag. Nov. 1898, p. 494.
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and

S(t) = -

Molar.

Ait)
,

S:M
u V

.(46).

Adding Sq x (46) to (4.5), we find

1 \ /
,j^2 y. W;

whence

:^M = 2^^^ + Sqd-'S(t) (48);

and by this eliminating .JX2 from (46),

9 T

where 9 denotes d/dt, and

^^.(0 = ^(0 (49),

^Xt) = -qu"'(l+jd-^+~d--]S{t) (50).

§ 18. I hope hxter to work out this problem for the case of

motion commencing from rest at t = 0, and S'{t) an arbitrary

function ; but confining ourselves meantime to the case of S
having been, and being, kept perpetually vibrating to and fro in

simple harmonic motion, assume

S(t) = Asin cot (51).

With this, (50) gives

r/3v^ ^ . Sv 1
c^(t) = }iqu" -7— — 1 sineo^H cos w^ (52).

\_\q-w' ) 9''" J

To solve (49) in the manner most convenient for this form of c^(0,

we now have

^i(0 =
a- + - (m + 2v) a + \ (u" + 2v-)

q q-

At)

a^ + 4 (w' + 2y^) --(a + 2v) a

-~^- ^ '.m
d' + -Xu' + 2v-)

12
{u + 2v) a
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[olar. = hqu- X

fSv- . „ ^ „^ 1 / o o „x o) • , u — vf^uv „,--— (u^ + zr) + -„ iv + Svu — U-) + w-y sm wt H —r- + or cos wt
[q^w- (£_ _^^\ qoi \ (^

\R
:^(u^+2i;^)- + ^(«+2t;)^

With J^i thus determined, (48) gives S'-i as follows,

^;(0 2^,(0 3Ag . ,

v^ ir &)-

.(53).

(54).

For f, ?;, ^ by (19) we now have

^=^B{T,t)x'-\
U V

r} = B (r, t) xy

^ = B (r, t) xz

where, with notation corresponding to (2G) above,

1

(55),

B{v,t)
a- V-

3 'SM
^

^,{t^

r—q r — q

.(56).

§ 19. The wave-lengths of the equivoluminal and rotational

waves are respectively — and . ror values oi r very great

in comparison with the greater of these, the second members of

(55) become reduced approximately to the terms involving F^ and

F^. These terms represent respectively a train of equivoluminal

waves, or waves of transverse vibration, and a train of irrotational

waves, or waves of longitudinal vibration ; and the amplitude of

each wave as it travels outwards varies inversely as r.

§ 20. For the case of an incompressible solid we have v = oo
,

which by (53) gives

= — 1% sin &)i (57)

;
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and by (55) we have, for r very great,

f ~ — f/?gsin wt r— —
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Molar.

r

7)'= — ^hq sin cot
xy

.(58),

^ = — Tjliqiiiw (at—

which fully specify, for great distances from the origin, the Avave-

motion produced by a rigid globe of radius q, kept moving to and
fro according to the formula A sin wt.

§ 21. The strictly equivoluminal motion thus represented

consists of outward-travelling waves, having direction of vibration

in meridional planes, and very approximately* perpendicular to

the radial direction, and ami)litude of vibration equal to fA- sin 6,

where 6 denotes the angle between r and the axis. The gradual

change from the simple motion ^=Asinw^ at the surface of the

rigid globe, through the elastic solid at distances moderate in

comparison with q, out to the greater distances where the motion

is very approximately the pure wave-motion represented by (58),

is a very interesting subject for detailed investigation and illustra-

tion. The formulas expressing it are found by putting 'y= oo in

(45), and using this equation to determine Fo{t) in terms of i^j {t);

then using (47) to determine F^ (t) in terms of S(t) given by (51)

;

and then using (55) and (56), for which v = cc makes i, = t, to

determine ^, ?;, ^. They are as follows :

—

^ = B (r, t) x"
qyh
rj 2

, 3(r\ . ^ Sic- . ^ Su
1 ^^, sm tof -I-—;—;;

sin (oti coswt
q-(o-J q-w qo)

q\" Sh u ^ q 3/t .

- -z COS &)Ji -f - —~ sin wt,
rJ z qoi r 2

7] = B (?', t) xy
\ ^ = -S (r, t) xz

.(59),

Rigorously so, if the wave-length and q are each infinitely small in comparison

with r.
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20G

where

LECTURE XIV.

, Sun . , ^u" . ^ Su
1 sin (i)t + ——„sm coti cos cot

q'-co-J (/-ft)- q(o

t, = t-

qV dh u , q ^h .

+ - -^ cos (i)ti—--7r sm cot,
\rj 2 qco r 2

1— q

.(60).
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For the particular case of the wave-length equal to the radius we
have

(l = ^r (^1)'
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which enables us to write simply I/Stt for ulqw in equations (59) Molar,

and (60). For graphic representation of this case we take z = 0,

which makes all the displacements lie in the plane {xy).

§ 22. The accompanying drawings help us to understand

thoroughly the character of the motion of the solid throughout

the whole infinite space around the vibrating rigid globe. They
show displacements and motions of points of which the equilibrium

positions are in the equatorial plane, in the cone of 45° latitude,

y

/
/

4M \t

/
/
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"J /
A
\
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>\
V ^rr '\^\ -T-^ :t r

\
\ / \ y

, \ (\/i r
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',

;
>

Kc ^.--5 1
°

;
"

-,1/"' y If

FiK. 2.

and in the axial line. Fig. 1 represents displacements at an

instant when the globe is moving rightwards through its middle

position. Fig. 2 shows displacements a quarter-period later, when
the globe is at the end of its rightward motion. Each figure shows
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Molar. also the orbit of a single particle of which the equilibrium position

is in the 45° cone, at a distance ^q from the centre of the globe.

The orbital motion is in the direction of the hands of a watch. It

is interesting to see illustrated in fig. 2 how the axial motion is

gradually reduced from + h at the surface of the globe to a very

small range at distance q from the surface, or 2g from the centre,

and we are helped to understand its gradual approximation to

zero at greater and greater distances by the little auxiliary

diagrams annexed, in which are shown by ordinates the magnitudes

of the axial displacements at the two chosen times.

§ 23. The gradual transition from motion h sin cot parallel to

the axis at the surface of the globe, to motion

— - - h sin 6 sin wt
2 r

at great distances from the globe in any direction, is interestingly

illustrated by the conal representations in the two diagrams for

the case 6 = 45". It should be remarked that in reality h ought

to be a small fraction of q, the radius of the globe, practically not

more than ^h), in order that the strains may be within the limits

of elasticity of the most elastic solid, and that the law of simple

proportionality of stresses to strains (Hooke's Ut tensio sic vis) may
be approximately true. In the diagram we have taken h = ^q;
but if we imagine every displacement reduced to -^^ of the amount

shown, and in the direction actually shown, we have a true, highly

approximate representation of the actual motions, which would be

so small as to be barely perceptible to the eye, for a globe of 6 cms.

diameter.

§ 24. Return now to our solution (53), (54), (55), (56) for

arbitrary or periodic motion of a rigid globe embedded in an

isotropic elastic solid of finite resistance to compression and finite

rigidity. For distances from the globe very great in comparison

with q, its radius, that is to say for q/i^ very small, (55) and (56)

become

^ = i?(r,0^-^--^^ 1^ ^^' I (62);

7]'= B (r, t)xy\ ^'= B (r, t) xz J
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r^B (r, t) = '^M_^^.2{t-^'
If V-

Molar,

where t, = t- 9. L = t-'^^
.(63).

Putting now in the equations (62) the value of B (r, t) from

(63), and eliminating S-iit^ by (47), we find

^N-
r^ — X' ,j7i (^,) ^

x"

7^ u" r^

[9^1(^2)

V-.
^y ^i (^i)

,
^2/

y.3 ^^2 •" ^3

r2^x(^2)

?N
a;^ J, (^i) .7-^

+ 3g#(^,)
\

.(64).

The terms of these formulas, having t^ and to respectively for

their arguments, represent two distinct systems of wave-motion,

the first equivoluminal.the second irrotational, travelliag outwards

from the centre of disturbance with velocities u and v.

§ 25. I reserve for some future occasion the treatment of the

case in which S (t) is discontinuous, beginning with zero when
^ = and ending with zero when t=T. I only remark at present

in anticipation that J^j {t), determined by the differential equation

(49), though commencing with zero at ^ = 0, does not come to zero

at t = r, but subsides to zero according to the logarithmic law

(e"'-') as t goes on to infinity ; and that therefore, as the same
statement is proved for ^^_ (t) by (48), neither the equivoluminal

nor the irrotational wave-motion is a limited solitary wave of

duration r, but on the contrary each has an infinitely long

subsidential rear.

§ 26. For the general problem of the globe kept in simple

harmonic motion, hsinwt, parallel to OX, we may write (53)

for brevity as follows :

—

T. L. 14
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J^j (t) =^ (K sin oit + L COS 04),

where
3^2 1

-

,
(m'^ + 2v-) + „ ,

(^' + 3i'« - ?/-) + 1

-^(u' + 'lv^- 1

u — v /Suv

q-Qi-

.(65).

L =
qco xq-o)

+ 1

-^^ (16^ + 2v-) - 1 + ^r-T, (w + 2«)-

In terms of this notation, (64) gives for great distances from the

centre

^ = i^
j

^' ~*'
(A^sin a)t, +L cos cot,) + - [( 3 - 2/i ) sin coL - 2Z cos«^ '-

1

^._hq
|_^(^-gi^^^^^ ^ ZcoswO +^[(3-2/Osina>4-2Zcosa)^J

^ ^ ^ |_^(7^gin„^^+Xcosft)^i)+'^f [(3-2/Osinft>i2-2Xcosa>4]|

(66).

These equations represent two sets of simple harmonic waves,

equivoluminal and irrotational, for which the wave-lengths are

respectively ^irujo), 2'Trv/o). The maximum displacements in the

two sets at points of the cone of semi-vertical angle 6 and axis OX,

are respectively,

.(67).

(equivoluminal) sin 6 — i^{K" 4- L^)
; }

(irrotational) cos ^ ^ V [(3 - 2Kf + 4 L~]

§ 27. The rate of transmission of energy outwards by a

single set of waves of either species is equal, per period, to the

sum of the kinetic and potential energies, or, which is the same,

twice the whole kinetic energy, of the medium between two

concentric spherical surfaces, of radii differing by a wave-length.

Now the average kinetic energy throughout the wave-length in

any part of the spherical shell is half the kinetic energy at the

instant of maximum velocity. Hence the total energy transmitted

J



.(68).
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2)er period is equal to the wave-length multiplied into the surface- Molar.

integral, over the whole spherical surface, of the maximum kinetic

energy at any point per unit of volume : and therefore the energy

transmitted jjer unit of time is equal to the product of the propa-

gational velocity into this surface-integral. Thus we find that the

rates per unit of time of the transmission of energy by the two

sets of waves, of amplitudes represented by (67), are respectively

as follows:

—

47r
(equivoluminal) — pJr(f(o- (K^ + X-) u

27r
(irrotational) -- plrifw- [(8 — 2A')- + 4L'-] v

o

§ 28. The sum of these two formulas is the whole rate of

transmission of energy per unit of time, and must be equal to

the average rate of doing work by the vibrating rigid globe upon

the surrounding elastic solid. Hence if w denote this rate, we

must have

w=^ hY(o' {2n (IC- + D) + v [(3 - 2Ky + 4Z^]| . . .(69).
o

§ 29. To verify this proposition, let us first find the resultant

force, P, with which the globe presses and drags the elastic

solid, and then the integral work which P does per period, and

thence the average work per unit time. Going back to § 9, we

see that P is the surface-integral of X over the spherical surface

of radius q. Hence by the first of equations (25), which, in virtue

of the equations

k + in = pv^; n = pu^ (70),

we may write as follows :

—

X = p [CX'v' - [p^ {A + a) + 2 (2\^ -h 1) 5 + (X^ + 1) G,] u''] . . .(71),

we find

P = ^^ [G.^"' - 2 (^ -f- 55 -f- 26^ + G,) II?

3 Xqv <f \qu (f

= ^\2{v-u)^^+2{v^'-ii^)f\-^^vS+^s\ (72),

q {
qu^ q u- q )

14—2
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jMolecular. where Q denotes ^-rrq^p, being the mass which our rigid globe

would have if its density were equal to that of the elastic solid.

Hence by (65), for simple harmonic motion in period 27r/ft),

P = Qco% \ f ^K'"^^ _ 2Z ""—^ + 8 !^^ ) sin a^t

+ r2/f^-^^ + 2i^*^V^)coso.^
3v

qao,

.(72');
V qo3 q'

or, substituting the values of K and L from (65), and denoting by

D the common denominator,

QarhP =

1^: (.= + 2v^ + ^w) -A (,. _ ,j + J^^ (4«, - .^) sin o>i

cos (W^l-

j

(72").

This may be written for brevity

P = h (a sin (ot + h cos &)^) (72'").

Finally for ?w we have, denoting the period by t,

r

rf^ cos- (at = ^hrbo) (73)
rJo TJo

Qoyh-

2D q \q*co* q-w J q VfM^ q-co'
...(73').

§ 30. To verify the agreement of this direct formula for the

work done, with (69) which expresses the effect produced in

waves travelling outwards at great distances from the centre,

is a very long algebraical process, with K and L in (69) given

by (65). But it becomes very simple by the aid of the following

modified formulas for Si(t) and S'..(t), which are also useful

for other purposes. From (48), (49), and (50), by eliminating

v9^i, we get an equation for JX^ similar to (49), viz..

where

3- + - (u +2v)d + -^ (w" + 2v"-)

q r
.(74).
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We may now write (50) in the form

^\t) = hqu'G sin {wt + a),
|

and similarly i . . C^S),

where the values of G, H, a, jS, are given by the following

equations :

—

Molecular,

Or COS a = -7-, — 1 ; (r sin a =—
q-w qoi

q-Q)-
Hsin^ =

Su

qct)

.(76).

.(77),

From the second of equations (53) we therefore have

(Y /^\ 1 „^ ^/^sin (ft)^ + a) — iV^cos (&)^ + a)
'

^,/^ (0 = ''qi'''G W+W'
and

•^2 Ki^J - nqu n
M'^ + N^

~

where if- and iV"-' denote the terms of the denominator of the

third of equations (53). By the same method of investigation

as that which gave us (69), we now find for the sum of the rates

of transmission of energy

w^-Ph^q^.-
^_^^, (78).

Substituting the values of G, H, M, N, and introducing the

notation Q, we obtain

- (79).
q-w (/ Vfco* q'(o-

q^co
,(<(-+2y-)-l

q-0)"

This agi-ees with the value of lu given by (73') ; and thus the

verification is complete.

§ 31. In (78) the numerator of the last factor shows the

parts due to the equivoluminal and irrotational waves respectively.

Denoting by J the ratio of the energy of the equivoluminal wave

to that of the irrotatioual, we have

J =
2uG'

.(80).
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§ 32. Consider the following four cases :

—

(a) qco very large in comparison with the larger
^

of u and v.

2m
J=

(6) q(o = V.

J =
26

V 3u du^
- + — +—

(c) qco

V...(81).

r 2 [u 3w 9v

13 V'y H '«(

of u and v.

g&) very small in comparison with the smaller

J- —

If V =x> , cases (a) and (b) cannot occur ; and in cases (c), (d)

we see by (81) that J—oo; that is to say, the whole energy is

carried away by the equivoluminal waves. If v is very small in

comparison with u, we find that although J is infinite in cases (a)

-^-^ and (c), it is zero in cases (b) and (d). This to my mind utterly

disproves my old hypothesis* of a very small velocity for irrotational

wave-motion in the undulatory theory of light.

§ 33. Let us now work out some examples such as that

suggested in an addition of March 6, 1899, to this Lecture

(p. 188), but with the simplification of assuming a rigid massless

spherical lining for the cavity, which for brevity I shall call the

sheath. But first let us work out in general the problem of

finding what force in simple proportion to velocity must be

applied to a mass m mounted on massless springs as described

in p. 145 above, to keep the sheath vibrating in simple harmonic

motion h sin cot, and therefore to do the work of sending out the

two sets of waves with which we have been concerned. Let y
be the required force per unit of velocity of m ; so that ye is

the working force that must be applied to m, at any time when
e is its displacement from its mean position. Now the springs,

which must act on the sheath with the force F of (72') above,

must react with an equal force on m because they are massless

;

* " On the Reflexion and Refraction of Light," Phil. Mag. 1888, 2ud half year.
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SO that the equation of motion of in is

»l?=-^+^s («^>-

And, by the law of elastic action of the springs, we have

P = c(e- A sin 0)0 (83),

where c denotes what I call the "stiffness " of the spring-system.

Molar.

§ 34. For e, (83) and (72'") give

and with this in (82) we find

1 -f - sni (i)t-\-- cos wt
cJ c

.(84);

1 ^A . ^
I H— sni (ot + - cos cot

cJ c

a +yco-j sm cot + JO, (l +
f)

sin cot.

which requires that

( 1 + - ) mco'' = a + - jco, and - mco- = h — il + -jyco;

by which, solved for two unknown quantities, yco and mco", we

find

he" Q^s

and

vico'

(a + cf + b'

c [a (a + c) + h-]
.(86).

(a + cy + ¥

If we suppose co and c known, these equations, with (72"), (72"')

for a and 6, tell what mjQ must be in order that the force

applied to maintain the periodic motion of the sheath shall vary

in simple proportion to the velocity ; and they give 7, the mag-

nitude of this force per unit velocity.

§ 85. If we denote by E the maximum kinetic energy of m,

we find immediately from (84),

E ^li-nico^ 1 + -) +^
CJ \c

.(87).

And by (73) we have, for the work per period done on the sheath

byP,
(88).TW = ^rh'cob.



216 LECTURE XIV.

ilolecular. This ought to agree with the work done by 76 per period, being

/:
dt'e 76, which, by (84), is ^Tyw^"^

, ay fbV
,.(89).

The agreement between (89) and (88) is secured by (85).

§ 36. By ( 87), (89), and t« = 27r ; and by (86), (85), we find

E _m _ moy^ _a{a-\- 0) + }}^ ,„^.

rw Tj 27770) 27r6c

which, as we shall see, is a very important result, in respect to

storage of energy in vibrators for originating trains of waves.

§ 37. Remark now that a, h, c are each of the dimensions

of a "longitudinal stiffness," that is to say Force -^Length, or

Mass -^ (Time)^ ; and for clearness write out the full expressions

for a and h from (72") and (72'") as follows;

du~v^ fv? + 2?;^

a = y&)-
q-Q}-

+ 1)-&')— v^Y 4<uv — v'^\

+
q-ar

u~ + 2v-

2u / dv'
+

q-(o
-1 +

+ 1

6 = Q«^22L1££-_2Z

u + 2'«\-

qa>

9u'

qoi yq'^co'^ gW

.(91).

u^ + 2v^ y (u + 2v\-

^'60- qca

§ 38. Let qw be very large in comparison with the larger of w

or V (Case I. of § 32). We have

therefore

a = Uoy — ; b = Uw—
(/W qco

b ' ' TW 27rc
.(92).

This case is interesting in connection with the dynamics of

waves in an elastic solid, but not as yet apparently so in respect

to light.

§ 39. Let qo) be very small in comparison with the smaller of

u or V (Case IV. of § 32). We have

therefore ^ ^ 0^7^;+ 2)^Vga> ^^aja + c)

.(93).
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This case is supremely important in respect to molecular sources Molar.

of light.

§ 40. Let c be very small in comparison with a + Jf-ja. We
have

E . a'lh + h . he" , ,„.,— = —k
; 7&)=^i,—TT, ; 'mco- = c (94).

§ 41. Let c = 00 . We have

— = ,r—i ;
7(u = 6; 111(0' = a (95).

TW zirh ' '
'

This is the simple case of a rigid globe of mass m embedded

firmly in the elastic solid, and no other elasticity than that of the

solid around it brought into play. It is interesting in respect to

Stokes' and Rayleigh's theory of the blue sky.

§ 42. Let V = cc . We have

This case is of supreme interest and importance in respect to

the Dynamical Theory of Light.

§ 43. Take now the particular example suggested in the

addition of March 6, 189!) (p. 188 above), which is specially

interesting as belonging to cases intermediate between those of

§ 38 and § 39 ; a vast mass of granite with a spherical hollow of

ten centimetres diameter acted on by an internal simple harmonic

vibrator of 1006^^ periods per second (being 1000 a/^t)- This

makes w- = 40 x 10«, q-co- = 10^, w = 6324, qco = 31620. Now the

velocities of the equivoluminal and the irrotational waves in

granite* are about 2-2, and 4 kilometres per second; so we have

w = 2-2 X 10^, y = 4 X 10^ Hence, and by (80) and (91),

- = 6-957; -^,= 48-4; -— = 2342-56

;

\
qo) q-ar q^w*

— =12-649; -1^=160; ^ =25600; I. ..(97).
qw q^oy q^w*

^

J= 11-96; a=189-lxQ«^; h = 2559 x Qco^-, | = 7-390

* Gray and Milue, Phil. 3Iag., Nov. 1881.
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olecular. And by (85), (8G), (90) ; with for brevity c = sQco~,

25-09.S' „. VI _ [
189-1 (189-1 + s) + 654-8] s )

^"^
(189-1 + sy + 654-8 ^ ^'^'

'
Q- (189-1 + sf + 654-8 '

B 7-390(189-1 + 5) +25-59 , ,^^ 226~ = ^
^

^ = 1-176 +—
TW zirs s

.(98).

§ 44. As a first sub-case take (§ 41) c = oo : we find by (95),

(97), m= 1891Q; and -fi'/rit; = 1-176. These numbers show that

the kinetic energy of m at each instant of transit through its

mean position, supplies only 1-176 of the energy carried away in

the period by the outward travelling waves ; though its mass is

as much as 189 times that of granite enough to fill the hollow.

Hence we see that if the moving force 76 were stopped the motion

of m would subside very quickly and in the course of six or seven

times T it would be nearl}^ annulled. The not very simple law of

the subsidence presents an extremely interesting problem which is

easily enough worked out thoroughly according to the methods

suitable for § 25 above. Meantime we confine ourselves to cases

in which Ejrw is very large.

§ 45. Such a case we have, under §§ 39, 41, if instead of 1006^
periods per second we have only 1-0065; which makes 5^ = 1000;

qa> = 10 VIO = 31-620
; and, by (93), (95) with still our values of u

and V for granite,

a=l-892xl0«x Qco"- f = 7394 ;
- =1177 (99).

Hence the kinetic energy of m in passing through the middle

of its range is nearly 1200 times the work required to maintain

its vibration at the rate of 10065 periods per second : and the

value found for a, used in (95), shows that m, supposed to be a

rigid globe filling the hollow, must be 189 million times as dense

as the surrounding granite, in order that this period of vibration

can be maintained by a force in simple proportion to velocity.

(See § 40.) It is now easy to see that if the maintaining force

is stopped, the rigid globe will go on vibrating in very nearly the

same period, but subsidentially according to the law

-J_lr 2 J.

he ^^'' sin (100);
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and there will be the corresponding subsidence in the amplitudes Molecular,

of the two sets of waves travelling outwards in all directions at

great distances from the origin, when, according to the pro-

pagational velocities u, v, the effects of the stoppage of the

maintaining force reach any particular distance.

It is quite an interesting mathematical problem, suggested at

the end of § 44, to fully determine the motion in all future time,

when m is left with no applied force, after any given initial

conditions, with any value, large or small, of m/Q.

§ 4G. Returning now to the maintenance of vibrations at

the rate of 1006^ periods per second; and «, v for granite; and

q = 5 cm., all as in § 43 ; see (98) and remark that, to make
J^/t2v very large, s must be a very small fractional numeric ; and

this makes m/Q =s. To take a vibrator not differing greatly in

result from the violin string suggested in the addition of March 6

(p. 188), let tu be a little ball of granite of -^ cm. diameter. This

makes m = Q/8000, and therefore (§ 40) s = 1/8000. Hence by

(98), E/Ttu= 1808001, from which, with what we know of wave-

motion, we infer that if m be projected with any given velocity, V,

from its position of equilibrium, it will for ever after vibrate,

with amplitude diminishing according to the formula

Oe^^«°"-sin ^- (101).
T

Thus during 3,616,002 periods the range of m will be reduced in

the ratio of e to 1 (say approximately 2f to 1), by giving away its

energy to be transmitted outwards by the two species of waves,

of which, according to J of (97), the equivoluminal takes twelve

times as much as the irrotational.]



LECTURE XY.

Tuesday, October 14, 5 p.m.

leeular. RETURNING to our model, we shall have in a short time a state

of things not very different from simple harmonic motion, if we

get up the motion very gradually. We have now an exciting

vibration of shorter period than the shortest of the natural

periods. We must keep the vibrator going through a uniform

range. We are not to augment it, and it will be a good thing

to place something here to mark its range. [This done.] Keep it

going long enough and we shall see a state of vibration in which

each bar will be going in the opposite direction to its neighbour. If

we keep it going long enough we certainly will have the simple

harmonic motion ; and if this period is smaller than the smallest

of the three natural periods, we shall, as we know, have the alternate

bars going in opposite directions. Now you see a longer-period

vibration of the largest mass superimposed on the simple har-

monic motion we are waiting for. I will try to help towards

that condition of affixirs by resisting the vibration of the top

particle. In fact, that particle will have exceedingly little motion

in the proper state of things (that is to say, when the motion is

simple harmonic throughout), and it will be moving, so far as it

has motion at all, in an opposite direction to the particle im-

mediately below it. It is nearly quit of that superimposed

motion now. We cannot give a great deal of time to this, but

I think we may find it a little interesting as illustrating

dynamical principles. Prof Mendenhall is here acting the part

of an escapement in keeping the vibrator to its constant range.

We cannot get quit of the slow vibration of the particle. A
touch upon it in the right place may do it. A very slight touch
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is more than enough. I have set it the wrong way. Now we Molecular,

have got quit of that vibration and you see no sensible motion

of ms at all. These two, {m.^, m^), are going in opposite directions,

and the lower one in opposite direction to the exciter. There-

fore this is a shorter vibration than the shortest natural period.

Now I set it to agree with the shortest of the periods, the first

critical position. If we get time in the second lecture to-day,

I am going to work upon this a little to tr}^ to get a definite

example illustrating a particle of sodium. Before we enter upon

any hard mathematics, let us look at this a little, and help our-

selves to think of the thing. What I am doing now is very

gradually getting up the oscillation. I am doing to that system

exactly what is done to the sodium molecule, for example, when

sodium light is transmitted through sodium vapour. We may feel

quite certain, however, that the energy of vibration of the

sodium molecule goes on increasing during the passage through

the medium of at least two-hundred thousand waves, instead

of two dozen at the most perhaps that I am taking to get up

this oscillation. But just note the enormous vibration we have

here, and contrast it with the state of things that we had just

before. The upper particle is in motion now and is performing

a vibration in the same period and phase as the lower particle,

only through comparatively a very small range. The second

particle, I am afraid, will overstrain the wire. (By hanging up a

watch, bifilarly, so that the period of bifilar suspension approxi-

mately agrees with the balance wheel, you get likewise a state

of wild vibration. But if you perform such experiments with a

watch, you are apt to damage it.) This, which you see now, is

a most magnificent contrast to the previous state of things when

the period of the exciter was very far from agreeing with any of

the fundamental periods.

We will now return to our molar subject, the elastic solid.

You will see a note in the paper of yesterday to which I have

referred, stating that the thlipsinomic method is more convenient

than the tasinomic for dealing with incompressibility, and in

point of fact it is so.

I explained to you yesterday Rankine's nomenclature of

thlipsinomic and tasinomic coefficients, according to which, when

the six stress-components are expressed in terms of strain-

components, the coefficients are called tasinomic; and when the
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strain-components are expressed in terms of the stress-components,

the coefficients are called thlipsinomic. [Thus, going back to

Lecture XI. (p. 132 above), we see, in the six equations (1), 36

tasinomic coefficients expressing the six stress-components as

linear functions of the six strain-components : and we see, in

virtue of 15 equalities among the 36 coefficients, just 21 indepen-

dent values, being Green's celebrated 21 coefficients. Use now
those six equations to determine the six quantities e,f, g, a, h, c in

terms of P, Q, R, S, T, U. Thus we find

e = (PF) P + {PQ) Q + (PR) R + (PS) S + (PT) T+(PU)U^

f = (QP)P + {QQ) Q+{QR)R + {QS) S + (QT) T+ (QU) U
g = {RP) P -f- {Ri}) Q + (RR) R + (RS) S -l-' (RT) T+{RU) U
a = (8P) P+{SQ) Q + {SR) R + {SS) S + (ST)T + {8U) U
b = (TP) P + (TQ) Q + (TR) R + (TS) S + (TT) T + (TIT) U
c = (UP)P + {UQ)Q + {UR)R + {US)S+(UT)T + (Uir)U}

in
where (PP), (PQ), &c., denote algebraic functions of 11, 12, 22,

&c., found by the process of elimination. This process, in virtue

of the 15 equalities 12 = 21, &c., gives (PQ) = (QP), &c.; 15

equalities in all. The 21 independent coefficients (PP), (PQ), &c.,

thus found, are what Rankine called the thlipsinomic coefficients.

Taking now from Lecture II., p. 24,

E^^(Pe+Qf+Rg + Sa+Tb+Uc) (2),

and eliminating P, Q, R from this formula by the equations (1)

of Lecture XL, (p. 132), we find the tasinomic quadratic function

for the energy which we had in Lecture II. (p. 23). And eliminat-

ing e, f, g, a, h, c from it by our present six equations, we find the

corresponding thlipsinomic formula for the energy with 21 inde-

pendent coefficients (PP), (PQ), &c.*] In a certain sense, these

coefficients, both tasinomic and thlipsinomic, may be all called

moduluses of elasticity, inasmuch as each of them is a definite

numerical measurement of a definite elastic quality. I have,

however, specially defined a modulus as a stress divided by a

strain, following the analogy of Young's modulus. If we adhere

to this definition, then the tasinomic coefficients are moduluses,

and the thlipsinomic coefficients are reciprocals of moduluses.

* Compare Thomson and Tail, § G73, (12)— (20).
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In the Lecture notes in your hands for today you see the Molar,

thlipsinomic discussion of the question of compressibility or in-

compressibility ; which is much simpler than our tasinomic

discussion of the same subject in which we failed yesterday. You
see that if the dilatation, e -\-f+g, be denoted by 8, you have

S = [(PP) + {QP) + (RP)] P + [(PQ) + (QQ) + (RQ)] Q
+ [{PR) + (QR) + (RR)] R + [(PS) + (QS) + (RS)] S

+ [(PT) + (QT) + {RT)]T + [{PU) + {QU) + (RU)]U (8).

Thus if P is the sole stress, a dilatation [(PP) + (QP) + (RP)] P
is produced ; and if S is the sole stress, a dilatation

[(PS) + (QS) + (RS)]S

is produced. We see therefore that *S', a kind of stress Avhich in

an isotropic solid would produce merely distortion, may produce

condensation or rarefaction in an a^olotropic solid. The coefficients

of P, Q, R, S, T, U in our equation for S may be called compressi-

bilities. Their reciprocals are (according to my definition of a

modulus) moduluses for compressibility. In an isotropic solid,

each of the last three coefficients vanishes ; and the reciprocal of

each of the others is three times what I have denoted by k
(Lecture IL, p. 25), and called the compressibility-modulus or the

bulk-modulus, being P/B, where P denotes equal pull, or negative

pressure, in all directions.

An ffiolotropic solid is incompressible if, and is compressible

unless, each of the six coefficients in our formula for S vanishes.

That is to say, it is necessary and sufficient for incompressibility

that

(PP) + (QP) + (RP) =

(PQ)+(QQ)+(RQ) =
(PR) + (QR) + (RR) =

(PS) +(QS)+(RS)=0
(PT) + (QT) + (RT) =

(PU)-v(QU)+(RU)=()

(4).

Thus we see that six equations among the 21 coefficients suffice

to secure that there can be no condensational-rarefactional wave,

or, what is the same thing, that, in every plane wave, the vibration

must be rigorously in the plane of the wave-front ; and therefore

that Green was not right when, in proposing to confine himself
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olar. " to the consideration of those media only in which the directions

of the transverse vibrations shall always be accurately in the

front of the wave," he said*, "This fundamental principle of

Fresnel's theory gives fourteen relations between the twenty-one

constants originally entering into our function." What Green

really found and proved was fourteen relations ensuring, and

required to ensure, that there can be plane waves with direction

of vibration accurately in the plane of the wave, if there can also

be condensational-rarefactional waves in the medium. What we
have now found is that not fourteen, but only six, equations suffice

to secure inconipressibility and therefore to compel the direction

of the vibration in any actual plane wave to be accurately in the

plane of the wave.

[March 7, 1899.—I have only today found an interesting and

instructive mode of dealing with those six equations of incom-

pressibility, which I gave in this Baltimore Lecture of October 14,

1884. By the first three of them, eliminating (PP), (QQ), (RR),

and by the other three, (PS), (QT), (RU) from the equation of

energy, we find

2E = -[(QR)(Q- Ry + (RP) (R -Py- + ( PQ) (P - Qf]

+ 2{[(QU)U-{RT)T]{Q-R)+[{RS)S-(PU)U](R-P)

+ [{PT)T-m)S]{P-Q)]
+ (SS) S"~ + (TT) T"' + ( UU) U'

+ 2[{TU)TU+{US) lTS + iST)ST] (5).

In this, P, Q, R appear only in their differences, which is an

interesting expression of the dynamical truth that if P = Q = i2,

they give no contribution to the potential energy.

The three differences Q — R, R — P, P — Q, are equivalent to

only two independent variables ; thus if we put P - Q= V and

P — R= W, we have Q — R= W — V, and the expression for E
becomes a homogeneous quadratic function of the five indepen-

dents V, W, S, T, U, with fifteen independent coefficients, which

we may write as follows :

—

E=l{( VV) V^ + {WW) W^- + (.S'^') ;S'-= + (TT) T' +(UU) U^]

+ {VW)VW +{V8)VS +{VT)VT + {VU)VU
-\-{WS)W8 +{WT)^¥T+{WU)WU
+ (8T)ST +(8U)SU +{TU)TU (6).

* Green, Collected Papers, p. 293.
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The differential coefficients of this with reference to S, T, f/" Molar.

are of course as before, a, b, c. Denote now by h and i its

differential coefficients with reference to V and W. Thus we find

h= (VV)V+ (VW)W+ {VS)S+ (VT)T+ (VU)U\

i = {WV)V + (WW)W + {WS)S + {WT)T + (WU)U
a= {SV)V+ (SW)W+ (SS)S+ (ST) T + {SU)u[---0);

h= {TV)V+ (TW)W+ (TS)S+ (TT)T+ (TU) U
c= (UV)V+ {UW)W+ (U8)S+ (UT)T+(UU)U,

and we have
E^^{hV + {W+aS + bT+cU) (8).

The dynamical interpretation shows that h must represent —
f,

and i must represent — g, when V and W represent P — Q,

and P-R.
Solving the five linear equations (7) for V, W, S, T, U, we

find the tasinomic expressions for the five stress-components in

terms of the five strain-components, which we may write as

follows :

—

V = (hh) h + (hi) i + (ha) a + (hh)b + (he) c\

W = (ih) h + (ii) i -f (ia) a -\- (ib) b + (ic) c

S = (ah) h + (ai) i -{ (aa) a + (ab) b + (ac) c V (9).

T = (bh) h + (bi) i + (ba) a + (bb) b + (be) c I

U = (ch) h + (ci) i + (ca) a + (cb) b + (cc) cj

The algebraic process shows us that

(hi) = (ih); (ha) = (ah); &c (10);

so that we have now found the 15 independent tasinomic coeffi-

cients from the 15 thlipsinomic. Lastly, eliminating by (9)

V, W, S, T, U from (8), we find the tasinomic quadratic expressing

the energy.]

As I said in the first lecture, one fundamental difficulty is

quite refractory indeed. In the wave-theory of light the velocity

of the wave ought to depend on the plane of distortion. If you

compare the details of motion in the wave-surface* worked out

for an incompressible seolotropic elastic solid, with equalities

enough among the coefficients to annul all skewnesses, you will

see that it agrees exactly with Fresnel's wave-surface but that

instead of the direction of the line of vibration of the particles as

* Lecture XII., p. 137 ; Lecture XIH., p. 175.

T. L. 15



226 LECTURE XV.

in Fresnel's construction we have the normal to the plane of distor-

tion as the direction on which the propagational velocity depends.

I see no way of getting over the difficulty that the return

forces in an elastic solid—the forces on which the vibration

depends—are dependent on the strain experienced by the solid

and on that alone. I have never felt satisfied with the ingenious

method by which Green got over it. Stokes quotes in his report

on Double Refraction, page 265 (British Association 1862): "In
" his paper on Reflection, Green had adopted the supposition of

" Fresnel that the vibrations are perpendicular to the plane of

" polarization. He was naturally led to examine whether the laws

" of double refraction could be explained on this hypothesis.

" When the medium in its undisturbed state is exposed to pressure

" differing in different directions, six additional constants are intro-

" duced into the function 0, or three in the case of the existence of

" planes of symmetry to which the medium is referred. For waves

" perpendicular to the principal axes, the directions of vibration

" and squared velocities of propagation are as follows :

—

Wave normal X y z

Direction of vibration -i

\

X G + A _N+B M+C

y N+ A H +B L + C

z M + A L + B I+C

"Green assumes, in accordance with Fresnel's theory, and with

"observation if the vibrations in polarized light are supposed

"perpendicular to the plane of polarization, that for waves

" perpendicular to any two of the principal axes, and propagated

" by vibrations in the direction of the third axis, the velocity of

" propagation is the same."

Let us see what this statement means before considering

whether it may be verified, as Green supposes, by the introduction

of "extraneous pressure." Consider waves having their fronts

parallel to the sidesN and W (North and West) of this box, which

are perpendicular to two of the three principal axes of the crystal,

and such having its vibrations in the direction of the third axis (up

and down). Take first the wave that is propagated south as I hold
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the box. There is the plane of the wave (iV}. The vibration up Molar.

and down with N held fixed will give a shear like that marked 1,

in which a square becomes a rhombic figure. That represents the

strain in the solid corresponding to this first state of motion. Simi-

larly the wave propagated in the eastward direction will give rise

to a shear of this kind marked 2, the vibration still being upward.

The assumption is that one of these sets of waves is propagated

at the same speed as the other. That is to say, the waves which

have their shear in this west plane have the same velocity as

the waves which have their shear in this north plane. The

essence of our elastic solid is three different rigidities, one for

shearing in this plane W, one for shearing in this plane N, and

one for shearing in the other principal plane (the horizontal plane

of our box). The incongruous assumption is that the velocities of

propagation do not depend on the planes of the shearing strain,

and do depend, simply and solely, on the direction of the vibration.

The introduction by Green (in order to accomplish this) of

what he calls " extraneous force," which gives him three other

coefficients has always seemed to me of doubtful validity. In

the little table above, taken from Stokes, L, M, JSf are the three

principal rigidities, the 44, 55, 66 of our own notation. A, B, C
are the effects of extraneous pressure. The table gives the squared

velocities of propagation and waves of different wave-normals and

directions of vibration along the axes. The principal diagonal refers

only to condensational waves, or waves in which the direction

of vibration coincides with the wave-normal. Green's assumption

15—
2^
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makes, for vibrations in the ^--direction, N + B = M+C; which,

with the two corresponding equations for vibrations in the

directions y, z, gives

A-L=B-M=G-K

[March 7, 1899. Addition. On Cauchy's and Green's

Doctrine of Extraneous Force to explain dynamically

Fresnel's Kinematics of Double Refraction*.

§ 1. Green's dynamics of polarization by reflexion, and Stokes'

dynamics of the diffraction of polarized light, and Stokes' and

Rayleigh's dynamics of the blue sky, all agree in, as seems to me,

irrefragably, demonstrating Fresnel's original conclusion, that in

plane polarized light the line of vibration is perpendicular to the

plane of polarization; the "plane of polarization" being defined

as the plane through the ray and perpendicular to the reflecting

surface, when light is polarized by reflexion.

§ 2. Now when polarized light is transmitted through a crystal,

and when rays in any one of the principal planes are examined, it

is found that

—

(1) A ray with its plane of polarization in the principal

plane travels with the same speed, whatever be its direction

(whence it is called the " ordinary ray " for that principal plane)

;

and (2) A ray whose plane of polarization is perpendicular to the

principal plane, and which is called the " extraordinary ray " of

that plane, is transmitted with velocity differing for different

directions, and having its maximum and minimum values in two

mutually perpendicular directions of the ray.

§ 3. Hence and by § 1, the velocities of all rays having their

vibrations perpendicular to one principal plane are the same ; and

the velocities of rays in a principal plane which have their direc-

tions of vibration in the same principal plane, differ according to the

direction of the ray, and have maximum and minimum values for

directions of the ray at right angles to one another. But in the

laminar shearing or distortional motion of which the wave-motion

of the light consists, the "plane of the shear-f-" (or "plane of

the distortion," as it is sometimes called) is the plane through the

* Reprinted, with additions, from the Proc. R. S. E., Vol. xv. 1887, p. 21, and

Phil. Mag., Vol. xxv. 1888, p. 116.

t Thomson and Tait's Natural Philosophy, § 171 (or Elements, § 150).
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direction of the ray and the direction of vibration ; and therefore Molar,

it would be the ordinary ray that would have its line of vibration

in the principal plane, if the ether's difference of quality in

different directions were merely the seolotropy of an unstrained

elastic solid*. Hence ether in a crystal must have something

essentially different from mere intrinsic seolotropy ; something

that can give different velocities of propagation to two rays, of

one of which the line of vibration and line of propagation coincide

respectively with the line of propagation and line of vibration

of the other.

§ 4. The difficulty of imagining what this something could

possibly be, and the utter failure of dynamics to account for double

refraction without it, have been generally felt to be the greatest

imperfection of optical theory.

It is true that ever since 1839 a suggested explanation has

been before the world
;

given independently by Cauchy and

Green, in what Stokes has called their " Second Theories of

Double Refraction," presented on the same day, the 20th of

May of that year, to the French Academy of Sciences and the

Cambridge Philosophical Society. Stokes, in his Report on Double

Refraction f, has given a perfectly clear account of this explana-

tion. It has been but little noticed otherwise, and somehow it

has not been found generally acceptable
;
perhaps, because of a

certain appearance of artificiality and arbitrariness of assumption

which might be supposed to discredit it. But whatever may have

been the reason or reasons which have caused it to be neglected

as it has been, and though it is undoubtedly faulty, both as given

by Cauchy and by Green, it contains what seems to me, in all

probability, the true principle of the explanation, and which is,

that the ether in a doubly refracting crystal is an elastic solid,

unequally pressed or unequally pulled in different directions, by

the \mmoved ponderable matter.

§ 5. Cauchy 's work on the wave-theory of light is complicated

throughout, and to some degree vitiated, by admission of the

* The elementary dynamics of elastic solids shows that on this supposition

there might be maximum and minimum velocities of propagation for rays in

directions at 45° to one another, but that the velocities must essentially he equal for

every tioo directions at 90° to one another, in the principal plane, when the hne of

vibration is in this plane.

t British Association Report, 1862.
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Molar. Navier-Poisson false doctrine* that compressibility is calculable

theoretically from rigidity ; a doctrine which Green sets aside,

rightly and conveniently, by simply assuming incompressibility.

In other respects Cauchy's and Green's " Second Theories of

Double Refraction," as Stokes calls them, are almost identical.

Each supposes ether in the crystal to be an intrinsically seolotropic

elastic solid, having its seolotropy modified in virtue of internal

pressure or pull, equal or unequal in different directions, produced

by and balanced by extraneous force. Each is faulty in leaving

intrinsic rigidity-moduluses (coefficients) unaffected by the equi-

librium-pressure, and in introducing three fresh terms, with

coefficients (A, B, G in Green's notation) to represent the whole

effect of the equilibrium-pressure. This gives for the case of an

intrinsically isotropic solid, augmentation of virtual rigidity, and

therefore of wave-velocity, by equal pullf in all directions, and

diminution by equal positive pressure in all directions ; which is

obviously wrong. Thus definitively, pull in all directions outwards

perpendicular to the bounding surface equal per unit of area to

three times the intrinsic rigidity-modulus, would give quadrupled

virtual rigidity, and therefore doubled wave-velocity ! Positive

normal pressure inwards equal to the intrinsic rigidity-modulus

would annul the rigidity and the wave-velocity—that is to say,

would make a fluid of the solid. And, on the other hand, nega-

tive pressure, or outward pull, on an incompressible liquid, would

give it virtual rigidity, and render it capable of transmitting

laminar waves ! It is obvious that abstract dynamics can show

for pressure or pull equal in all directions, no effect on any physical

property of an incompressible solid or fluid.

§ 6. Again, pull or pressure unequal in different directions, on

an isotropic incompressible solid, would, according to Green's

formula (A) in p. 303 of his collected Mathematical Papers, cause

the velocity of a laminar wave to depend simply on .the wave-

front, and to have maximum, minimax, and minimum velocities

* See Stokes, "On the Friction of Fluids in Motion and on the Equilibrium and

Motion of Elastic Solids," Camh. Phil. Trans., 1845, §§ 19, 20; reprinted in Stokes'

Mathematical and Physical Papers, Vol. i. p. 123; or Thomson and Tait's Natural

Philosophy, §§ 684, 685; or Elements, §§ 655, 656.

t So little has been done towards interpreting the formulas of either writer that

it has not been hitherto noticed that positive values of Cauchy's G, H, I, or of

Green's A, B, C, signify pulls, and negative values signify pressures.
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for wave-fronts perpendicular respectively to the directions of Molecular.

maximum pull, minimax pull, and minimum pull ; and would

make the wave-surface a simple ellipsoid ! This, which would be

precisely the case of foam stretched unequally in different direc-

tions, seemed to me a very interesting and important result, until

(as shown in § 19 below) I found it to be not true.

§ 7. To understand fully the stress-theory of double refraction,

we may help ourselves effectively by working out directly and

thoroughly (as is obviously to be done by abstract dynamics)

the problem of § 6, as follows :—Suppose the solid, isotropic

when unstrained, to become strained by pressure so applied to

its boundary as to produce, throughout the interior, homogeneous

strain according to the following specification :

—

The coordinates of any point M of the mass which were ^, rj, ^

when there was no strain, become in the strained solid

^V«. ^VA ?V7 (1);

Va, VA s/y, or the "Principal Elongations*," being the same

whatever point M of the solid we choose. Because of incompres-

sibility we have
oi^7=l (2).

For brevity, we shall designate as (a, /3, 7) the strained condition

thus defined.

§ 8. As a purely kinematic preliminary, let it be required to

find the principal strain-ratios when the solid, already strained

according to (1), (2), is further strained by a uniform shear, cr,

specified as follows ; in terms of x, y, z, the coordinates of still the

same particle, M, of the solid and other notation, as explained

below :

—

X = ^ \/a + apl
1

y = r]^/^ + a2)m[ (3),

z = ^ \/y + o-pn
J

where p^ OP = X^ \/a + firj ^//3 + vt,^y (4),

with ^-
-f- m- 4-

h'^ = 1, A." -I- yu,'- -f I/- = 1 (5),

and l\ -|- in\x -\- nv = (6);

* See chap. iv. of "Mathematical Theory of Elasticity" (W. Thomson), Trans.

Roy. Soc. Lond. 1856, reprinted in Vol. in. of Mathematical and Physical Papers,

now on the point of being published, or Thomson and Tait's Natural Philosophy,

§§ 160, 164, or Elements, §§ 141, 158.
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X, fjb, V denoting the direction-cosines of OP, the normal to the

shearing planes, and I, in, n the direction-cosines of shearing dis-

placement. The principal axes of the resultant strains are the

directions of OM in which it is maximum or minimum, subject to

the condition

r+'?^+r^=i = (7);

and its maximum, minimax, and minimum values are the three

required strain-ratios. Now we have

if- = x"" -\-
y"" + z-

= ^'a + 7;2/3 -I- ^^7 + 2a {l^ sja + mrj V/S + n^ ^/y)p + (tY- . .(8),

and to make this maximum or minimum subject to (7), we have

diJOM^) di^OAP) dgOM^) ^ ...

where in virtue of (7), and because OM^ is a homogeneous quad-

ratic function of ^, i], ^,

p = OM^

The determinantal cubic, being

(S4-p)- ¥ {M- p) - c^ C^- />) 4- 2abG = (10),

where S€ = ol{1 + 2al\ + o-^X^) . ^^ 13 (1 + 2(rmfx + a^)
;

'^=7(l + 2(r>iz^-l-o-V) (11)

and a = \/{^<y)[(T{mv + n[x) + a-fjiv}] h = \/{<yoL)\_a{n\-\-lv)+a^v\\;

c = \/{a/3) [a {l/j, + m\) + a-Xp,] (12),

gives three real positive values for p, the square roots of which

are the required principal strain-ratios.

§ 9. Entering now on the dynamics of our subject, remark

that the isotropy (§1) implies that the work required of the

extraneous pressure, to change the solid from its unstrained

condition (1, 1, 1) to the strain (a, /3, 7), is independent of the

direction of the normal axes of the strain, and depends solely on

the magnitudes of a, /3, 7. Hence if E denotes its magnitude per

unit of volume ; or the potential energy of unit volume in the

condition (a, /3, 7) reckoned from zero in the condition (1, 1, 1)

;

we have

E = f(cc,/3,ry) (13),
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where yjr denotes a function of which the magnitude is unaltered Molar.

when the values of a, /3, 7 are interchanged. Consider a portion

of the solid, which, in the unstrained condition, is a cube of unit

side, and which in the strained condition (a, /3, 7), is a rectangular

parallelepiped \/a • V/^ • Vt- In virtue of isotropy and symmetry,

we see that the pull or pressure on each of the six faces of this

figure, required to keep the substance in the condition (a, /3, 7), is

normal to the face. Let the amounts of these forces per unit area,

on the three pairs of faces respectively, he A, B, G, each reckoned

as positive or negative according as the force is positive pull,

or positive pressure. We shall take

A+B + G = (14),

because normal pull or pressure uniform in all directions produces

no effect, the solid being incompressible. The work done on any

infinitesimal change from the configuration (a, /3, 7) is

A V(/37) d (Va) + B ^(7^) d (V/S) + G V(a/3) d (^y), ^

or (because a;87 = 1)

^ da + -^r^dp +^ ay
2a 2^ ^ ly '

.(15).

§ 10. Let Sa, SyS, S7 be any variations of a, yS, 7 consistent

with (2), so that we have

(a+8a)(/3 + 8/3)(7 + S7)=l|

and

Now suppose Sot, 8/3, 87 to be so small that we may neglect their

cubes and corresponding products, and all higher products. We
have

Sci_^88 8y^ ^g^g _^ ^g g^ ^ g^g^ ^ ^ ^^^^

.

a /3 7

whence
Say _(8^ h

whence, and by the symmetrical expressions,

28782 = (18).



234 LECTURE XV.

§ 11. Now, if E -\- SE denote the energy per unit bulk of the

solid in the condition

(a + 5a, /3+SI3, y + Sy),

we have, by Taylor's theorem,

where H^, H.,, &c. denote homogeneous functions of ha, h^, Sy of

the 1st degree, 2nd degree, &c. Hence, omitting cubes, &c., and

eliminating the products from Ho, and taking H^ from (15), we
find

where G, H, I denote three coefficients depending on the nature of

the function \|r (13), which expresses the energy. Thus in (19),

with (14) taken into account, we have just five coefficients inde-

pendently disposable. A, B, G, H, I, which is the right number

because, in virtue of a^y = 1, E is b. function of just two indepen-

dent variables.

§ 12. For the case of a = 1, /3 = 1, 7 = 1, we have

J. = 5 = (7 .-= and G = H =1 = G^, suppose
;

which give 8E=^G^ (80" + S/3^ + By^-).

From this we see that 2Gi is simply the rigidity-modulus of the

unstrained solid ; because if we make Sy = 0, we have 8ol = — 8^,

and the strain becomes an infinitesimal distortion in the plane

(wy), which may be regarded in two ways as a simple shear of

which the magnitude is Sa* (this being twice the elongation in

one of the normal axes).

§ 13. Going back to (10), (11), and (12), let a be so small

that cr^ and higher powers can be neglected. To this degree

of approximation we neglect abc in (10), and see that its three

roots are respectively

^~
T?i ^~^ as ' V (20),

* Thomson and Tait's Natural Philosopluj, § 175, or Elements, § 154

%^--a m -64

c- a'

a-^ ^-3
a? ¥
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provided none of the differences constituting the denominators is Molar,

infinitely small. The case of any of these differences infinitely

small, or zero, does not, as we shall see in the conclusion, require

special treatment, though special treatment would be needed to

interpret for any such case each step of the process.

§ 14. Substituting now for £4, M, ^, a, b, c in (20), their

values by (11) and (12), neglecting a^ and higher powers, and
denoting by 8a, 8/3, S7 the excesses of the three roots above

a, /3, 7 respectively, we find

8cc = a \2alX + a" X--

8/3=^ \2am/u,+a-

8y = y <2a))v + a'-

M'-

7 - a

a

/3

(?i\ + Iv)'

p

{ifM + vixy—

^

/3
""

y^ (lu + rnXy
/3 — a

'^ (mv + n/j,)" H21X

^ (mv + nu)' (nX + IvYp -y a — 7 ^

and using these in (19), we find

8E = a(AlX + Bnifi + Cnv)

+ h^(T-{AX'' + B/i"-^ Cv''

+ L {mv + nfxf + M {nX + Iv)" + N{lfi+ mXf]

+ 2(7^ {GPX'' + Hni'iJi- + In-v^

L..(22),

where

L = By-Cl3 M = Co-Ay ^

A^-Ba
/S —

7

7 — a

§ 15. Now from (5) and (6) we find

{mv + nixy = 1 -l^ ~x^ + 2 (/^V

-

m''/j? - if-v"-) (24),

which, with the symmetrical expressions, reduces (22) to

8E=a{AlX + Bmfx, -f Cnv) + ^a' {L + M+ N
+ {A - L)X' + {B - 31) fi' + {C - N) v'

- LP - Mm' - Nil" + 2 [{2G +L-M-N) PX-

+ {2H + M-N-L) m'fi' + {2I+N-L- M) n'v^] )

(25).

§ 16. To interpret this result statically, imagine the solid

to be given in the state of homogeneous strain (a, /3, 7) through-

out, and let a finite plane plate of it, of thickness h, and of very

large area Q, be displaced by a shearing motion according to the

specification (3), (4), (5), (6) of § 8 ; the bounding-planes of the
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plate being unmoved, and all the solid exterior to the plate being

therefore undisturbed except by the slight distortion round the

edge of the plate produced by the displacement of its substance.

The analytical expression of this is

<^=f{p) (26),

where /denotes any function of OP such that

\'dpf{p) = Q (27).
Jo

If we denote by W the work required to produce the supposed

displacement, we have

W=Q\^dphE +W (28),
Jo

BE being given by (25), with everything constant except a, a

function of OP ; and ^/J denoting the work done on the solid

outside the boundary of the plate. In this expression the first

line of (25) disappears in virtue of (27); and we have

+ {A-L)\' + (B- M) ix-' + iG-N) v^'

- LI' - Mm' -Nn^+2[(2G +L-M-N) I'X' )- • • -(29).

+ {2H + M-N-(L)mY

+ {2l + N-L-M) n'v-]\ I

'

dpa'
Jo

When every diameter of the plate is infinitely great in comparison

with its thickness, ^/Q is infinitely small ; and the second

member of (29) expresses the work per unit of area of the plate,

required to produce the supposed shearing motion.

§ 17. Solve now the problem of finding, subject to (5) and

(6) of § 8, the values of I, m, n which make the factor
{ | of the

second member of (29) a maximum or minimum. This is only

the problem of finding the two principal diameters of the ellipse

in which the ellipsoid

[2 {2G + L - M - N)\' - L]x' + {2{2H +M - N - L) fj?
- M]y'

+ \2{2I + N-L-M)v''-N]z"- = co^&t (30)

s cut by the plane

\x + fjiij + vz=0 (31).
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If the displacement is in either of the two directions {I, m, n) thus Molar,

determined, the force required to maintain it is in the direction of

displacement ; and the magnitude of this force per unit bulk of

the material of the plate at any point within it is easily proved

to be

Wj' (32),

where {M] denotes the maximum or the minimum value of the

bracketed factor of (29).

§ 18. Passing now from equilibrium to motion, we see at

once that (the density being taken as unity)

V'={M} (33),

where V denotes the velocity of either of two simple waves whose

wave-front is perpendicular to (\, fj,, v). Consider the case of

wave-front perpendicular to one of the three principal planes

;

(yz) for instance: we have \=0; and, to make
{ } of (29) a

maximum or minimum, we see by symmetry that we must either

have

(vibration perpendicular to principal plane) \

1=1, m= 0, n = o\ (34).

(vibration in principal plane). . .^ = 0, m = — v, n = fi)

Hence, for the two cases, we have respectively

:

YihraXion perpendicular to yz \ .„_.

Vibration in yz...V' = L + B/ju' + Cv^ + ^iH + 1 - L) /m'v- . . .(36).

§ 19. According to Fresnel's theory (35) must be constant, and

the last term of (36) must vanish. These and the corresponding

conclusions relatively to the other two principal planes are satisfied

if, and require that,

A-L = B-M=C-N (37),

and H + I=L; I+G = M; G +H=N (38).

Transposing M and N in the last of equations (37), substituting

for them their values by (23), and dividing each member by jS^,

we find

^7-a/3 78-^7 ^ >'
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whence (sum of numerators divided by sum of denominators),

B-C C-A A-B
(40).

ya — a^ a^ — ^y I3y — ya

The first of these equations is equivalent to the first of (37) ; and

thus we see that the two equations (87) are equivalent to one

only ; and (39) is a convenient form of this one. By it, as put

symmetrically in (40), and by bringing (14) into account, we find,

with q taken to denote a coefficient which may be any function of

(«, yS, 7) :

A = q(S-/3y); B = q{S-ya); C=q(8-a/3)
(41) •

where S = ^ {^y + ya + a/3) j*"^ ^'

and using this result in (23), we find

L = q[a(^+y)-S]; M =q[/3 (y + a)- S]; \

iV = ?[7(« + /3)-'Sn ...(42).

or L = q{2S-l3y); M = q(28-ya); N=q(2S-a^)]

By (2) we may put (41) and (42) into forms more convenient for

some purposes as follows :

—

A=q{8-1); B = q{s-l); ^=g(^'-^) ...(43),

L =
q[28-l);

3I = q{2S-^); N=q{2S-}^)...{U),

Next, we find G, H, I ; by (38), (44), and (45) we have

G + H+I = ^(L + M+N) = lq8 = iq(^^ + ^ + ]^)...{^6),

whence, by (88) and (44),

G^ = ?Q-4'S); H=q(^^-^8y, / = 5(^-|,s)...(47).

§ 20. Using (43) and (47) in (19), we have

^^\ ce 13^ y- \a (3 y)

8a- S;S- §7- , ^ (loL^ S/3' By'\]
.(48).
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Now we have, by (2), log (a^y) — 0. Hence, taking the variation Molecular,

of this as far as terms of the second order,

«5 + f + «7_x(«4 +f + «I=)=0 (49);
a y8 7 \ a- p^ 'f

)

which reduces (48) to

Remembering that cubes and higher powers are to be neglected

we see that (50) is equivalent to

iE=i,s{l +
l
+
l)

(51).

Hence if we take q constant, we have

''Ml^h'y-') <'''

It is clear that q must be stationary (that is to say, 8q = 0) for

any particular values of a, /9, 7 for which (52) holds ; and if (52)

holds for all values, q must be constant for all values of a, /S, 7.

§ 21. Going back to (29), taking Q great enough to allow

^I'/Q to be neglected, and simplifying by (46), (43), and (44), we

find

W (P 111" n-\ [^j, ,.ox
7T = ^ r + ^ + - dp'' (^3);
Q na ' /S 7/^0

and the problem (§ 17) of determining I, m, n, subject to (5)

and (6), to make Pja + m^//S + ifjiy a maximum or minimum for

given values of \ /x, v, yields the equations

&)X, — o)'^ + - = ; &)yci — w'm + ^ = ; cov — co'n + - = (54),
a P 7

w, ft)' denoting indeterminate multipliers ; whence

, P m^ n- .^^.

"=5 + ^ + 7
^'"'^•

„= = ;=(„-_l)V,,„.(„'_iy+ „=(„-_!)' (36X

, / 1 — P m- 71-

V a p 7

fp 1 — m" n"\ . ^.
'»"='"(; -^^+7)- ^ ^"^^-

fP m^ 1 —w
(ov = n \

~ + -=r —
a (3 7
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These formulas are not directly convenient for finding I, m, n

from X, jjb, V, cf. § 83 (the ordinary formulas for doing so need not be

written here) ; but they give \, /m, v explicitly in terms of I, m, n

supposed known ; that is to say, they solve the problem of finding

the wave-front of the simple laminar wave whose direction of

vibration is (I, m, n). The velocity is given by

fP m^ n^\ .^„.

"'^[a + J + y)
(5«>-

It is interesting to notice that this depends solely on the direction

of the line of vibration ; and that (except in special cases, of

partial or complete isotropy) there is just one wave-front for any

given line of vibration. These are precisely in every detail the

conditions of Fresnel's Kinematics of Double Refraction.

§ 22. Going back to (35) and (36), let us see if we can fit

them to double refraction with line of vibration in the plane

of polarization. This would require (86) to be the ordinary ray,

and therefore requires the fulfilment of (38), as did the other

supposition ; but instead of (37) we now have [in order to make

(36) constant]

A=B = C (59),

and therefore each, in virtue of (14), zero ; and

a=/3 = y = l;

so that we are driven to complete isotropy. Hence our present

form (I 7) of the stress-theory of double refraction cannot be fitted

to give line of vibration in the plane of polarization. We have

seen (§ 21) that it does give line of vibration perpendicular to the

plane of polarization with exactly Fresnel's form of wave-surface,

when fitted for the purpose, by the simple assumption that the

potential energy of the strained solid is expressed by (52) with

q constant ! It is important to remark that q is the rigidity-

modulus of the unstrained isotropic solid,

I 23. From (58) we see that the velocities of the waves corre-

sponding to the three cases, / = 1, m= 1, n = 1, respectively are

/^(q/a), \J{ql^), sJiqj'y)- Hence the velocity of any wave whose

vibrations are parallel to any one of the three principal elongations,

multiplied by this elongation, is equal to the velocity of a wave in

the unstrained isotropic solid.
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[§§ 24... 34, added March 1899.] Molar

§ 24. To fix and clear our understanding of the ideal solid,

introduced in § 7 and defined in § 20 (52) and in § 22, take a bar

of it of length I when unstrained, and of cross-sectional area A.

For our present purpose the cross-section may be of any shape,

provided it is uniform from end to end. Apply opposing forces P
to the two ends ; nnd, when there is equilibrium under this stress,

let the length and cross-section be x and A'. We have A' = lA/oc,

because the solid is incompressible. The proportionate shortenings

of all diameters of the cross-section will be equal, as there is no

lateral constraint. Hence if the a, /3, 7 of (52) refer to the length

of our bar and two directions perpendicular to it, we have

a = |; ^ = y = l
(60);

and therefore by (52)

^=k(^! + 2f-3);^
(^i>'

where E denotes the whole work required to make the change

from I to sc in the length of our bar, of which the bulk is lA.

Hence, as P = dEjdx, we find

P = q(-t^^\\lA, and 8P=fic/^Sa; (62).

Hence, denoting by M the Young's modulus for values of w differ-

ing not infinitely little from I, and defining it by the formula

BP-^A' . ,

, we find
Sx-r-

^=39^ (63).

Hence augmentation of length from I to oc diminishes the Young's

modulus, as defined above, in the ratio of /- to a;-.

§ 25. The property of our ideal solid expressed by the con-

stancy of q, to which we have been forced by the assumption of

Fresnel's laws for light traversing a crystal, is interesting in

respect to the extension of theory and ideas regarding the

elasticity of solids from infinitesimal strains, for which alone the

dynamics of the mathematical theory has hitherto been developed,

to strains not infinitesimal. To contrast the law of relation

between force and elongation for a rod of our ideal substance,

as expressed in (62) above, and for a piece of indiarubber cord or

T. L. 16
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indiariibber band, as shown by experiment, is quite an instructive

short lesson in the elements of the extended theory.

§ 26. Ten years ago, because of pressure of other avocations,

I reluctantly left the stress theory of Fresnel's laws of double

refraction without continuing my work far enough to find complete

expressions for the equilibrium and motion of the elastic solid for

any infinitesimal deviation whatever from the condition (a, ^, 7).

Here is the continuation which I felt wanting at that time.

Let {xq, 2/0, z^) be the coordinates of a point of the solid in its

unstrained condition (a = l,)S=l,7 = l); and {x, y, z), the co-

ordinates of the same point in the strained condition (a, /S, 7).

If the axes of coordinates are the three lines of maximum, mini-

max, and minimum elongation, (which are essentially* at right

angles to one another), we have

x = Xo\/oL\ y=yo^J/3; z = Za\/y (64).

Let the matter at the point (x, y, z) be displaced to {x + ^, y + v,

^ + 0; f. V, K having each, subject only to the condition of no

change of bulk, any arbitrary value for every point {x, y, z)

within some finite space >S', outside of which the medium remains

in the condition (a, /3, 7) undisturbed.

Let now the variation of the displacement {^, tj, ^) from point

to point of the solid be so gradual that each one of the nine

ratios

d^ d^ d^ , drj dv drj d^ d^ d^ .

dx ' dy' dz' dx' dy ' dz' dx' dy' dz

is an infinitely small numeric. Consider the system of bodily

forces, which must be applied to the solid within the disturbed

region S, to produce the specified displacement (f, rj, ^). Let

Xfl, Yd, Zn denote components of the force which must be

applied to any infinitesimal volume, H, of matter around the point

(x, y, z). Our directly solvable problem is to determine A^, Y, Z
for any point, ^, r], ^ being given for every point.

§ 27. Our supposition as to infinitesimals, which is that the

infinitesimal strain corresponding to the displacement (^, rj, ^), is

superimposed upon the finite strain (a, /3, 7), implies that if instead

* See Thomson and Tait, § 104.
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of (1^, 7;. ^), the displacement be (c^,cr}, c^), whore c is any numeric Molar,

less than unity having the same value for every point of the

disturbed region, the force required to hold the medium in this

condition is such that instead of X, Y, Z, we have cX, cY, cZ.

Hence if 8E denote the total work required to produce the

displacement (^, rj, ^), we have

8E=^j dxdydz {X^+Yr) + Zi;) (66),

where 1 1 1 dxdydz denotes integration throughout S.

.(67),

§ 28. Now according to (52) we have

=
i</ ffjihdydz (lij' + 7V + a'/3' - ^7 - 7a -

«/3)J

where a', /S', 7' denote the squares of the principal elongations

(§ 7 above) as altered from a, /3, 7, in virtue of the infinitesimal

displacement (^, 7;, f ).

To find a, /3', 7', draw, parallel to our primary lines of reference

OX, OY, OZ, tempoi-ary lines of reference through the point

(' + I' ;'/ + V, 2 + 0> which for brevity we shall call Q. Let P be

a point of the .solid infinitely little distant from Q, and let (f, g, h)

be its coordinates relatively to these temporary reference lines.

Relatively to the .same lines, let {f^, g„, //„) be the coordinates of

the position, P^, which P would have if the whole .solid were

unstrained. We have

^-fj'M'-'^y^^
h

+|/W7

l + f")/^V7

From these we find

PoQ' =/,,- + g,r + Ih,"
,

.(68).

fp^Y = Al- + Bm- + Cif + 2 {amn +bnl + dm) (69),

where I, m, 11 denote
/o Jfo hj^

P,Q' PM' PM'
16—2
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A=a
dxj \axj \dx

B = ^1('^-^T + (l+''''
dy <l'J

--{(ST-u.
dr)

hi1 +
dz

1 +

.(70).

[dy dz \ dy/ dz dy

(V dxJ dz dx dz dx\ dz/]

[\ dx/ dy dx \ dy/ dx dy]

The values of a', ^', 7' are the maximum, minimax, and

minimum values of (69), subject to the condition P + m^ + w"= 1
;

and therefore according to the well-known solution of this problem,

they are the three roots, essentially real, of the cubic

{A-p){B-p){C-p)
- a' (A - p) -b-" {B - p) - c-{G - p) + 2ahc = (71).

Hence, by taking the coefficient of p in the expansion of this, we

find

/3'7' + 7'a' + a'/S' = BC + CA + AB - a" -Jf-c"

= {1 + F)l3'y+{1^ G) ya + {l+H)a^ .. (72),

where F, G, H are symmetrical algebraic functions of the fourth

degree of the nine ratios (05). Omitting all terms above the

second degree, we have

jf = 2 f^ +^U f^^^Y + f^^Y + f^Y

+

\dy dz) \dyl \dz ) \dy/

dy dz dz dy'
.(73),

and .symmetrical expressions for G and H. Going back now to

(67) and remembering that a^ry=l and a'l3'y' = l, and that

a, /3, 7 are constant throughout the solid, we find, by (67),

BE = \q (^
[f

[

dxdydzF + 1 [ff dxdydzG + ^
jlj d^rdydzH) ...{ 74).
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To find
1

1 1 dxdydzF by (73), remark first that by simple in- Molar,

tegration with respect to y and with respect to z we obtain

jjjdxdydz
^^

^
;

jjj
dxdydz

^J
= (75),

because t] and ^ each vauisli through all the space outside the

space S. For the same reason wo find by the well-known integra-

tion by parts [Lecture XIII., equations (7) above]

We thus have

///,..,..^ = jJ/.U.,..{(|)%(|)V(J4f)]..,77).

§ 29. Now the condition a'/^V = 1 gives

d^ dii dK ^ . , .

-7^ -h J + , = + terms involving powers,

and products of" the ratios (78).

Therefore, neglecting higher powers than squares, we get

(rM)'=(iJ (^'*

and (77) becomes

\\l^iyd..F=\ll^dya. {(§)% (|; + (f)]...(S0);

and we have corresponding symmetrical equations for G and H.

With these used in (74), it becomes

,..(81).

Taking any one of the nine terms of (81), the third for example,

and applying to it the process of double integration by parts, we
find

Ij^dxdydz (gy = - jjjc^.%c^.|g (82).
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Hence treating similarly all the other terms, we have

§ 30. This expression for 8E must be equal to that of (66)

above, for every possible value of |, rj, ^. If all values were

possible, we should therefore have tbc coefficients of ^, ?/, ^ in (66)

equal respectively to the coefficients of ^, 77, ^ in (80). But in

reality only values of ^, r}, ^ are possible which fulfil the condition

of bulk everywhere unchanged ; and Lagrange's method of inde-

terminate multipliers adds to the second member of (83), the

following

i///"^^-(i+|+'lj («^)-

This, treated by the method of double integration by parts,

becomes

-=-K2-|-i) (««>•

§ 31. We must now, according to Lagrange's splendidly

powerful method, equate separately the coefficients of ^, ?/, ^
in (66) to their coefficients in (83) with (85) added to it. Thus

we find

a ^ dx' 13 dy y dz ^ ^

as the ec|uations of ecjuilibrium of our solid with every point of

its boundary fixed, and its interior disturbed from the finitely

strained condition (a, P, 7) by forces X, Y, Z, producing infini-

tesimal displacements (^, rj, ^) ; subject only to the condition

^f + *? + ^=0 (88),dx ay dz

to provide against change of bulk in any part. If this equation

were not fulfilled, the equations (87), with ot given by (86), would

be the solution of a certain definite problem regarding a compres-

sible homogeneous solid, having certain definite (juality of perfect

elasticity, in respect to changes of shape and bulk, defined by the

coefficients q and \. From this problem to our actual problem there
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is continuous transition by making A, everywhere infinitely great, Molar,

and therefore the first member of" (88), being the dilatation, zero

;

and leaving ot as a quantity to be determined to fulfil the condi-

tions of any proposed problem. Thus in (87), (88), supposing

X, Y, Z given, we have four equations for determining the foiu'

unknown quantities tn-, ^, /;, ^.

§ 32. Suppose now that the solid, after having been in-

finitesimally disturbed by applied forces from the (a, /t?, 7)

condition, is left to itself According to D'Alembert's principle,

the motion is determined by what the e(|uations of equilibrium,

(87), become with — /c^, — pv, — pK substituted for X, Y, Z
, p

denoting the density of the solid. Thus we hnd for the equations

of motion

Pdf'~a '^~dx' Pdt^~^ ''^~dy'' Pdl'~y'^~dz

(89).

§ 33. We are now enabled by these equations to work out

the problem of wave-motion by a more direct and synthetical

process than that by which we were led to the solution in § 21

above. The simplest mathematical expression defining plane

waves in an elastic solid in terms of the notation of (89) is

^ = Ifip - vt) V = nifip - vt)
; r = nf(p - vt) . • .(90)

;

'ST = F{p-Vt)
)

where X, fi, v are the direction -cosines of the wave-normal, and

I, m, H those of the line of vibration. Our constraint to incom-

pressibility gives

IX + mp. + nv = (91).

Eliminating ^, ij, ^, ot from (89) by (90), we find

I {pv- - qor^) = Xqw \ iii{pv'- — ql3~^) = pqco ; n {pv" — qy~^) = vqo)

(92),

where

q dpi dp-

These equations agree with (.54) if for pv^ we take qto'.
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§ 34. Multiplying equations (92) by

\lipv- - qa-'), fi/(pv- - q^-'), vjipv- - q^y"')

respectively, adding, and using (91), we find

,^'
_i + .^\^,+ .-' ~_,=^0 (94).

pv^ — qoL 1 pv — qp ' pv — qy^

This is a quadratic tor the determination of v'-, with its two roots

essentially real and positive. Again, by the equation

l^+ nv + ?i-= 1,

we find from (92)

^^ " iU— ga-0 + [pv^^M "^
[pV'-qri-') \

"•^^^'^

Equations (94) and (95) give us v~ and w ; and (92) now gives

explicitly I, m, n, when \, fi, v are given. Thus we complete the

determination of {I, m, )i), the direction of vibration, in terms of

(A,, fi, v), the wave-normal, and the constant coefficients

qa.-^, q0-\ qy-\

Our solution is identical with Fresnel's, and implies exactly the

same shape of wave-surface.

[§§ 35... 47, added Ajyril 1901.]

§ 35. It will be convenient henceforth to take n, b, C instead

of a-i, I3~^, y-K Thus, according to § 7 (1), if w^, 2/o, ^o and

X, y, z denote respectively the coordinates of one and the same

particle in the unstrained and in the strained solid, we have*,

^=f; y=f; ^=f 06),

l-a , i-b l-c

where e =^"; /=^~-^'; 9 = '-^ (98).
**'0 iJO *0

From (97) we get

"=1^-.; ^=ilr '^ihj ^»»>'

whence (i + e)(i +/) ,i +j,)= _L = 1 (iqo).

* It would have been better from the beginning to have taken single letters

instead of a" ^, /3"^, 7""^.
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The principal elongations to pass from the unstrained to the Molar,

strained solid are a~S \)~\ C~^ ; and the principal ratios of elonga-

tion from the strained to the unstrained solid are n, t), C. And if

E denote the work per unit volume required to bring the solid

from the unstrained to the strained condition, we have by (52)

E = i^q{a"' + ¥ + t'-'S) (101).

From this, remembering that nbc = 1, we find

P = -(qa-^ + ^)- Q^-(qh'+r^); R ^ - (qt^ + ^) ....(102);

F=eq^^^ly,-^-q;

Q=f^(^y-^-r,^ (i«3)

^ =W7i \. -^ — q
-^^l + gf ^

.

where P, Q, R denote the normal components of force per unit area

(pulling outward when positive) on the three pairs of faces of a

rectangular parallelepiped required to keep it in the state of strain

a, i), t, with principal elongations perpendicular to the pairs of

faces ; and zs denotes an arbitrary pressure uniform in all direc-

tions. The proof is as follows :—Consider a cube of unit edges in

the unstrained solid. In the strained condition the lengths of its

edges are 1/fl, 1/b, 1/C, and the areas of its faces are a, i), C.

Hence the equation of work done to augmentation of energy pro-

duced in changing a, b, C, to a -I- Sa, b + hh, i + hi, is

PaS ^ + QbS g + PcS
J
= 5S^ = (/(aSa + b8b + cSc) (104);

and by abc = 1 (constancy of volume) we have

^-« + «'' + ^ = (103).abc ^

Hence by Lagrange's method

_l'ga-^8b--8cabc
= (5a-h^)ga-H(gb-f^)8b + (ryc + ^)sc (106),

where -sr denotes an " indeterminate multiplier " ; and we have

definitively

- P = 5a- -1- CT ; -^ = gb--f-CT; -R = qt" + vT (107),
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which prove (102). The meaning of -ur here, an arbitrary magni-

tude, is a pressure uniform in all directions, which, as the solid

is incompressible, may be arbitrarily applied to the boundary of

any portion of it without altering any of the effective conditions.

§ 36. By § 3.S (02), we see that the propagational velocities

of waves whose lines of vibration are parallel to OX, OY, OZ are

respectively

V^ '^y '\/l
<^"«>-

Thus the propagational velocity of a wave whose front is parallel

to the plane YOZ (A. = 1, /u,-U, 1^ = 0) is ^a/^^ if its line of

vibration is parallel to OY (1=0, 7/i=l, ii = 0), and is C *
/-

if its line of vibration is parallel to OZ {I, = 0, m = 0, ti =^1)

;

and siuiilarly in respect to waves whose ironts are parallel to

ZX and XY.

For brevity we shall call A a/-, ^ \/ > ^ \/ ^^^^ prin-

cipal velocities of light in the crystal, and OX, OY, OZ its three

principal lines of symmetry. We arc precluded from calling

these lines optic axes, by the ordinary usage of the word axis in

respect to uni-axial and bi-axial crystals.

§ 37. To help us to thoroughly understand the dynamics of

the stress theory of double refraction, consider as an example

aragonite, a bi-axial crystal of which the three principal refractive

indices are 1"5301, 1'6816, 1*6859. If, as according to our stress-

theory, optic asolotropy is due to unequal extension and con-

traction in different directions of the ether within the crystal

with volume unchanged, the principal elongations being in simple

proportion to the three principal velocities of light Avithin it,

annulment of the extension and contraction would give isotrojjy

with refractive index 1'6309, being the cube root of the product

of the three principal indices. Hence, if we call V the pro-

pagational velocity corresponding to this mean index, the three

principal velocities in the actual crystal (being inversely as the

refractive indices) are 10G59F, '9687 F, -90797, of which the
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product is V'^. Hence according to our notation of § 7 and § 85 Molar.

above we have

a-10G59; b = -y687; C = -9679.

§ 38. Let the slotted ellipse in the diagram represent a cross

section of an elliptic cylindric portion of" aragoiiite having its

axis of figure in the direction of maximum elongation of the

ether. Let the diameter A'A be the direction of maximum

Fig. 1.

contraction, and B'B that of minimax (elongation-contraction),

being in fact in this case a line along which there is elongation.

The circle in the diagram shows the undisturbed positions of the

particles of ether, Avhich in the crystal are forced to the positions

shown by the dotted ellipse. The axes of the ellipse are equal
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respectively to 1/10659 and 1/1)087 of the diameter of the

circle.

First, consider waves whose fronts are parallel to the plane

of the diagram. If their vibrations are parallel to OA, the

direction of maximum contraction, their velocities of propagation

are 10059 V. If their vibrations are parallel to OB their

velocities are '9087 V.

Secondly, consider waves whose fronts arc perpendicular to

the plane of the diagram. The propagational velocity of all of

them whose vibrations are perpendicular to this plane is "9079 V,

their lines of vibration being all in the direction of maximum
elongation. If their vibrations are in the plane of the diagram

and parallel to OA, their velocity is 1"0059 V. If their vibrations

are parallel to OB, their velocities are "9087 V. The former of

these is the greatest and the latter the least of the propagational

velocities of all the waves whose vibrations are in this plane : the

ratio of the one to the other is 1100.

§ 89. It is interesting, on looking at our diagram, to think

how slight is the distortion of the ether required to produce the

double refraction of aragonite. If the diagram had been made
for the plane ZOX containing the lines of vibration for greatest

and least velocities (ratio of greatest to least I'lOl), the increase

of ellipticity of the ellipse would not have been perceptible to the

eye. Only about one and a half per cent greater ratio of the

difference of the diameters of the ellipse to the diameter of the

circle would be shown in the corresponding diagram for Iceland

spar (ratio of greatest to least refractivity = I'llS). For nitrate

of soda the ratio is somewhat greater still (1188). For all other

crystals, so far as I know, of which the double refraction has been

measured it is less than that of Iceland spar. With such slight

distortions of ether within the crystal as the theory indicates for

all these known cases, we could scarcely avoid the constancy of

our coefficient q, to the assumption of which we were forced,

§§ 20, 25 above, in order to fit the theory to Fresnel's laws for

light traversing a crystal, irrespectively of smallness or greatness

of the amount of double refraction. Hence we see that, in fact,

without any arbitrary assumption of a new property or new pro-

perties of ether, we have arrived at what would be a perfect

explanation of the main phenomena of double refraction, if we
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could but see how the molecules of matter could so act upon Molecular,

ether as to give a stress capable of producing the strain with

which hitherto we have been dealing. Inability to see this has

prevented me, and still prevents me, from being convinced that

the stress-theory gives the true explanation of double refraction.

( 4 >
/

§ 40. Now, quite recently, it has occurred to me that the

difficulty might possibly be overcome if, as seems to me necessary

on other grounds, we adopt a hypothesis regarding the motion of

ponderable matter through ether, which I suggested a year ago in

a Friday Evening Lecture, April 27th, 1900, to the Royal Insti-

tution (reproduced in the present volume as Appendix B) and

with somewhat full detail in a communication* of last July to the

Royal Society of Edinburgh, and to the Congres Internationale

de Physiquef in Paris last August (Appendix A, below). Accord-

ing to this hypothesis ether is a structureless continuous elastic

solid pervading all space, and occupying space jointly with the

atoms of ponderable matter wherever ponderable matter exists

;

and the action between ponderable matter and ether consists of

attractions and repulsions throughout the volume of space occupied

by each atom. These attractions and repulsions would be essen-

tially ineffective if ether were infinitely resistant against forces

tending to condense or dilate it, that is to say, if ether were

absolutely incompressible. Hence, while acknowledging that ether

resists forces tending to condense it or to dilate it, sufficiently to

account for light and radiant heat by waves of purely transverse

vibration (equi-voluminal waves as I have called them), it must,

by contraction or dilatation of bulk, yield to compressing or

dilating forces sufficiently to account for known facts dependent

on mutual forces between ether and ponderable matter. I have

suggested J that there may be oppositely electric atoms which

have the properties respectively of condensing and rarefying the

ether within them. But for the present, to simplify our sup-

positions to the utmost, I shall assume the law of force between

the atom and the ether within it to be such that the average

density of the ether within the atom is equal to the density of

* Proc. Roy. Soc. Edin. July, 1900 ; Phil. Mag. Aug. 1900.

t Reports, Vol. ii. page 1.

X Conijres Internationule de Physique, Reports, Vol. ii. p. 19 ; also Phil. Mag.

Sept. 1900.
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olecnlar. the undisturbed ether outside, and that concentric spherical sur-

faces within the atom are surfaces of equal density. The forces

between ether and atoms we can easily believe to be enormous in

comparison with those called into play outside the atoms, in virtue

of undulatory or other motion of ether and elasticity of ether;

as for instance in interstices between atoms in a solid body, or

in the space traversed by the molecules of a gas according to

the kinetic theory of gases, or in the vacuum attainable in our

laboratories, or in interstellar space.

§ 41. To fix our ideas let ether experience condensation in

the central part of the atom and rarefaction in the outer part

according to the law explained generall}^ in the first part of § 5,

Appendix A, and represented particularly by the formulas (9) and

(11) of that section, and fully described with numerical and

graphical illustrations for a particular case in §§ 5—8. Looking

Fig. 2.

to cols. 8 and 4 of Table I, Appendix A, we see that, at distance

r—'5() from the centre of the atom, the densit}^ of the ether is

equal to the undisturbed density outside the atom ; and that from

r = 56 to 7* = 1 the density decreases to a minimum, •85, at

7'='865, and augments thence to the undisturbed density, 1, at

the boundary of the atom (?' = 1). In each of the two atoms

represented in fig. 2, the spherical surface of undisturbed density

is indicated by a dotted circle, that of minimum density by a fine

circle, and the boundary of the atom by a heavy circle. Because

the ethereal density decreases uninterruptedl}' from the centre to
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the surface of minimum densit3% the force exerted by the atom on Molecular.

the ether must be towards the centre throughout this spherical

space ; and because the ethereal density increases uninterruptedly

outwards from the surfixce of minimum density to the boundary of

the atom, the force exerted by the atom on the ether must be

repulsive in every part of the shell outside that surface.

§ 42. Suppose now two atoms to be somehow held together in

some such position as that represented in fig. 2, overlapping one

another throughout a lens-shaped space lying outside the surftxce

of minimum ethereal density in each atom. The rarefaction of

the ether in this lens-shaped space is, by the combined action of

the two atoms, greater than at equal distances from the centre in

non-overlapping portions of both the atoms. Hence, remembering

that each atom while attracting the ether in its central parts

repels the ether in every part of it outside the spherical surface of

minimum density, we see that the repulsion of each atom on the

ether in the lens-shaped volume of overlap is less than its repulsion

in the contrary direction on an equal and similar portion of the

ether within it on the other side of its centre. Hence the re-

actions of the ether on the atoms are forces tending to bring them

together; that is to say apparent attractions. These apparent

attractions are balanced by repulsions between the atoms them-

selves if two atoms rest stably as indicated in fig. 2. It seems not

improbable that these are the forces concerned in the equilibrium

of the two atoms of the known diatomic simple gases No, O.,, Ho.

I assume that the law of force between ether and atoms and the

law of elasticity of the ether under this force to be such that no

part of the ether outside the atoms experiences any displacement

in consequence of the displacements actually produced within the

space occupied separately and jointly by the two atoms. This

implies that the ether drawn away from the lenticular space of

overlap by the extra rarefaction there, is taken in to the central

regions of the two atoms in virtue of the attractions of the atoms

on the ether in those regions. In an addition to Lecture XVIII.

on the reflection and refraction of light, I shall have occasion to

give explanation and justification of this assumption.

§ 43. As a representation of an optically isotropic crystal,

consider a homogeneous assemblage of atoms for simplicity taken
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jlecular. in cubic order as shown in fig. 3. Each one of the outermost

atoms experiences resultant force inwards from the ether within

it, and this force is bakinced by repulsion exerted upon it by the

atom next it inside. For every atom except those lying in the

outer faces, the forces which it experiences in different directions

from the ether within it balance one another : and so do the forces

which it experiences from the atoms around it. But each of the

outermost atoms experiences a resultant repulsion from the other

Fig. 3.

atoms in contact with it, and this repulsion outwards is balanced

by a contrary attraction of the ether on the atom. Hence the

outermost atoms all round a cube of the cr3^stal exert an outward

pull upon the ether within the containing cube. In accordance

with the assumption stated at the end of § 42, the position and

shape of every particle of ether outside the atoms is undisturbed

by the forces exerted by the atoms in the spaces occupied by them

separately and jointly; and it is only in these spaces that the

ether is disturbed by the action of the atoms.

§ 44. Suppose now that by forces applied to the atoms as

indicated by the arrow-heads in fig. 4, the distances between the

centres of contiguous atoms are increased and diminished as shown

in the diagram. With this configuration of the atoms the ether

is pulled outwards by the atoms with stronger forces in the

direction parallel to AC, BD than in directions parallel to AB
and CD. Hence as (§§ 42, 43 above) the ether is unstressed and

unstrained in the interstices between the atoms, the ether within

the atoms experiences an excess of outward pulling stress in the
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direction parallel to A C and BD above outward pulling stress in Molecular,

the direction perpendicular to these lines : and therefore, if there

luere no wolotropy of inertia, and if the stress theory which we
have worked out (§§ 35, 36) for homogeneous ether is applicable

Fig. 4.

to average action of the whole ether with its great inequalities of

density in the space occupied by the assemblage of atoms, the

propagational velocity of distortional waves would be greater when

the direction of vibration is parallel to ^Cand BD than when it

is parallel io AB and CD. But alas! this is exactly the reverse

of what, thirteen years ago, Kerr, by experimental research of a

rigorously testing character, found for the bi-refringent action of

strained glass*, the existence of which had been discovered by

Sir David Brewster seventy years previously. We are forced to

admit that one or both of our two "
if"'& must be denied.

I 45. It seems to me now worthy of consideration whether

the true explanation of the double refraction of a natural crystal

or of a piece of strained glass may possibly be that given by

Glazebrook in another paperi* in the same volume of the Philo-

sophical Magazine as Kerr's already referred to. Glazebrook made

* "Experimeuts on the Birefiingent Action of Strained Glass," Phil. Mag. Oct.

1888, p. 339.

t "On the Application of Sir William Thomson's Theory of a Contractile

Ether to Double Refraction, Dispersion, Metallic Reflexion, and other Optical

Problems." Phil Mag. Dec. 1888, p. 524.

T. L. 17
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Molar, the remarkable discovery expressed in his equation (14) (p. 525)

that, when the propagational velocity of the condensational-

rarefactional wave is zero, the two propagational velocities due to

aeolotropic inertia in a distortional wave with same wave-front*

are the same as those given by my equation (94), and originally by

Fresnel ; from Avhich it follows that the wave-surface is exactly

Fresnel's. It is certainly a most interesting result that the wave

surface should be exactly Fresnel's, whether the optic seolotropy is

due to difference of stress in different directions in an incompres-

sible elastic solid, or to aeolotropy of inertia in an ideal elastic

solid endowed with a negative compressibility modulus of just

such value as to make the velocity of the condensational-rare-

factional wave zero. In Glazebrook's theory the direction of

vibration is perpendicular to the line of the ray, and in the

vibratory motion the solid experiences a slight degree of change

of bulk combined with pure distortion. In the stress theory of

§§ 7...34 the line of vibration is exactly in the wave-front or

perpendicular to the wave normal and there is no change of bulk.

§ 46. In Lecture XVIII, when we are occupied with the

reflection and refraction of light, we shall see that Fresnel's

formula for the three rays, incident, reflected, and refracted, when

the line of vibration is in their plane, is a strict dynamical conse-

quence of the assumption of zero velocity for the condensational-

rarefactional wave in both the mediums, or in one of the mediums

only while the other medium is incompressible. But the difficulties

of accepting zero velocity for condensational-rarefactional wave,

whether in undisturbed ether through space or among the atoms

of ponderable matter, are not overcome.

§ 47. It will be seen, (§§ 3, 4, 7, 21, 22, 24, 25, 33, 35, 37, 38,

39, 40, 45 above,) that after earnest and hopeful consideration of

the stress theory of double refraction during fourteen years,

I am unable to see how it can give the true explanation

either of the double refraction of natural crystals, or of double

refraction induced in isotropic solids by the application of unequal

pressures in different directions. Nevertheless the mathematical

investigations of §§ 7... 21 and §§ 24... 34, interesting as they are

* I, VI, n are the direction-cosines of the normal to the wave-front in Glaze-

brook's paper, and X, /u,, v, in my §§ 18, 21, 33, 34 above,
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in the abstract dynamics of a homogeneous incompressible elastic Mola

solid, have an important application in respect to the influence of

ponderable matter on ether. They prove in fact the truth of the

assumption at the end of § 42, however the forces within the atoms

are to be explained ; because any distortion of ether in the space

around a crystal, even so slight as that illustrated in fig. 1, § 38

above, would produce double refraction in air or vacuum outside

the crystal, not quite as intense outside as inside ; not vastly less,

close to the outside ; and diminishing with distance outside but

still quite perceptible, to distances of several diameters of the

mass.

17—2



LECTURE XVI.

Wednesday, October 15, 5 p.m.

[This was a double lecture ; but as the substance of the hrst

part, with amplification partly founded on experimental discoveries

by many workers since it was delivered, has been already repro-

duced in dated additions on pp. 148—157 and 176—184 above,

only the second part is here given.]

I want now to go somewhat into detail as to absolute

magnitudes of masses and energies, in order that there may be

nothing indefinite in our ideas upon this part of our subject ; and

I commence by reading and commenting on an old article of mine

relating to the energy of sunlight and the density of ether.

[Nov. 20, 1899...MarcA 28, 1901. From now, henceforth till

the end of the Lectures, sections will be numbered continuously.]

Note on the Possible Density of the Luminiferous

Medium and on the Mechanical Value of a Cubic

MiLE*t OF Sunlight.

[From Edin. Royal 8oc. Trans., Vol. xxi. Part i. May, 1854 ; Phil. Mag.

IX. 1854 ; Comptes Rendus, xxxix. Sept. 1854 ; Art. Lxvii. of Math, and

Phys. Papers.']

Molar. § 1. That there must be a medium forming a continuous

material communication throughout space to the remotest visible

body is a fundamental assumption in the undulatory Theory

of Light. Whether or not this medium is (as appears^ to

* [Note of Dec. 22, 1892. The brain-wasting perversity of the insular inertia

which still condemns British Engineers to reckonings of miles and yards and feet

and inches and grains and pounds and ounces and acres is curiously illustrated by

the title and numerical results of this Article as originally published.]

t [Oct. 13, 1899. In the present reproduction, as part of my Lee. XVI. of

Baltimore, 1884, I suggest cubic kilometre instead of "cubic mile" in the title and

use the French metrical system exclusively in the article.]

:J:
[Oct. 13, 1899.—Not so now. I did not in 1854 know the kinetic theory of gases.]
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me most probable) a continuation of our own atmosphere, Molar,

its existence is a fact that cannot be questioned, when the

overwhelming evidence in favour of the undulatory theory is

considered ; and the investigation of its properties in every

possible way becomes an object of the greatest interest. A first

question would naturally occur, What is the absolute density of

the luminiferous ether in any part of space ? I am not aware of

any attempt having hitherto been made to answer this question,

and the present state of science does not in fact afford sufficient

data. It has, however, occurred to me that we may assign an

inferior limit to the density of the luminiferous medium in inter-

planetary space by considering the mechanical value of sunlight

as deduced in preceding communications to the Royal Society

[Trans. R. 8. E.; Mechanical Energies of the Solar System; re-

published as Art. LXVI. of Math, and Phys. Papers] from Pouillet's

data on solar radiation, and Joule's mechanical equivalent of

the thermal unit. Thus the value of solar radiation per second

per square centimetre at the earth's distance from the sun,

estimated at 1235 cm.-grams, is the same as the mechanical

value of sunlight in the luminiferous medium through a space

of as many cubic centimetres as the number of linear centimetres

of propagation of light per second. Hence the mechanical value

of the whole energy, kinetic and potential, of the disturbance

kept up in the space of a cubic centimetre at the earth's distance

1235 412
from the sun*, is

3 ^ -^q,,
> or ^0 ^f a cm.-gram.

§ 2. The mechanical value of a cubic kilometre of sunlight is

consequently 412 metre-kilograms, equivalent to the work of one

horse-power for 5'4 seconds. This result may give some idea of

the actual amount of mechanical energy of the luminiferous

motions and forces within our own atmosphere. Merely to com-

mence the illumination of eleven cubic kilometres, requires an

amount of work equal to that of a horse-power for a minute

;

the same amount of energy exists in that space as long as

light continues to traverse it ; and, if the source of light be

* The mechanical value of sunlight in any space near the sun's surface must

be greater than in an equal space at the earth's distance, in the ratio of the square

of the earth's distance to the square of the sun's radius, that is, in the ratio of

46,000 to 1 nearlj'. The mechanical value of a cubic centimetre of sunlight near

the sun must, therefore, be -^^—

—

t-t^q— or about "0019 of a cm.-gram.
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Molecular, suddenly stopped, must pass from it before the illumination

ceases*. The matter which possesses this energy is the lumini-

ferous medium. If, then, we knew the velocities of the vibratory

motions, we might a.scertain the density of the luminiferous

medium ; or, conversely, if we knew the density of the medium,

we might determine the average velocity of the moving particles.

I 3. Without any such definite knowledge, we may assign a

superior limit to the velocities, and deduce an inferior limit to the

quantity of matter, by considering the nature of the motions

which constitute waves of light. For it appears certain that the

amplitudes of the vibrations constituting radiant heat and light

must be but small fractions of the wave-lengths, and that the

greatest velocities of the vibrating particles nuist be very small

in comparison with the velocity of propagation of the waves.

§ 4. Let us consider, for instance, homogeneous plane polarized

light, and let the greatest velocity of vibration be denoted by v
;

the distance to which a particle vibrates on each side of its

position of equilibrium, by A; and the wave-length, by \. Then,

if V denote the velocity of propagation of light or radiant heat,

we have

and therefore if J. be a small fraction of X, v must also be a small

fraction (27r times as great) of V. The same relation holds for

circularly polarized light, since in the time during which a particle

revolves once round in a circle of radius J., the wave has been pro-

pagated over a space equal to \. Now the whole mechanical value

of homogeneous plane polarized light in an infinitely small space

containing only particles sensibly in the same phase of vibration,

which consists entirely of potential energy at the instants when

the particles are at rest at the extremities of their excursions,

partly of potential and partly of kinetic energy when they are

moving to or from their positions of equilibrium, and wholly of

kinetic energy when they are passing through these positions, is

of constant amount, and must therefore be at every instant equal

to half the mass multiplied by the square of the velocity which the

particles have in the last-mentioned case. But the velocity of any

* Similarly we find 4140 horse-power for a minute as the amount of work

required to generate the energy existing in a cubic kilometre of light near the sun.
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particle passing through its position of equilibrium is the greatest Molecular,

velocity of vibration. This we have denoted by v ; and, there-

fore, if p denote the quantity of vibrating matter contained in a

certain space, a space of unit volume for instance, the whole me-

chanical value of all the energy, both kinetic and potential, of the

disturbance within that space at any time is ^pv-. The mechani-

cal energy of circularly polarized light at every instant is (as has

been pointed out to me by Professor Stokes) half kinetic energy

of the revolving particles and half potential energy of the dis-

tortion kept up in the luminiferous medium ; and, therefore, v

being now taken to denote the constant velocity of motion of each

particle, double the preceding expression gives the mechanical

value of the whole disturbance in a unit of volume in the present

case.

§ 5. Hence it is clear, that for any elliptically polarized light

the mechanical value of the disturbance in a unit of volume will

be between ^/o?/- and pv-, if v still denote the greatest velocity of

the vibrating particles. The mechanical value of the disturbance

kept up by a number of coexisting series of waves of different

periods, polarized in the same plane, is the sum of the mechanical

values due to each homogeneous series separately, and the greatest

velocity that can possibly be acquired by any vibrating particle is

the sum of the separate velocities due to the different series.

Exactly the same remark applies to coexistent series of circularly

polarized waves of different periods. Hence the mechanical value

is certainly less than half the mass multiplied into the square of

the greatest velocity acquired by a particle, when the disturbance

consists in the superposition of different series of plane polarized

waves ; and we may conclude, for every kind of radiation of light

or heat except a series of homogeneous circularly polarized waves,

that tJie 'mechanical value of the disturbance kept up in any space

is less than the product of the mass into the square of the greatest

velocity acquired by a vibrating particle in the varying phases of its

motion. How much less in such a complex radiation as that of

sunlight and heat we cannot tell, because we do not know how
much the velocity of a particle may mount up, perhaps even to

a considerable value in comparison with the velocity of propaga-

tion, at some instant by the superposition of different motions

chancing to agree ; but we may be sure that the product of the
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[olecular. mass into the square of an ordinary maximum velocity, or of the

mean of a great many successive maximum velocities of a vibrat-

ing particle, cannot exceed in any great ratio the true mechanical

value of the disturbance.

§ 6. Recurring, however, to the definite expression for the

mechanical value of the disturbance in the case of homogeneous

circularly polarized light, the only case in which the velocities

of all particles are constant and the same, we may define the

mean velocity of vibration in any case as such a velocity that

the product of its square into the mass of the vibrating par-

ticles is equal to the whole mechanical value, in kinetic and

potential energy, of the disturbance in a certain space traversed

by it ; and from all we know of the mechanical theory of undula-

tions, it seems certain that this velocity must be a very small

fraction of the velocity of propagation in the most intense light

or radiant heat which is propagated according to known laws.

Denoting this velocity for the case of sunlight at the earth's

distance from the sun by v, and calling W the mass in grammes of

any volume of the luminiferous ether, we have for the mechanical

value of the disturbance in the same space, in terms of terrestrial

gravitation units,

W ,— -y-,

9

where g is the number 981, measuring in (c.G.S.) absolute units

of force, the force of gravity on a gramme. Now, from Pouillet's

observation, we found in the last footnote on § 1 above,

1235x46000 „ ., u •
i i

• .•
'.

j^
tor the mechanical value, m centimetre-grams,

of a cubic centimetre of sunlight in the neighbourhood of the

sun; and therefore the mass, in grammes, of a cubic centimetre

of the ether, must be given by the equation,

981 X 1235 X 46000

If we assume v = - V, this becomes
71

™ 981 X 1235 X 46000 „ 981 x 1235 x 46000^=
F^ ^ ^'

=
(3x10^0/ ^

"

20-64
= "10^ x^^'gm-;
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and for the mass, in grammes, of a cubic kilometre we have Molecular.

20-64

10^
X IV

§ 7. It is quite impossible to fix a definite limit to the ratio

which V may bear to V; but it appears improbable that it could

bo more, for instance, than J^, for any kind of light following the

observed laws. We may conclude that probably a cubic centimetre

of the luminiferous medium in the space near the sun contains

not less than 516 x 10~^° of a gramme of matter; and a cubic

kilometre not less than 516 x 10~^ of a gramme.

§ 8. [Nov. 16, 1899. We have strong reason to believe that

the density of ether is constant throughout interplanetary and

interstellar space. Hence, taking the density of water as unity

according to the convenient French metrical system, the preceding

statements are equivalent to saying that the density of ether in

vacuum or space devoid of ponderable matter is everywhere

probably not less than 5 x 10~'*.

Hence the rigidity, (being equal to the density multiplied

by the square of the velocity of light), must be not less than

4500 dynes* per square centimetre. With this enormous value

as an inferior limit to the rigidity of the ether, we shall see in an

addition to Lecture XIX. that it is impossible to arrange for a

radiant molecule moving through ether and displacing ether by

its translatory as well as by its vibratory motions, consistently

with any probable suppositions as to magnitudes of molecules

and ruptural rigidity-modulus of ether; and that it is also

impossible to explain the known smallness of ethereal resistance

against the motions of planets and comets, or of smaller ponder-

able bodies, such as those we can handle and experiment upon in

our abode on the earth's surface, if the ether must be pushed

aside to make way for the body moving through it. We shall find

ourselves forced to consider the necessity of some hypothesis for

the free motion of ponderable bodies through ether, disturbing it

only by condensations and rarefactions, with no incompatibility

in respect to joint occupation of the same space by the two

substances.] See Phil. Mag. Aug. 1900, pp. 181—198.

* See Math, and Pliys. Papers, Vol. iii. p. 522 ; and in last line of Table 4,

for "
/3 > 10~2- " substitute " p < 10~--."
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§ 9. I wish to make a short calculation to show how much com-

pressing force is exerted upon the luminiferous ether by the sun's

attraction. We are accustomed to call ether imponderable. How
do we know it is imponderable ? If we had never dealt with air

except by our senses, air would be imponderable to us ; but we

know by experiment that a vacuous glass globe shows an increase

of weight when air is allowed to flow into it. We have not the

slightest reason to believe the luminiferous ether to be imponder-

able. [Nov. 17, 1899. I now see that we have the strongest

possible reason to believe that ether is imponderable,] It is just

as likely to be attracted to the sun as air is. At all events the

onus of proof rests with those who assert that it is imponderable.

I think we shall have to modify our ideas of what gravitation is,

if we have a mass spreading through space with mutual gravita-

tions between its parts without being attracted by other bodies.

[Nov. 17, 1899. But is there any gravitational attraction between

different portions of ether ? Certainly not, unless either it is

infinitely resistant against condensation, or there is only a finite

volume of space occupied by it. Suppose that ether is given uni-

formly spread through space to infinite distances in all directions.

Any large enough spherical portion of it, if held with its surface

absolutely fixed, would by the mutual gravitation of its parts become

heterogeneous ; and this tendency could certainly not be counter-

acted by doing away with the supposed rigidity of its boundary

and by the attraction of ether extending to infinity outside it.

The pressure at the centre of a spherical portion of homogeneous

gravitational matter is proportional to the square of the radius,

and therefore, by taking the globe large enough, may be made as

large as we please, whatever be the density. In fact, if there

were mutual gravitation between its parts, homogeneous ether

extending through all space would be essentially unstable, unless

infinitely resistant against compressing or dilating forces. If we

admit that ether is to some degree condensible and extensible,

and believe that it extends through all space, then we must

conclude that there is no mutual gravitation between its parts,

and cannot believe that it is gravitationally attracted by the sun

or the earth or any ponderable matter; that is to say, we must

believe ether to be a substance outside the law of universal

gravitation.]
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§ 10. In the meantime, it is an interesting and definite question Molar,

to think of what the weight of a column of luniiniferous ether of

infinite height resting on the sun, would be, supposing the sun

cold and quiet, and supposing for the moment ether to be

gravitationally attracted by the sun as if it were ponderable

matter of density 5 x 10~^^. You all know the theorem for mean

gravity due to attraction inversely as the square of the distance

from a point. It shows that the heaviness of a uniform vertical

column AB, of mass iv per unit length, and having its length in a

line through the centre of force C, is

miu mw tmu -c nn

where ni denotes the attraction on unit of ma.ss at unit distance.

Hence writing for mwjCA, mwCA/CA'-, we see that the attraction

on an infinite column under the influence of a force decreasing

according to inverse square of distance, is ei:iual to the attraction

on a column equal in length to the distance of its near end from

the centre, and attracted by a uniform force equal to that of

gravity on the near end. The sun's radius is 697 x 10® cms. and

gravity at his surface is 27 times* terrestrial gravity, or say

27000 dynes per gramme of mass. Hence the sun's attraction on

a column of ether of a square centimetre section, if of density

o X 10~'® and extending from his surface to infinity, would be

9'4 X 10~^ of a dyne, if ether were ponderable.

§ 11. Considerations similar to those of November 1899 in-

serted in I 9 above lead to decisive proof that the mean density of

ponderable matter through any very large spherical volume of

space is smaller, the greater the radius ; and is infinitely small for

an infinitely great radius. If it were not so a majority of the

bodies in the universe would each experience infinitely great

gravitational force. This is a short statement of the essence of

the following demonstration.

§ 12. Let V be any volume of space bounded by a closed

surface, S, outside of which and within which there are ponderable

bodies ; M the sum of the masses of all these bodies within S
;

* This is founded on the following values for the sun's mass and radius and the

earth's radius:—sun's mass= 324000 earth's mass; sun's radius = 097000 kilo-

metres; earth's radius= 6371 kilometres.
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Molar, and p the mean density of the whole matter in the volume V.

We have
M = pV (1).

Let Q denote the mean value of the normal component of the

gravitational force at all points of S. We have

QS = 4>7rM = 4!7rpV (2),

by a general theorem discovered by Green seventy-three years

ago regarding force at a surface of any shape, due to matter

(gravitational, or ideal electric, or ideal magnetic) acting according

to the Newtonian law of the inverse square of the distance. It

is interesting to remark, that the surface-integral of the normal

component force due to matter outside any closed surface is zero

for the whole surface. If normal component force acting inwards

is reckoned positive, force outwards must of course be reckoned

negative. In equation (2) the normal component force may be

outwards at some points of the surface *S', if in some places the

tangent plane is cut by the surface. But if the surface is

wholly convex, the normal component force must be everywhere

inwards.

§ 18. Let now the surface be spherical of radius r. We have

^' = 47rr^ V^^^^^^; V = ^rS (3).

Hence, for a spherical surface, (2) gives

Q = ^''P = V^
^^^-

This shows that the average normal component force over the

surface S is infinitely great, if p is finite and r is infinitely great,

which suffices to prove § 11.

§ 14. For example, let

r =150. 10''
. 200 . 10" = 8-09 . lO'^ kilometres (5).

This is the distance at which a star must be to have parallax one

one-thousandth of a second ; because the mean distance of the

earth from the sun is one-hundred-and-fifty-million kilometres, and

there are two-hundred-and-six-thousand seconds of angle in the

radian. Let us try whether there can be as much matter as a
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thousand-million times the sun's mass, or, as we shall say for Molar,

brevity, a thousand-million suns, within a spherical surface of that

radius (5). The sun's mass is 324,000 times the earth's mass; and

therefore our quantity of matter on trial is 3*24 . 10" times the

earth's mass. Hence if we denote by g terrestrial gravity at the

earth's .surface, we have by (4)

Hence if the radial force were equal over the whole spherical

surface, its amount would be 1"37.]0~" of terrestrial surface-

gravity ; and every body on or near that surface would experience

an acceleration toward the centre equal to

1*37 .
10~^^ kilometres per second per second (7),

because (j is approximately 1000 centimetres per second per

second, or "01 kilometre per second per second. If the normal

force is not uniform, bodies on or near the spherical surface will

experience centreward acceleration, some at more than that rate,

some less. At exactly that rate, the velocity acquired per year

(thirty-one and a half million seconds) would be 4*32 .
10"" kilo-

metres per second. With the same rate of acceleration through

five million years the velocity would amount to 21 'G kilometres

per second, if the body started from rest at our spherical surface

;

and the space moved through in five million years would be

"17
.
10^" kilometres, which is only Obo of r (5). This is so small

that the force would vary very little, unless through the accident

of near approach to some other body. With the same acceleration

constant through twenty-five million years the velocity would

amount to 108 kilometres per second; but the space moved through

in twenty-five million years would be 4*25 . 10'" kilometres, or

more than the radius r, which shows that the rate of acceleration

could not be approximately constant for nearly as long a time as

twenty-five million years. It would, in fact, have many chances

of being much greater than 108 kilometres per second, and many
chances also of being considerably less.

§ 15. Without attempting to solve the problem of finding

the motions and velocities of the thousand million bodies, we can

see that if they had been given at rest* twenty-five million years

* " The potential energy of gravitation may be in reality the ultimate created
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Molar, ago distributed uniformly or non-uniformly through our sphere (5)

of 309 .
10^® kilometres radius, a very large proportion of them

would now have velocities not less than twenty or thirty kilometres

per second, while many would have velocities less than that ; and

certainly some would have velocities greater than 108 kilometres

per second; or if thousands of millions of years ago they had

been given at rest, at distances from one another very great in

comparison with r (5), so distributed that they should temporarily

now be equably spaced throughout a spherical surface of radius r'

(5), their mean velocity (reckoned as the square root of the mean
of the squares of their actual velocities) would now be 50'4 kilo-

metres per second*. This is not very unlike what we know of

the stars visible to us. Thus it is quite possible, perhaps pro-

bable, that there may be as much matter as a thousand million

suns within the distance corresponding to parallax one one-

thousandth of a second (3"09 .
10^^ kilometres). But it seems

perfectly certain that there cannot be within this distance as

much matter as ten thousand million suns ; because if there were,

Ave should find much greater velocities of visible stars than

observation shows; according to the following tables of results,

and statements, from the most recent scientific authorities on the

subject.

" antecedent of all the motion, heat, and light at present in the universe." See

Mechanical Antecedents of Motion, Heat, and Lifiht, Art. lxix. of my Collected

Math, and Phys. Papers, Vol. ii.

* To prove this, remark that the exhaustion of gravitational energy

1 f+^ r+^ r+x

Thomson and Tait's Natural Philosophy, Part II. g o4'J) when a vast number, N, of

equal masses come from rest at infinite distances from one another to an equably

spaced distribution through a sphere of radius r is easily found to be 3/10 Fr,

where F denotes the resultant force of the attraction of all of them on a material

point, of mass equal to the sum of their masses, placed at the spherical surface.

Now this exhaustion of gravitational energy is spent wholly in the generation of

1 3
kinetic energy; and therefore we have 2 - viv- = j~^ Fr, and by (7) F=1'37 . 10~^^Zvi;

whence

zm o

which, for the case of equal masses, gives, with (5) for the value of r,

/l!^= ^/(i 1-37 .
10-'»

. 3-09 .
10i«) =50-4 kilometres per second.
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From the Annuaire du Bureau des Longitudes (Paris, 1901). Molar.

Magni-
tude

Name of Star

Distance
from earth,

in million

million

Kilometres

Annual
proper
motions

Parallax

Velocities

perpendicular
to line of

sight, in kilo-

metres per

second

0-7

6-8

51
-1-4
8-2

7-9

7-5

0-5

9
6-5

8-5

4-7

3-6

0-2

90
0-9

5-2

4-5

2-4

1-0

7

4 1

0-2

2-2

a Centauri 43 3''62

64 4-75

0'72

n-A.fi

23-9

47-1

55-7

170
31-3

43-5

118-5

22-2

55-7

27-2

87-1

36-5

27-0

9-8

30-2

15-2

109-5

113-2
Ifi-Q

21185 Lalande
61 Cygni 70 5-17 0-44

83 1-32 0-37

88 2-30 0-35

99 2-83 0-31

110 6-97 0-28
110 1-26 0-27

119 305 0-26

123 1-43 0-25

128 4-40 0-24

128 1-84 ; 0-24

147 1-19 0-21

147 !
0-43 0-21

154 1-27 0-20
154 0-64 0-20

154 !
4-60 0-20

181 4-05 0-17
193 0-57 0-16

Sirius

18609 Arg.-(Eltzen...

34 Groombridge
9352 Lacaille

Procyon
11677 Arg.-CEltzen...

1643 Fedorenko
21258 Lalande
<T Draconis
t] Cassiopeise

a Aurig£e

17415 Arg.-CEltzen...

a Aquilffi

e "Indien "

d^ Eridani

fS Cassiopeiffi

o Tauri
1831 Fedorenko
p' Ophiuchi

206 0-19 0-15 60
206 0-42 1 015 13-3

206 1-13 ;
0-15 35-8

206 036 0-1.<? 11-4.Vesa
a Urs. Min. (Polaris) 440 0-05 0-07 3-4

Stars which have largest of observed Velocities in the Line of

Sight. (Extract by the Astronomer Royal from an Article

in the Astroplujsical Journal for 1901, January, by W. W.
Campbell, Director of Lick Observatory.)

Magni-
tudes

4-6

4-2

4-1

Star R. A.

e Andromeda ..

/i Cassiopeias .

.

5 Leporis
8 Canis Majoris
I Pegasi

fi Sagittarii

h.

1

5

6
21
18

33

47
50
17

Dec.

+ 28
+ 54
-20
-11
+ 19
-21

46
20
54
55
23
1

Velocity

84 km. per sec.

97
+ 95
+ 96
-76
-76

The + sign denotes recession, the - sign approach,
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Molar. Motions of Stars in the Line of Sight determined at Potsdam

Observatory, 1889-1891. (Communicated by Professor Becker,

University Observatory, Glasgow.)

Star
Magni-
tude

a AndromedEe ..,

/3 Cassiopeiae

a Cassiopeiae

y Cassiopeiae

/3 Andromedae . .

.

a Ursffi Miuoiis . .

.

7 AndromedcC , .

.

a Arietis

^ Persei

a Persei

a Tauri
a Aurigfe

^ Orionis

7 Orionis

i3 Tauri
5 Orionis

e Orionis

f Orionis

a Orionis

/3 Aurigae

7 Geminorum ...

a Canis Majoris...

a Geminorum ...

a Canis Minoris...

P Geminorum ...

a Leonis

2

21
var.

2-0

2-3

20
2-4

20
var.

2-0

1-0

10
10
20
20
2-5

2-0

2-0

var.

2-0

2-3

1-0

2-3

10
1-3

1-3

Velocity ;

relative to

the Sun

km.
+ 4-5

+ 5-2

-15-2
- 3-5

+ 11-2

-25-9
-12-9
-14-7
- 1-5

-10-3

+ 48-5

+ 24-5

+ 16-4

+ 9-2

+ 8-0

f 0-9

+ 26-5

+ 14-8

+ 17-2

-28-1
- 16-6

-lo'6
-29-7
- 9-2

+ 1-1

- 91

Star

7 Leonis

/3 Ursfe Majoris . .

.

a Ursffi Majoris ...

5 Leonis

P Leonis

7 Ursffi Majoris ...

e Ursa3 Majoris ...

a Virginia

f Ursae Majoris ...

7] Ursae Majoris ...

a Bootis

e Bootis

/3 Ursae Minoris ...

jS Librffi

a Coronas

a Serpentis

/3 Herculis

a Opbiuchi
a Lj'rae

a Aquilae

7 Cygni
a Cygni
e Pegasi

^ Pegasi

a Pegasi

Magni-!
^^^^^^^y

*.,^„ 1

relative to
^^'^^

the Sun

2-0

2-3

20
2-3

2-0

2-3

20
1-0

21
20
1-0

2-0

2-0

20
20
2-3

2-3

2-0

10
1-3

2-4

1-6

2-3

var
2-0

km.
-38-5
-29-3
-11-9
-14-4
-12-2
-26-6
-303
-14-8
-81-2
-26-2
- 7-7

-16-3

-I-14-2
- 9-6

+ 320
+ 22-3

-35-3

+ 19-2

-15-3
-36-9
- 6-4

- 80
+ 8-0

+ 6-7

+ 1-3

The velocity of the sun relatively to stars in general according

to Kempf and Risteen is probably about 19 kilometres per second*.

In respect to greatest proper motions and velocities Sir Norman
Lockyer gives me the following information:—"The star with

" the greatest known proper motion (across the line of sight) is

" 243 Cordoba = 8"'7 per annum. Velocity in kilometres not

" known.

" 1830 Groombridge has a proper motion of 7"0 per annum
" and a paralla.x of 0""089, from which it results that the velocity

"across the line of sight is 370 kms. per second. Various esti-

" mates of the parallax, however, have been made and this velocity

" is somewhat uncertain. The star with the greatest known
" velocity in the line of sight is ^ Herculis, which travels at

" 70 kms. per second.

* See footnote on § 10 of Appendix B.
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" The dark liae component of Nova Persei was approaching Molar,

"the earth with a velocity of over 1100 kms. per second." This

last-mentioned and greatest velocity is probably that of a torrent

of gas due to comparatively small particles of melted and evaporat-

ing fragments shot out laterally from two great solid or liquid

masses colliding with one another, which may be many times

greater than the velocity of either before collision
;
just as we see

in the trajectories of small fragments shot out nearly horizontally

when a condemned mass of cast-iron is broken up by a heavy

mass of iron falling upon it from a height of perhaps twenty feet

in engineering works.

§ 16. Newcomb has given a most interesting speculation

regarding the very great velocity of 1830 Groombridge, which he

concludes as follows:—"If, then, the star in question belongs to

" our stellar system, the masses or extent of that system must
" be many times greater than telescopic observation and astro-

" nomical research indicate. We may place the dilemma in a

" concise form, as follows :

—

" Either the bodies which compose our universe are vastly

" more massive and numerous than telescopic examination seems
" to indicate, or 1830 Groombridge is a runaway star, flying on a

" boundless course through infinite space with such momentum that

" the attraction of all the bodies of the universe can never stop it.

" Which of these is the more probable alternative we cannot

" pretend to say. That the star can neither be stopped, nor bent

" far from its course until it has passed the extreme limit to

"which the telescope has ever penetrated, we may consider

" reasonably certain. To do this will require two or three millions

" of years. Whether it will then be acted on by attractive forces

"of which science has no knowledge, and thus carried back to

" where it started, or whether it will continue straightforward for

" ever, it is impossible to say.

" Much the same dilemma may be applied to the past history

" of this body. If the velocity of two hundred miles or more per

" second with which it is moving exceeds any that could be pro-

" duced by the attraction of all the other bodies in the universe,

" then it must have been flying forward through space from the

" beginning, and, having come from an infinite distance, must be

" now passing through our system for the first and only time."

T. L. 18



274 LECTURE XVI.

§ 17. In all these views the chance of passing another star at

some small distance such as one or two or three times the sun's

radius has been overlooked; and that this chance is not excessively

rare seems proved by the multitude of Novas (collisions and their

sequels) known in astronomical history. Suppose, for example,

1830 Groombridge, moving at 370 kilometres per second, to chase

a star of twenty times the sun's mass, moving nearly in the same

direction with a velocity of 50 kilometres per second, and to

overtake it and pass it as nearly as may be without collision. Its

own direction would be nearly reversed and its velocity would be

diminished by nearly 100 kilometres per second. By two or three

such casualties the greater part of its kinetic energy might be

given to much larger bodies previously moving with velocities of

less than 100 kilometres per second. By supposing reversed, the

motions of this ideal history, we see that 1830 Groombridge may

have had a velocity of less than 100 kilometres per second at some

remote past time, and may have had its present great velocity

produced by several cases of near approach to other bodies of much

larger mass than its own, previously moving in directions nearly

opposite to its own, and with velocities of less than 100 kilometres

per second. Still it seems to me quite possible that Newcomb's

brilliant suggestion may be true, and that 1830 Groombridge is a

roving star which has entered our galaxy, and is destined to travel

through it in the course of perhaps two or three million years, and

to pass away into space never to return to us.

I 18. Many of our supposed thousand million stars, perhaps

a great majority of them, may be dark bodies ; but let us suppose

for a moment each of them to be bright, and of the same size and

brightness as our sun ; and on this supposition and on the further

suppositions that they are uniformly scattered through a sphere

(5) of radius 8'09 .
10^® kilometres, and that there are no stars out-

side this sphere, let us find what the total amount of starlight

would be in comparison with sunlight. Let n be the number per

unit of volume, of an assemblage of globes of radius a scattered

uniformly through a vast space. The number in a shell of radius

q and thickness dq will be n . ^tirq-dq, and the sum of their

apparent areas as seen from the centre will be

— n . 4>7rq'dq or n . '^ir^a-dq.
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Hence by integrating from q = to q = r we find Molar.

n.47r2aV (8)

for the sum of their apparent areas. Now if N be the total number
in the sphere of radius r we have

»=^/(t'^') w-

Hence (8) becomes N .Sv (-] ; and if we denote by a the ratio of

the sum of the apparent area.s of all the globes to 47r we have

n =
4 \r)

(!«)•

(1 — «)/«, very approximately equal to 1/a, is the ratio of the

apparent area not occupied by stars to the sum of the apparent

areas of all their discs. Hence a. is the ratio of the apparent

brightness of our star-lit sky to the brightness of our sun's disc.

Cases of two stars eclipsing one another wholly or partially would,

with our supposed values of r and a, be so extremely rare that

they would cause a merely negligible deduction from the total of

(10), even if calculated according to pure geometrical optics. This

negligible deduction would be almost wholly annulled by diffraction,

which makes the total light from two stars of which one is eclipsed

by the other, very nearly the same as if the distant one were seen

clear of the nearer,

§ 19. According to our supposition of § 18, we have iV^= 10^

a — 7.10'' kilometres, and therefore r/a = 4*4 . 10'". Hence

by (10)

a = 3-87. 10-'^ (11).

This exceedingly small ratio will help us to test an old and

celebrated hypothesis that if we could see far enough into space

the whole sky would be seen occupied with discs of stars all of

perhaps the same brightness as our own sun, and that the

reason why the whole of the night-sky and day-sky is not as

bright as the sun's disc is that light suffers absorption in

travelling through space. Remark that if we vary r keeping

the density of the matter the same, N varies as the cube of r.

Hence by (10) a varies simply as ?; and therefore to make a

even as great as 387/100, or, say, the sum of the apparent

18—2
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areas of discs 4 per cent, of the whole sky, the radius must be

10". r or S'OO.IO^'' kilometres. Now light travels at the rate

of 300,000 kilometres per second or 9-45.10^- kilometres per year.

Hence it would take 3-27.10" or about 3:^.10^* years to travel

from the outlying suns of our great sphere to the centre. Now
we have irrefragable dynamics proving that the whole life of

our sun as a luminary is a very moderate number of million

years, probably less than 50 million, possibly between 50 and 100.

To be very liberal, let us give each of our stars a life of a hundred

million years as a luminary. Thus the time taken by light to

travel from the outlying stars of our sphere to the centre would

be about three and a quarter million times the life of a star.

Hence, if all the stars through our vast sphere commenced

shining at the same time, three and a quarter million times the

life of a star would pass before the commencement of light

reaching the earth from the outlying stars, and at no one

instant would light be reaching the earth from more than an

excessively small proportion of all the stars. To make the whole

sky aglow with the light of all the stars at the same time the

commencements of the different stars must be timed earlier

and earlier for the more and more distant ones, so that the time

of the arrival of the light of every one of them at the earth

may fall within the durations of the lights at the earth of all

the others ! Our supposition of uniform density of distribution

is, of course, quite arbitrary; and (§§ 13, 15 above) we ought, in

the greater sphere of § 19, to assume the density much smaller

than in the smaller sphere (5); and in fact it seems that there

may not be enough of stars (bright or dark) to make a total of

star-disc-area more than 10"^- or 10~" of the whole sky. See

Appendix D, " On the Clustering of Gravitational Matter in any

" part of the Universe."

§ 20. To understand the sparseness of our ideal distribution

of 1000 million suns, divide the total volume of the supposed

sphere of radius r (5) by 10^ and we find 123"5.10*' cubic kilo-

metres as the volume per sun. Taking the cube root of this

we find 4"98
. 10" kilometres as the edge of the corresponding

cube. Hence if the stars were arranged exactly in cubic order

with our sun at one of the eight corners belonging to eight

neighbouring cubes, his six nearest neighbours would be each
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at distance i"98.10'^ kilometres; wliich is the distance corre- Molar,

spending to parallax 0" 62. Our sun seen at so great a distance

would probably be seen as a star of something between the first

and second magnitude. For a moment suppose each of our

1000 million suns, while of the same mass as our own sun, to

have just such brightness as to make it a star of the first magni-

tude at distance corresponding to parallax 1"'0. The brightness

at distance r (5) corresponding to parallax 0"'001 would be one

one-millionth of this, and the most distant of our assumed

stars would be visible through powerful telescopes as stars of the

sixteenth magnitude. Newcomb {Popular Astronomy, 1883,

p. 424) estimated between 30 and 50 million as the number of

stars visible in modern telescopes. Young {General Astronomy,

p. 448) goes beyond this reckoning and estimates at 100 million

the total number of stars visible through the Lick telescope.

This is only the tenth of our assumed number. It is never-

theless probable that there may be as many as 1000 million

stars within the distance r (5) ; but many of them may be

extinct and dark, and nine-tenths of them though not all dark

may be not bright enough to be seen by us at their actual

distances.

§ 21. I need scarcely repeat that our assumption of equable

distribution is perfectly arbitrary. How far from being like the

truth is illustrated by Herschel's view of the form of the universe

as shown in Newcomb's Popular Astronomy, p. 469. It is quite

certain that the real visible stars within the distance r (5) from

us are very much more crowded in some parts of the whole

sphere than in others. It is also certain that instead of being

all equally luminous as we have taken them, they differ largely

in this respect from one another. It is also certain that the

masses of some are much greater than the masses of others

;

as will be seen from the following table, which has been compiled

for me by Professor Becker from Andre's Traite d/Astronomie

Stellaire, showing the sums of the masses of the components of

some double stars, and the data from which these have been

determined.
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Parallax

i Major axis

Period,

in

years

M+M',
in units
of the

sun's massin seconds

in terms of

semi-major
axis of

earth's orbit

a Centauri 0-75

0-44

0-39

0-27

0-19

0'15

0-15

18-17

29-48

8-31

5-84

5-72

8-20

4-60

25

68
24
4

28
39
30

84
783
52
40

176
190
88

2-0

0-5

3-2

6-3

0-9

4-3

3-6

61 Cygui
Sirius

Procyon
0" Eridani
q Cassiopeia

p Ophiuchi

-y Virginis 0-05

1

0-02 +

3-99

1-98

79*
1 194

102 * 407
15-0

6-57 Leonis

§ 22. There may also be a large amount of matter in many
stars outside the sphere of 3.10^" kilometres radius, but however

much matter there may be outside it, it seems to be made highly

probable by §§ 11—21, that the total quantity of matter within

it is greater than 100 million times, and less than 2000 million

times, the sun's mass.

I wish, in conclusiou, to express my thanks to Sir Norman
Lockyer, to the Astronomer Royal Mr Christie, to Sir Robert

Ball, and to Prof Becker, for their kindness in taking much
trouble to give me information in respect to astronomical data,

which has proved most useful to me in §| 11—21 above.

* From spectroscopic observations by Belopolsky of Poulcowa, combined with

elements of orbit.

t Parallax calculated from dynamical determinations of ratio of semi-major

axis of double-star's orbit to semi-major axis of earth's orbit.
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Thursday, October 16, 3.30 p.m. Altered (1901, 1902) to

extension of Lee. XVI.

§ 23. Hitherto in all our views we have seen nothing of abso- Molecular,

lute dimensions in molecular structure, and have been satisfied to

consider the distance between neighbouring molecules in gases,

or liquids, or crystals, or non-crystalline solids to be very small in

comparison with the shortest wave-length of light with which we

have been concerned. Even in respect to dispersion, that is to

say, difference of propagational velocity for different wave-lengths,

it has not been necessary for us to accept Cauchy's doctrine that

the spheres of molecular action are comparable with the wave-

length. We have seen that dispersion can be, and probably in

fact is, truly explained by the periods of our waves of light being

not infinitely great in comparison with some of the periods of

molecular vibration ; and, with this view, the dimensions of

molecular structure might, so far as dispersion is concerned, be as

small as we please to imagine them, in comparison with wave-

lengths of light. Nevertheless it is exceedingly interesting and

important for intelligent study of molecular structures and the

dynamics of light, to have some well-founded understanding in

respect to probable distances between centres of neighbouring

molecules in all kinds of ponderable matter, while for the present

at all events we regard ether as utterly continuous and structure-

less. It may be found in some future time that ether too has a

molecular structure, perhaps much finer than any structure of

ponderable matter ; but at present we neither see nor imagine

any reason for believing ether to be other than continuous and

homogeneous through infinitely small contiguous portions of

space void of other matter than ether.

§ 24. The first suggestion, so far as we now know, for estimat-

ing the dimensions of molecular structure in ordinary matter was
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lolecular. given in 1805 by Thomas Young*, as derived from his own and

Laplace's substantially identical theories of capillary attraction.

In this purely dynamical theory he found that the range of the

attractive force of cohesion is equal to ST/K; where T denotes

the now well-known Young's tension of the free surface of a

liquid, and K denotes a multiple integral which appears in

Laplace's formulas and is commonly now referred to as Laplace's

K, as to the meaning of which there has been much controversy

in the columns of Nature and elsewhere. Lord Rayleigh in his

article of 1890, " On the Theory of Surface Forces-f," gives the

following very interesting statement in respect to Young's estimate

of molecular dimensions :

—

§ 25. " One of the most remarkable features of Young's treatise

" is his estimate of the range a of the attractive force on the basis

" of the relation T = ^aK. Never once have I seen it alluded to
;

" and it is, I believe, generally supposed that the first attempt of

" the kind is not more than twenty years old. Estimating K at

" 23000 atmospheres, and T at 3 grains per inch. Young finds that
"

' the extent of the cohesive force must be limited to about the

"'250 millionth of an inch [10~* cm.]'; and he continues, 'nor is

"
' it very probable that any error in the suppositions adopted can

"
' possibly have so far invalidated this result as to have made it

"'very many times greater or less than the truth' Young con-

" tinues :
—

' Within similar limits of uncertainty, we may obtain

'"something like a conjectural estimate of the mutual distance
"

' of the particles of vapours, and even of the actual magnitude
"

' of the elementary atoms of liquids, as supposed to be nearly in
"

' contact with each other ; for if the distance at which the force

"
' of cohesion begins is constant at the same temperature, and if

"
' the particles of steam are condensed when they approach within

"
' this distance, it follows that at 60° of Fahrenheit the distance

"
' of the particles of pure aqueous vapour is about the 250

"
' millionth of an inch ; and since the density of this vapour is

"
' about one sixty thousandth of that of water, the distance of the

" ' particles must be about forty times as great ; consequently the
"

' mutual distance of the particles of water must be about the

* "On the Cohesion of Fluids," rhU. Trans. 1805; Collected Works, Vol. i. p. 461.

t Phil. Mag. Vol. xxx. 1890, p. 474.
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"'ten thousand millionth of an inch* ['025 x 10~^ cm.]. It is Molecular,
"

' true that the result of this calculation will differ considerably

"'according to the temperature of the substances compared
" ' This discordance does not however wholly invalidate the general

" ' tenour of the conclusion...and on the whole it appears tolerably
"

' safe to conclude that, whatever errors may have affected the
"

' determination, the diameter or distance of the particles of
"

' water is between the two thousand and the ten thousand
" ' millionth of an inch' [between •125 x 10~^ and '025 x 10~^ of a

" cm.]. This passage, in spite of its great interest, has been so

" completely overlooked that I have ventured briefly to quote it,

" although the question of the size of atoms lies outside the scope
" of the present paper."

§ 26. The next suggestion, so far as I know, for estimating the

dimensions of molecular structure in ordinary matter, is to be

found in an extract from a letter of my own to Joule on the

contact electricity of metals, published in the Proceedings of the

Manchester Literary and Philosophical Societyf, Jan. 21, 1862,

which contains the following passage :
—

" Zinc and copper con-

" nected by a metallic arc attract one another from any distance.

" So do platinum plates coated with oxygen and hydrogen respec-

" tively. I can now tell the amount of the force, and calculate

" how great a proportion of chemical affinity is used up electrically,

" before two such discs come within 1/1000 of an inch of one
" another, or any less distance down to a limit within which
" molecular heterogeneousness becomes sensible. This of course

" will give a definite limit for the sizes of atoms, or rather, as I do
" not believe in atoms, for the dimensions of molecular structures."

The theory thus presented is somewhat more fully developed in a

communication to Nature in March 1870, on "The Size of Atoms;):,"

and in a Friday evening lecture§ to the Royal Institution on the

* Young here, curiously insensible to the kinetic theory of gases, supposes the

molecules of vapour of water at 60° Fahr. to be within touch (or direct mutual

action) of one another; and thus arrives at a much finer-grainedness for liquid

water than he would have found if he had given long enough free paths to molecules

of the vapour to account for its approximate fulfilment of Boyle's law.

t Reproduced as Art. 22 of my Electrostatics and Magnetism.

X Republished as Appendix (F) in Thomson and Tait's Natural Philosophy,

Part II. Second Edition.

§ Republished in Popular Lectures and Addresses, Vol. i.
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jlecular. same subject on February 3, 1883; but to illustrate it, information

was wanting regarding the heat of combination of copper and

zinc. Experiments by Professor Roberts- Austen and by Dr A.

Gait, made within the last four years, have supplied this want

;

and in a postscript of Feljruary 1898 to a Friday evening lecture

on " Contact Electricity," which I gave at the Royal Institution

on May 21, 1897, I was able to say "We cannot avoid seeing

" molecular structures beginning to be perceptible at distances of

" the hundred-millionth of a centimetre, and we may consider it

" as highly probable that the distance from any point in a molecule

" of copper or zinc to the nearest corresponding point of a neighbour-

" iug molecule is less than one one-hundred-millionth, and greater

"than one one-thousand-millionth of a centimetre"; and also to

confirm amply the following definite statement which I had

given in my Nature article (1870) already referred to:
—"Plates

" of zinc and copper of a three hundred-millionth of a centimetre
" thick, placed close together alternately, form a near approxima-
" tion to a chemical combination, if indeed such thin plates could

" be made without splitting atoms."

§ 27. In that same article thermodynamic considerations in

stretching a fluid film against surface tension led to the following

result :
—

" The conclusion is unavoidable, that a water-film falls

" off greatly in its contractile force before it is reduced to a thick-

" ness of a two hundred-millionth of a centimetre. It is scarcely

" possible, upon any conceivable molecular theory, that there can
" be any considerable falling off in the contractile force as long as

" there are several molecules in the thickness. It is therefore

" probable that there are not several molecules in a thickness of a

" two-hundred-millionth of a centimetre of water." More detailed

consideration of the work done in stretching a water-film led me
in my Royal Institution Lecture of 1883 to substitute one one-

hundred-millionth of a centimetre for one two-hundred-millionth

in this statement. On the other hand a consideration of the

large black spots which we now all know in a soap-bubble or soap-

film before it bursts, and which were described in a most interest-

ing manner by Newton*, gave absolute demonstration that the

film retains its tensile strength in the black spot " where the

* Newton's Optics, pix 187, 191, Edition 1721, Second Book, Part i.: quoted in

my Royal Institution Lecture, Pup. Lectures and Addresses, Vol. i. p. 175.
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" thickness is clearly much less than 1/60000 of a centimetre, Molecular,

"this being the thickness of the dusky white" with which the

black spot is bordered. And further in 1883 Reinold and

Rlicker's* admirable application of optical and electrical methods

of measurement proved that the thickness of the black film in

Plateau's " liquide glycerique" and in ordinary soap solution is

between one eight-hundred-thousa,ndth of a centimetre and one

millionth of a centimetre. Thus it was certain that the soap-film

has full tensile strength at a thickness of about a millionth of a

centimetre, and that between one millionth and one one-hundred-

millionth the tensile strength falls off enormously.

§ 28. Extremely interesting in connection with this is the

investigation, carried on independently by Rontgen-f" and Ray-

leigh;}: and published by each in 1890, of the quantity of oil

spreading over water per unit area required to produce a sensible

disturbance of its capillary tension. Both experimenters ex-

pressed results in terms of thickness of the film, calculated as if

oil were infinitely homogeneous and therefore structureless, but

with very distinct reference to the certainty that their films were

molecular structures not approximately homogeneous. Rayleigh

found that olive oil, spreading out rapidly all round on a previously

cleaned surface of water from a little store carried by a short

length of platinum wire, produced a perceptible effect on little

floating fragments of camphor at places where the thickness of

the oil was 10*6 x 10"*^ cm., and no perceptible effect where the

thickness was 8'1 x 10~* cm. It will be highly interesting to

find, if possible, other tests (optical or dynamical or electrical or

chemical) for the presence of a film of oil over water, or of films

of various liquids over solids such as glass or metals, demonstrat-

ing by definite effects smaller and smaller thicknesses. Rcintgen,

using ether instead of camphor, found analogous evidence of layers

5'6 X 10~^ cm. thick. It will be very interesting for example to

make a thorough investigation of the electric conductance of a

clean rod of white glass of highest insulating quality surrounded

by an atmosphere containing measured quantities of vapour of

* " On the Limiting Thickness of Liquid Films," Roy. Soc. Proc. April 19, 1883;

Phil. Trans. 1883, Part ii. p. 645.

t Wied. Ann. Vol. xli. 1890, p. 321.

+ Proc. Roy. Soc. Vol. xlvii. 1890, p. 364.
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olecular. water. When the glass is at any temperature above the dew-

point of the vapour, it presents, so far as we know, no optical

appearance to demonstrate the pressure of condensed vapour of

water upon it : but enormous differences of electric conductance,

according to the density of the vapour surrounding it, prove the

presence of water upon the surface of the glass, or among the

interstices between its molecules, of which electric conductance

is the only evidence. Rayleigh has himself expressed this view in a

recent article, " Investigations on Capillarity" in the Philosophical

Magazine* From the estimates of the sizes of molecules of argon,

hydrogen, oxygen, carbonic oxide, carbonic acid, ethylene (C2H4),

and other gases, which we shall have to consider (§ 47 below), we

may judge that in all probability if we had eyes microscopic

enough to see atoms and molecules, we should see in those thin

films of Rayleigh and Rontgen merely molecules of oil lying

at greater and less distances from one another, but at no part

of the film one molecule of oil lying above another or resting

on others.

§ 29. A very important and interesting method of estimating

the size of atoms, founded on the kinetic theory of gases, was

first, so far as I know, thought of by Loschmidtj* in Austria and

Johnstone Stoney in Ireland. Substantially the same method

occurred to myself later and was described in Nature, March 1870,

in an article + on the " Size of Atoms " already referred to, § 26

above, from which the quotations in §§ 29, 30 are taken.

" The kinetic theory of gases suggested a hundred years ago
" by Daniel Bernoulli has, during the last quarter of a century,

" been worked out by Herapath, Joule, Clausius, and Maxwell
" to so great perfection that we now find in it satisfactory^ ex-

"planations of all non-chemical" and non-electrical "properties of

" gases. However difficult it may be to even imagine what kind
'* of thing the molecule is, we may regard it as an established

" truth of science that a gas consists of moving molecules dis-

" turbed from rectilinear paths and constant velocities by collisions

" or mutual influences, so rare that the mean length of nearly

* Phil. Mag. Oct. 1899, p. 337.

+ Sitzungsberichte of the Vienna Academy, Oct. 12, 1865, p. 395.

X Reprinted as Appendix (F) in Thomson and Tait's Natural Philosophy,

Part 11. p. 499.
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" rectilinear portions of the path of each molecule is many times Molecular

" greater than the average distance from the centre of each

" molecule to the centre of the molecule nearest it at any time.

" If, for a moment, we suppose the molecules to be hard elastic

"globes all of one size, influencing one another only through

" actual contact, we have for each molecule simply a zigzag path
" composed of rectilinear portions, with abrupt changes of direc-

" tion But we cannot believe that the individual molecules

" of gases in general, or even of any one gas, are hard elastic

"globes. Any two of the moving particles or molecules must act

" upon one another somehow, so that when they pass very near

" one another they shall produce considerable deflexion of the

" path and change in the velocity of each. This mutual action

" (called force) is different at different distances, and must vary,

" according to variations of the distance, so as to fulfil some
" definite law. If the particles were hard elastic globes acting

" upon one another only by contact, the law of force would be

"...zero force when the distance from centre to centre exceeds

" the sum of the radii, and infinite repulsion for any distance less

" than the sum of the radii. This hypothesis, with its ' hard and

"'fast' demarcation betAveen no force and infinite force, seems to

" require mitigation." Boscovich's theory supplies clearly the

needed mitigation.

§ 30. To fix the ideas we shall still suppose the force absolutely

zero when the distance between centres exceeds a definite limit, X
;

but when the distance is less than \, we shall suppose the force

to begin either attractive or repulsive, and to come gradually to

a repulsion of very great magnitude, with diminution of distance

towards zero. Particles thus defined I call Boscovich atoms. We
thus call ^\ the radius of the atom, and X its diameter. We
shall say that two atoms are in collision when the distance

between their centres is less than X. Thus " two molecules in

" collision will exercise a mutual repulsion in virtue of which the

" distance between their centres, after being diminished to a mini-

" mum, will begin to increase as the molecules leave one another.

" This minimum distance would be equal to the sum of the radii,

" if the molecules were infinitely hard elastic spheres ; but in

" reality we must suppose it to be very different in different

" collisions."
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Molecular. § 31. The essential quality of a gas is that the straight line

of uniform motion of each molecule between collisions, called

the free path, is long in comparison with distances between centres

during collision. In an ideal perfect gas the free path would

be infinitely long in comparison with distances between centres

during collision, but infinitely short in comparison with any length

directly perceptible to our senses ; a condition which requires the

number of molecules in any perceptible volume to be exceedingly

great. We shall see that in gases which at ordinary pressures

and temperatures approximate most closely, in respect to com-

pressibility, expansion by heat, and specific heats, to the ideal

perfect gas, as, for example, hydrogen, oxygen, nitrogen, carbon-

monoxide, the free path is probably not more than about one

hundred times the distance between centres during collisions,

and is little short of 10~^cm. in absolute magnitude. Although

these moderate proportions suffice for the well-known exceedingly

close agreement with the ideal gaseous laws presented by those

real gases, we shall see that large deviations from the gaseous

laws are presented with condensations sufficient to reduce the free

paths to two or three times the diameter of the molecule, or to

annul the free paths altogether.

§ 32. It is by experimental determinations of diffusivity that

the kinetic theory of gases affords its best means for estimating

the sizes of atoms or molecules and the number of molecules

in a cubic centimetre of gas at any stated density. Let us

therefore now consider carefully the kinetic theory of these

actions, and with them also, the properties of thermal conductivity

and viscosity closely related to them, as first discovered and

splendidly developed by Clausius and Clerk Maxwell.

§ 33. According to their beautiful theory, we have three

kinds of diffusion ; diffusion of molecules, diffusion of energy, and

diffusion of momentum. Even in solids, such as gold and lead,

Roberts-Austen has discovered molecular diffusion of gold into

lead and lead into gold between two pieces of the metals when

pressed together. But the rate of diffusion shown by this ad-

mirable discovery is so excessively slow that for most purposes,

scientific and practical, we may disregard wandering of any

molecule in any ordinary solid to places beyond direct influence of
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its immediate neighbours. In an elastic solid we have diffusion Molecular

of momentum by wave motion, and diffusion of energy consti-

tuting the conduction of heat through it. These diffusions are

effected solely by the communication of energy from molecule to

molecule and are practically not helped at all by the diffusion of

molecules. In liquids also, although there is thorough molecular

diffusivity, it is excessively slow in comparison with the two other

diffusivities, so slow that the conduction of heat and the diffusion

of momentum according to viscosity are not practically helped by

molecular diffusion. Thus, for example, the thermal diffusivity*

of water (002, according to J. T. Bottomley's first investigation,

or about "OOlo-f- according to later experimenters) is several

hundred times, and the diffusivity for momentum is from one to

two thousand times, the diffusivity of water for common salt, and

other salts such as sulphates, chlorides, bromides, and iodides.

§ 34. We may regard the two motional diffusivities of a liquid

as being each almost entirely due to communication of motion from

one molecule to another. This is because every molecule is always

under the 'influence of its neighbours and has no free path. When
a liquid is rarefied, either gradually as in Andrew's experiments

showing the continuity of the liquid and gaseous states, or

suddenly as in evaporation, the molecules become less crowded

and each molecule gains more and more of freedom. When the

density is so small that the straight free paths are great in com-

parison with the diameters of molecules, the two motional diffu-

sivities are certainly due, one of them to carriage of energy, and

the other to carriage of monientum, chiefly by the free rectilinear

motion of the molecules between collisions. Interchange of

energy or of momentum between two molecules during collision

will undoubtedly to some degree modify the results of mere
transport ; and we might expect on this account the motional

diffusivities to be approximately equal to, but each somewhat
greater than, the molecular diffusivity. If this view were correct,

it would follow that, in a homogeneous gas when the free paths

are long in comparison with the diameters of molecules, the

viscosity is equal to the molecular diffusivity multiplied by the

* Math, and Phys. Papers, Vol, iii. p. 226. For explanation regarding diffusi-

vity and viscosity see same volume, pp. 428—435.

t See a paper by Milner and Chattock, Phil. Mag. Vol. xlviii. 1899.
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Molecular, density, and the thermal conductivity is equal to the molecular

diffusivity multiplied by the thermal capacity per unit bulk,

pressure constant : and that whatever deviation from exactness of

these equalities there may be, would be in the direction of the

motional diffusivities being somewhat greater than the molecular

diffusivity. But alas, we shall see, § 45 below, that hitherto

experiment does not confirm these conclusions : on the contrary

the laminar diffusivities (or diffusivities of momentum) of the

only four gases of which molecular diffusivities have been de-

termined by experiment, instead of being greater than, or at

least equal to, the density multiplied by the molecular diffusivity,

are each somewhat less than three-fourths of the amount thus

calculated.

§ 35. I see no explanation of this deviation from what

seems thoroughly correct theory. Accurate experimental deter-

minations of viscosities, whether of gases or liquids, are easy by

Graham's transpiration al method. On the other hand even roughly

approximate experimental determinations of thermal diffusivities

are exceedingly difficult, and I believe none, on corre"ct experi-

mental principles, have really been made*; certainly none un-

vitiated by currents of the gas experimented upon, or accurate

enough to give any good test of the theoretical relation between

thermal and material diffusivities, expressed by the following

equation, derived from the preceding verbal statement regarding

the three diffusivities of a gas,

where 6 denotes the thermal conductivity, /j, the viscosity, p the

density, Kp the thermal capacity per unit bulk pressure constant,

K the thermal capacity per unit mass pressure constant, c the

thermal capacity per unit mass volume constant, and k the ratio

of the thermal capacity pressure constant to the thermal capacity

volume constant. It is interesting to remark how nearly theo-

* So far as I know, all attempts hitherto made to determine the thermal con-

ductivities of gases have been founded on observations of rate of communication of

heat between a thermometer bulb, or a stretched metallic wire constituting an

electric resistance thermometer, and the walls of the vessel enclosing it and the gas

experimented upon. See Wiedemann's ^xnaiew, 1888, Vol. xxxiv. p. 623, and 1891,

Vol. XLiv. p. 177. For other references, see O. E. Meyer, § 107.



MOLECULAR DIFFUSIVITY. 289

retical investigators* have come to the relation 6= kc/x; Clausiiis Molecular,

gave d=^c/j,; 0. E. Meyer, ^= l-6027cyu,, and Maxwell, d=^c/j,.

Maxwell's in fact is ^ = kcfu, for the case of a monatomic gas.

§ 36. To understand exactly what is meant by molecular

diffusivity, consider a homogeneous gas between two infinite

parallel planes, GGG and RRR, distance a apart, and let it be

initially given in equilibrium ; that is to say, with equal numbers

of molecules and equal total kinetic energies in equal volumes,

and with integral of component momentum in any and every

direction, null. Let N be the number of molecules per unit

volume. Let every one of the molecules be marked either green

or red, and whenever a red molecule strikes the plane GGG, let its

marking be altered to green, and, whenever a green molecule

strikes RRR, let its marking be altered to red. These markings

are not to alter in the slightest degree the mass or shape or elastic

quality of the molecules, and they do not disturb the equilibrium

of the gas or alter the motion of any one of its particles; they

are merely to give us a means of tracing ideally the history of any

one molecule or set of molecules, moving about and colliding with

other molecules according to the kinetic nature of a gas.

§ 37. Whatever may have been the initial distribution of the

greens and reds, it is clear that ultimately there must be a regular

transition from all greens at the plane GGG and all reds at the

plane RRR, according to the law

where g and ?• denote respectively the number of green molecules

and of red molecules per unit volume at distance x trom the

plane RRR. In this condition of statistical equilibrium, the

total number of molecules crossing any intermediate parallel

plane from the direction GGG towards RRR will be equal to the

number crossing from RRR towards GGG in the same time ; but

a larger number of green molecules will cross towards RRR than

towards GGG, and, by an equal difference, a larger number of red

molecules will cross towards GGG than towards RRR. If we

denote this difference per unit area per unit time by QN, we have

* See the last ten lines of O. E. Meyer's Look.

T. L. 19
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Molecular, for what I call the material diffusivity (called by Maxwell, " co-

efficient of diffusion"),

D=^Qa (2).

We may regard this equation as the definition of diffusivity.

Remark that Q is of dimensions LT~^, because it is a number per

unit of area per unit of time (which is of dimensions L~'T''^)

divided by N, a number per unit of bulk (dimensions L~^). Hence

the dimensions of a diffusivity are UT~^\ and practically we

reckon it in square centimetres per second.

§ 88. Hitherto we have supposed the Q and the R particles

to be of exactly the same quality in every respect, and the dif-

fusivity^ which we have denoted by D is the inter-diflfusivity of

the molecules of a homogeneous gas. But we may suppose G and

R to be molecules of different qualities ; and assemblages of G
molecules and of R molecules to be two different gases. Every-

thing described above will apply to the inter-diffusions of these

two gases ; except that the two differences which are equal when
the red and green molecules are of the same quality are now not

equal or, at all events, must not without proof be assumed to

be equal. Let us therefore denote by Q,jN the excess of the

number of G molecules crossing any intermediate plane towards

RRR over the number crossing towards GGG, and by QrN the

excess of the number of R molecules crossing towards GGG above

that crossing towards RRR. We have now two different dififusivities

of which the mean values through the whole range between the

bounding planes are given by the equations

B^ = Q^a ; D,. = Q,a
;

one of them, Dg, the diffusivity of the green molecules, and the

other, />,., the diffusivity of the red molecules through the hetero-

geneous mixture in the circvmistances explained in § 37. We
must not now assume the gradients of density of the two gases

to be uniform as expressed by (1) of § 37, because the homogeneous-

ness on which these equations depend no longer exists.

§ 39. To explain all this practically*, let, in the diagram, the

planes GGG, and RRR, be exceedingly thin plates of dry porous

material such as the fine unglazed earthenware of Graham's experi-

* For a practical experiment it might be necessary to allow for the difference of

the proportions of the G gas on the two sides of the RRR plate and of the R gas

on the two sides of the GGG plate. This would be exceedingly difficult, though

not impossible, in practice. The difficulty is analogous to that of allowing for the
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ments. Instead of our green and red marked molecules of the same Molecular.

kind, let us have two gases, which we shall call G and E, supplied in

abundance at the middles of the two ends of a non-porous tube of

G G G

R R^ R

< -s ^^ ^ ^-—>^ >

electric resistances of the connections at the ends of a stout bar of metal of which
it is desired to measure the electric resistance. But the simple and accurate
" potential method " by which the difficulty is easily and thoroughly overcome
in the electric case is not available here. I do not, however, put forward the

arrangement described in the text as an eligible plan for measuring the inter-

diffusivity of two gases. Even if there were no other difficulty, the quantities of the

two pure gases required to realize it would be impracticably great.

19—2
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Molecular, glass or metal, and guided to flow away radially in contact with

the end-plates as indicated in the diagram. If the two axial

supply-streams of the two pure gases are sufficiently abundant,

the spaces OGG, RRR, close to the inner sides of the porous

end-plates will be occupied by the gases G and R, somewhat nearly

pure. They could not be rigorously pure even if the velocities of

the scouring gases on the outer sides of the porous end-plates

were comparable with the molecular velocities in the gases, and

if the porous plates were so thin as to have only two or three

molecules of solid matter in their thickness. The gases in contact

with the near faces of the porous plates would, however, probably

be somewhat approximately pure in practice with a practically

realizable thinness of the porous plates, if a, the distance between

the two plates, is not less than five or six centimetres and the

scouring velocities moderately, but not impracticably, great.

According to the notation of § 37, Qg is the quantity of the G gas

entering across GGG and leaving across RRR per sec. of time per

sq. cm. of area
; Qr is the quantity of the R gas entering across

RRR and leaving across GGG per sec. of time per sq. cm. of area

;

the unit quantity of either gas being that which occupies a cubic

centimetre in its entry tube. The equations

where g and r are the proportions of the G gas at R and of the R
gas at G, define the average diffusivities of the two gases in the

circumstances in which they exist in the different parts of the

length a between the end-plates. This statement is cautiously

worded to avoid assuming either equal values of the diffusivities

of the two gases or equality of the diffusivity of either gas through-

out the space between the end-plates. So far as I know difference

of diffusivity of the two gases has not been hitherto suggested by

any writer on the subject. What is really given by Loschmidt's

experiments, § 43 below, is the arithmetic mean of the two

diffusivities Dg and D,..

§ 40. In 1877 O, E. Meyer expressed the opinion on theoreti-

cal grounds, which seem to me perfectly valid, that the inter-

diffusivity of two gases varies according to the proportions of the

two gases in the mixture. In the 1899 edition of his Kinetic

Theory of Gases* he recalls attention to this view and quotes

results of various experimenters, Loschmidt, Obermayer, Waitz,

* Baynes' translation, p. 264.
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seeming to support it, but, as he says, not quite conclusively. On Molecular.

the other hand. Maxwell's theory (§ 41 below) gives inter-diffu-

sivity as independent of the proportions of the two gases ; and

only a single expression for dififusivity, which seems to imply that

the two diffusivities are equal according to his theory. The

subject is of extreme difficulty and of extreme interest, theoretical

and practical; and thorough experimental investigation is greatly

to be desired.

§ 41. In 1873 Maxwell* gave, as a result of a theoretical

investigation, the following formula which expresses the inter-

diffusivity (A2) ^f two gases independently of the proportion of the

two gases in any part of the mixture: each gas being supposed to

consist of spherical Boscovich atoms mutually acting according to

the law, force zero for all distances exceeding the sum of the radii

(denoted by 51.2) and infinite repulsion when the distance between

their centres is infinitely little less than this distance :

1 y ll\ \\\

where lu^, iv., are the masses of the molecules in the two gases

in terms of that of hydrogen called unity ; V is the square root of

the mean of the squares of the velocities of the molecules in

hydrogen at 0° C; and N is the number of molecules in a cubic

centimetre of a gas (the same for all gases according to Avogadro's

law) at 0° C. and standard atmospheric pressure. I find the

following simpler formula more convenient

^-2V6k;?^(^- + ''='> <^>'

where V^"^, V./ are the mean squares of the molecular velocities of

the two gases at 0° C, being the values of Spjp for the two gases,

or three times the squares of their Newtonian velocities of sound,

at that temperature. For brevity, we shall call mean molecular

velocity the square root of the mean of the squares of the

velocities of the molecules. The same formula is, of course,

applicable to the molecular diffusivity of a single gas by taking

Vi = Fo = F its mean molecular velocity, and s\.i = s the diameter

of its molecules ; so that we have

i)=-^i: ,3).

* " On Loschmidt's Experiments on Diffusion in relation to the Kinetic Theory

of Gases," Nature, Aug. 1873; Scientific Papers, Vol. 11. pp. 343—350.
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Molecular. § 42. It is impossible by any direct experiment to find the

molecular ditfusivity of a single gas, as we have no means of

mprking its particles in the manner explained in § 36 above; but

Maxwell's theory gives us, in a most interesting manner, the

means of calculating the diffusivity of each of three separate

gases from three experiments determining the inter-diffusivities

of their pairs. From the inter-diffusivity of each pair determined

by experiment we find, by (2) § 41, a value of 512^(2 '^SttN) for

each pair, and we have Sjo = ^ (si + Si)* whence

Sl = 5io + Si3 - 6'o3 ; So = Sjo + 5o3 - 6'i3 ; Ss = Si3 + 5,3 - Sio. . . . , .(1).

Calculating thus the three values of s \/(2 VSTriV), and using

them in (3) § 41, we find the molecular diffusivities of the three

separate gases.

§ 43. In two communications*!- to the Academy of Science

of Vienna in 1870, Loschmidt describes experimental determin-

ations of the inter-diffusivities of ten pairs of gases made, by

a well-devised method, with great care to secure accuracy. In

each case the inter-diffusivity determined by the experiment

would be, at all events, somewhat approximately the mean of the

two diffusivities, § 39 above, if these are unequal. The results

reduced to 0° C. and standard atmospheric pressure, and multi-

plied by 2'78 to reduce from Loschmidt's square metres per hour

to the now usual square centimetres per second, are as follows :

—

Table of inter-diffusivities D.

Pairs of gases
D

in sq. cms. per sec.

Ho, Oo •7214

Ho, CO •6422

Ho, COo •5558

Oo, CO •1802

Oo, COo •1409

CO, COo 1406

COo, Air •1423

COo, NO •0.,.84

COo, CH4 •1587

SOo, H, •480'J

* This agrees with Maxwell's equation (4), but shows his equation (6) to be

incorrect.

t " Experimental-Untersuchungen iiber die Diffusion von Gasen ohne porose

Scheidewande," Sitz. d. k. Akad. d. Wisseiisch., March 10 and May 12, 1870.
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In the first six of these, each of the four gases Ho, O^, CO, COo Molecular.

occurs three times, and we have four sets of three inter-diffusivities

giving in all three determinations of the diffusivity of each gas as

follows :

—

Gases

O, .

CO.
CO.,.

•(1)

•(2)

.(8)

.(4)

Pairs of gases Dj

(12, 13, 23) 1-32

(12, 14, 24) 1-35

(13, 14, 34) 1-26

Pairs of gases D.^

(12, 13, 23) 193

(12, 14, 24) 190

(23, 24, 34) -183

Mean 131

(12, 13, 23) -169

(13, 14, 34) 175

(23, 24, 34) 178

Mean -189

^4

(12, 14, 24) -106

(13, 14, 34) Ill

(23, 24, 34) -109

Mean "174 Mean '109

Considering the great difficulty of the experimental investiga-

tion, we may regard the agreements of the three results for each

separate gas as, on the whole, very satisfactory, both in respect to

the accuracy of Loschmidt's experiments and the correctness of

Maxwell's theory. It certainly is a very remarkable achievement

of theory and experiment to have found in the four means of the

sets of three determinations, what must certainly be somewhat

close approximations to the absolute values for the four gases,

hydrogen, oxygen, carbon-monoxide, and carbon-dioxide, of some-

thing seemingly so much outside the range of experimental

observation, as the inter-ditfusivity of the molecules of a separate

gas.

§ 44. Maxwell, in his theoretical writings of different dates,

gave two very distinct views of the inner dynamics of viscosity in

a single gas, both interesting, and each, no doubt, valid. In one*,

viscous action is shown as a subsidence from an " instantaneous

rigidity of a gas." In the other-f*, viscosity is shown as a diffu-

sion of momentum : and in p. 347 of his article quoted in | 41

* Trans. Roy. Soc, May 1866; Scientific Papers, Vol. ii. p. 70.

+ " Molecules," a lecture delivered before the Brit. Assoc, at Bradford, Scientific

Papers, Vol. ii. p. 378. See also 0. E. Meyer's Kinetic Theory of Gases (Baynes'

trans. 1899), §§ 74—76.
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Molecular, above he gives as from "the theory," but without demonstra-

tion, a formula (5), which, taken in conjunction with (1), makes

^ = i)

P
•(1);

p denoting the density, /j, the viscosity, and D the molecular

diflfusivity, of any single gas. On the other hand, in his 1866

paper he had given formulas making*

.(2).^=•6481)
P

1 45. Viewing viscosity as explained by diffusion of momentum

we may, it has always seemed to me (§ 34 above), regard (1) as

approximately true for any gas, monatomic, diatomic, or polyatomic,

provided only that the mean free path is large in comparison with

the sum of the durations of the collisions. Unfortunately for this

view, however, comparisons of Loschmidt's excellent experimental

determinations of diffusivity with undoubtedly accurate determin-

ations of viscosity from Graham's original experiments on trans-

piration, and more recent experiments of Obermayer and other

accurate observers, show large deviations from (1) and are much

more nearly in agreement with (2). Thus taking -0000900,

•001430, -001234, 001974 as the standard densities of the four

gases, hydrogen, oxygen, carbon-monoxide, and carbon-dioxide,

and multiplying these respectively by the dififusivities from

Loschmidt's experiments and Maxwell's theory, we have the

following comparison with Obermayer's viscosities at 0° C and

standard pressure, which shows the discrepance from experiment

and seeming theory referred to in § 34.

Col. 1 Col. 2 Col. 3 Col. 4

Gas

Viscosity calculated

by Maxwell's theory
from Loschmidt's

difl'usivities

Viscosities according
to Obermayer

Katio oi' values in

Col. 3 to those

in Col. 2

CO

CO.,

•000119

•000269

•000212

•000218

•0000822

•0001873

•0001630

•0001414

•691

•696

•769

•649

* The formula for viscosity {Sci. Papers, Vol. ii. p. 68) taken with the formula

for molecular diffusivity of a single gas, derived from the formula of iuter-diffusivity
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§ 46. Leaving this discrepance unexplained, and eliminating Molecular.

D between (1) of § 44 and (3) of § 41, we find as Maxwell's latest

expression of the theoretical relation between number of molecules

per cubic centimetre, diameter of the molecules, molecular velocity,

density, and viscosity of a single gas,

Ns' =^^ ^ = -1629^ (1).

The number of grammes and the number of molecules in a cubic

centimetre being respectively p and N, pjN is the mass of one

molecule in grammes ; and therefore, denoting this by in, we have

m = 2\/3'7r^s^= 6-140 ^s^ (2).

In these formulas, as originally investigated by Maxwell for the

case of an ideal gas composed of hard spherical atoms, s is

definitely the diameter of the atom, and is the same at all

temperatures and densities of the gas. When we apply the

formulas to diatomic or polyatomic gases, or to a monatomic gas

consisting of spherical atoms whose spheres of action may over-

lap more or less in collision according to the severity of the

impact, 6' may be defined as the diameter which an ideal hard

spherical atom, equal in mass to the actual molecule, must have to

give the same viscosity as the real gas, at any particular tem-

perature. This being the rigorous definition of s, we may call it

the proper mean shortest distance of inertial centres of the mole-

cules in collision to give the true viscosity ; a name or expression

which helps us to understand the thing defined.

§ 47. For the ideal gas of hard spherical atoms, remembering

that V is independent of the density and varies as t^ {t denoting

absolute temperature), § 46 (2) proves that the viscosity is inde-

pendent of the density and varies approximately as t^. Rayleigh's

experimental determinations of the viscosity of argon at different

temperatures show that for this monatomic gas the viscosity varies

as t'^^^ ; hence § 46 (2) shows that s- varies as t~'^^^, and therefore

s varies as t~'^'^. Experimental determinations by Obermayer* of

viscosities and their rates of variation with temperature for car-

bonic acid, ethylene, ethylene-chloride, and nitrous oxide, show

IX A
of two gases of equal densities, gives —r- = —f- , which is equal to "e-lS according to

pD oA^

the values of A^ and A^ shown in p. 42 of Vol. ii., Sci. Papers.

* Obermayer, Wieii. Akad. 1876, Mar. 16th, Vol. 73, p. 433.
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Molecular, that for these the viscosity is somewhat nearly in simple propor-

tion to the absolute temperature : hence for them s- varies nearly

as t"'^. His determinations for the five molecularly simpler gases,

air, hydrogen, carbonic oxide, nitrogen, and oxygen show that the

increases of /u., and therefore of s~^, with temperature are, as

might be expected, considerably smaller than for the more complex

of the gases on which he experimented. Taking his viscosities

at 0" Cent., for carbonic acid and for the four other simple gases

named above, and Rayleigh's for argon, with the known densities

of all the six gases at 0" C. and standard atmospheric pressure,

we have the following table of the values concerned in § 46 (1):

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7 Col. 8 Col. 9

Mean free IJatio of
patlis ac- volume oc-

Hence taking
iV=102"(§50)

we liave

Taking
iV=10»
we have

cording to
Maxwell's
formula*

cupied by
molecules to
whole volume

Gas p ft V Ns^ s at 0° Cent. 1
.V|.3

in terms of in terms in terms of in terms of in terms of in terms of
grammes per of dynes centimetres (centimetre) -

1

centimetres grammes
ill terms of

centimetres
cubic centi-

metre
per square
centimetre

per second

CO., •001974 •0001414 39200 89200 2^99 .
10-** 19^74. 10-2-* 2^52. 10-B l-390.10-»

H, •0000900 •0000822 184000 32800 1^81 „ •90 „ 6^89 „ •311 „
CO •001234 •0001G30 49000 61200 2^47 „ 12-34 „ 3^68 „ •792 ,,

No •001257 •0001635 49200 61600 2^48 „ 12-57 „ 3^66 „ •800 „
0. •00143 •0001873 46100 57300 2-39 „ 14-3 „ 3^93 „ •719 „

Argon •001781 •0002083 41300 57500 2-40 „ 17-81 „ 3^91 „ •722 .,

§ 48. The meaning of "s," the diameter, as defined in § 46, is

simpler for the monatomic gas, argon, than for any of the others
;

and happily we know for argon the density, not only in the gaseous

state (-001781) but also in the liquid state (l-42)t. The latter

of these is 797 times the former. Now, all things considered, it

seems probable that the crowd of atoms in the liquid may be

slightly less dense than an assemblage of globes of diameter s just

touching one another in cubic order ; but, to make no hypothesis

in the first place, let qs be the distance from centre to centre

of a cubic arrangement of the molecules 797 times denser than

the gas at 0° C. and standard atmospheric pressure
; q will be

greater than unity if the liquid is less dense, or less than unity

* Maxwell's Collected Papers, Vol. ii. p. 348, eqn. (7). The formula as printed

in this paper contains a very embarrassing mistake, ij2Tr for ^2 . w.

t See Baly and Donan, Chem. Jour., July, 1902.
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il' thu liquid is denser, than the cubic arrangement with molecules, Molecular.

regarded as spherical of diameter s, just touching. We have

797N =ll(qsy (3),

and tor argon we have by § 4G (1),

Ns^ = 57500 (4).

Eliminating s between these equations we find

iY=797^ 57500=' (/ = 1 -21. lO-o.^y" (5).

If the atoms of argon were ideal hard globes, acting on one

another with no force except at contact, we should almost cer-

tainly have q ^1 (because with closer packing than that of cubic

order it seems not possible that the assemblage could have

sufficient relative mobility of its parts to give it fluidity) and

therefore N would be ^ 1-21 .
10^«.

§ 49. For carbonic acid, hydrogen, nitrogen, and oxygen, we

have experimental determinations of their densities in the solid or

liquid state ; and dealing with them as we have dealt with argon,

irrespectively of their not being monatomic gases, we find results

for the five gases as shown in the following table :

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5

Ratio of Values of 7 (§ 48)
solid or Number of according to

liquid molecules per (y-6=l-21 for argon

Gas Solid or liquid density density to cubic centimetre (liquid compared
standard of gas at standard witli gas at 0° and
gaseous density atmospheric
density pressure)

N
CO, Solid 1-58 800 4-55 .1020. gfi -777

H., Liquid at 17° absolute . .

.

•090 1000 -352 1-191

N. ^liquid 1047 833 1-62 -923

1 solid 1-400 1114 2-90 -837

0, liquid at its freezing pt. 1-27 888 1-49 -936

Argon
^liquid at 84° absolute ... 1-42 797 1-21 969

\ solid 1-396* 784 1-17 •974

In this table, q denotes the ratio to s of the distance from

centre to centre of nearest molecules in an ideal cubic assemblage

of the same density as the solid or liquid, as indicated in cols. 3

and 2.

* From information communicated by Prof. W. Eamsay, July 23, 1901.
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§ 50. According to Avogadro's doctrine, the number of mole-

cules per cubic centimetre is the same for all " perfect " gases at

the same temperature and pressure ; and even carbonic acid is

nearly enough a " perfect gas " for our present considerations. Hence

the actual values of (f are inversely proportional to the numbers

by which they are multiplied in col. 8 of the preceding table.

Now, as said in § 48, all things considered, it seems probable that

for argon, liquid at density 1"42, q may be somewhat greater, but

not much greater, than unity. If it were exactly unity, N would

be 1-21. 10-"; and I have chosen 5 =(1-21)-^ or -969, to make N
the round number 10'-". Col. 6, in the table of § 47 above, is

calculated with this value of J\^; but it is not improbable that the

true value of N may be considerably greater than 10'-"*.

§ 51. As compared with the value for argon, monatomic, the

smaller values of q for the diatomic gases, nitrogen and oxygen,

and the still smaller values for carbonic acid, triatomic, are quite

as might be expected without any special consideration of law of

force at different distances between atoms. It seems that the

diatomic molecules of nitrogen and oxygen and still more so the

triatomic molecule of carbonic acid, are effectively larger when

moving freely in the gaseous condition, than when closely packed

in liquid or solid assemblage. But the largeness of q for the

diatomic hydrogen is not so easily explained : and is a most in-

teresting subject for molecular speculation, though it or any other

truth in nature is to be explained by a proper law of force accord-

ing to the Boscovichian doctrine which we all now accept (many

* Maxwell, judging from "molecular volumes" of chemical elements estimated

by Loreutz, Meyer and Kopp, unguided by what we now know of the densities

of liquid oxygen and liquid hydrogen and of the liquid of the then undiscovered gas

argon, estimated ^=•19.10-0 (Maxwell's Collected Papers, Vol. 11. p. 350) which is

rather less than one-fifth of my estimate lO^o. On the same page of his paper

is given a table of estimated diameters of molecules which are about 3-2 or 3-3 times

larger than my estimates in col. 6 of the table in § 47. In a previous part of

his paper (p. 348) Maxwell gives estimates of free paths for the same gases, from

which by his formula (7), corrected as in col. 8 of my table in § 47, I find values of

N ranging from 6-05 . lO'^ to 6-96 . lO^s or about one-third of -19 .
10'^». His

uncorrected formula J'iir (instead of J2 . w) gives values of N which are Jir times,

or 1-77 times as great, which are still far short of his final estimate. The discrepance

is therefore not accounted for by the error in the formula as printed, and I see no

explanation of it. The free paths as given by Maxwell are about 1-3 or 1-4 times

as large as mine.



rayleigh's theory of the blue of the sky. 301

of ns without knowing that we do so) as the fundamental hypo- Molecular,

thesis of physics and chemistry. I hope to return to this question

as to hydrogen in a crystallographic appendix.

I am deeply indebted to Professor Dewar for information

regarding the density of liquid hydrogen, and the densities of

other gases, liquefied or frozen, which he has given me at various

times within the last three years.

§ 52. A new method of finding an inferior limit to the number

of molecules in a cubic centimetre of a gas, very different from

anything previously thought of, and especially interesting to us

in connection with the wave-theory of light, was given by Lord

Rayleigh*, in 1899, as a deduction from the dynamical theory of

the blue sky which he had given 18 years earlier. Many previous

writers, Newton included, had attributed the light from the sky,

whether clear blue, or hazy, or cloudy, or rainy, to fine suspended

particles which divert portions of the sunlight from its regular

course; but no one before Rayleigh, so far as I know, had published

any idea of how to explain the blueness of the cloudless sky.

Stokes, in his celebrated paper on Fluorescence f, had given the

true theory of what was known regarding the polarization of the

blue sky in the following "significant remark" as Rayleigh calls it

:

" Now this result appears to me to have no remote bearing on the

" question of the directions of the vibrations in polarized light.

" So long as the suspended particles are large compared with the

" waves of light, reflection takes place as it would from a portion of

" the surface of a large solid immersed in the fluid, and no con-

" elusion can be drawn either way. But if the diameter of the

" particles be small compared with the length of a wave of light, it

" seems plain that the vibrations in a reflected ray cannot be per-

"pendicular to the vibrations in the incident ray"; which impliee

that the light scattered in directions perpendicular to the exciting

incident ray has everywhere its vibrations perpendicular to the

plane of the incident ray and the scattered ray; provided the

diameter of the molecule which causes the scattering is very small

in comparison with the wave-length of the light. In conversation

Stokes told me of this conclusion, and explained to me with

* Rayleigh, Collected Papers, Vol. i. Art. viii. p. 87.

t "On the Change of Refrangibility of Light," Phil. Trans. 1852, and Collected

Papers, Vol. m.
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perfect clearness and completeness its dynamical foundation
;

and applied it to explain the polarization of the light of a cloud-

less sky, viewed in a direction at right angles to the direction

of the sun. But he did not tell me (though I have no doubt he

knew it himself) why the light of the cloudless sky seen in any

direction is blue, or I should certainly have remembered it.

§ 53. Rayleigh explained this thoroughly in his first paper

(1871), and gave what is now known as Rayleigh's law of the blue

skj^; which is, that, provided the diameters of the suspended particles

are small in comparison with the wave-lengths, the proportions of

scattered light to incident light for different wave-lengths are

inversely as the fourth powers of the wave-lengths. Thus, while

the scattered light has the same colour as the incident light

when homogeneous, the proportion of scattered light to incident

light is seven times as great for the violet as for the red of the

visible spectrum ; which explains the intensely blvie or violet

colour of the clearest blue sky.

§ 54. The dynamical theory shows that the part of the light

of the blue sky, looked at in a direction perpendicular to the

direction of the sun, which is due to sunlight incident on a single

particle of diameter very small in comparison with the wave-

lengths of the illuminating light, consists of vibrations perpen-

dicular to the plane of these two directions : that is to say, is

completely polarized in the plane through the sun. In his 1871

paper*, Rayleigh pointed out that each particle is illuminated, not

only by the direct light of the sun, but also by light scattered

from other particles, and by earth-shine, and partly also by sus-

pended particles of dimensions not small in comparison with the

wave-lengths of the actual light ; and he thus explained the

observed fact that the polarization of even the clearest blue sky

at 90° from the sun is not absolutely complete, though it is very

nearly so. There is very little of polarization in the light from

white clouds seen in any direction, or even from a cloudless sky

close above the horizon seen at 90" from the sun. This is partly

because the particles which give it are not small in comparison

Avith the wave-lengths, and partly because they contribute much
to illuminate one another in addition to the sunlight directly

incident on them.

* Collected Papers, Vol. i. p. 94.
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§ 55. For his dynamical foundation, Rayleigh definitely Molecular,

assumed the suspended particles to act as if the ether in their

places were denser than undisturbed ether, but otherwise unin-

fluenced by the matter of the particles themselves. He tacitly

assumed throughout that the distance from particle to particle

is very great in comparison with the greatest diameter of each

particle. He assumed these denser portions of ether to be of the

same rigidity as undisturbed ether ; but it is obvious that this

last assumption could not largely influence the result, provided

the greatest diameter of each particle is very small in comparison

with its distance from next neighbour, and with the wave-lengths

of the light : and, in fact, I have found from the investigation of

§§ 41, 42 of Lecture XIV. for rigid spherical molecules embedded

in ether, exactly the same result as Rayleigh's ; which is as follows

, SiT^n /B'-D TV ^^^^ (D'-DTV

where A, denotes the wave-length of the incident light supposed

homogeneous ; T the volume of each suspended particle ; D the

undisturbed density of the ether ; B' the mean density of the

ether within the particle ; n the number of particles per cubic

centimetre ; and k the proportionate loss of homogeneous incident

light, due to the scattering in all directions by the suspended

particles per centimetre of air traversed. Thus

1 -e-*^ (2)

is the loss of light in travelling a distance x (reckoned in centi-

metres) through ether as disturbed by the suspended particles.

It is remarkable that D' need not be uniform throughout the

particle. It is also remarkable that the shape of the volume T
may be anything, provided only its greatest diameter is very

small in comparison with X. The formula supposes T {U — D)
the same for all the particles. We shall have to consider cases in

which differences of T and D' for different particles are essential to

the result ; and to include these we shall have to use the formula

where %
\D' -D)T

{D'-D)T
D

denotes the sum ofD
the particles in a cubic centimetre.

(3),

\D' -D)T
D for all
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Molecular. § 56. Supposing now the number of suspended particles per

cubic wave-length to be very great, and the greatest diameter

of each to be small in comparison with its distance from next

neighbour, we see that the virtual density of the ether vibrating

among the particles is

n + lT{D'-D) (4);

and therefore, if u and u' be the velocities of light in pure ether,

and in ether as disturbed by the suspended particles, we have

(Lecture VIII. p. 80)

ur = u^ \l + z, j: .(5).

Hence, if /a denote the refractive index of the disturbed ether,

that of pure ether being 1, we have

and therefore.

\^^Tiiy-m
(<!);

,^-,=sW^ (7).

§ 57. In taking an example to illustrate the actual trans-

parency of our atmosphere, Rayleigh says* ;
" Perhaps the best

" data for a comparison lare those afforded by the varying bright-

" ness of stars at various altitudes. Bouguer and others esti-

" mate about "8 for the transmission of light through the entire

"atmosphere from a star in the zenith. This corresponds to 8'3

" kilometres (the " height of the homogeneous atmosphere " at

" 10° Cent.) of air at standard pressure." Hence for a medium of

the transparency thus indicated we have e-ssoooot _ -g . which gives

1/A;= 3720000 centimetres = 37-2 kilometres.

§ 58. Suppose for a moment the want of perfect trans-

parency thus defined to be luholly due to the fact that the

ultiinate molecules of air are not infinitely small and infinitely

numerous, so that the " suspended particles " hitherto spoken of

would be merely the molecules Ng, Og; and suppose further

(D' — D)T to be the same for nitrogen and oxygen. The known

* Phil. Mm). April, 1899, p. 382.
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refractivity of air (/i — 1 = "OOOB), nearly enough the same for Molecular,

all visible light, gives by equation (7) above, with n instead of 2,

-Mrm. .0006.

Using this in (1) we find

I.
29-76 ,„,

for what the rate of loss on direct sunlight would be, per centi-

metre of air ti'aversed, if the light were all of one wave-length, X.

But we have no such simplicity in Bouguer's datum regarding

transparency for the actual mixture which constitutes sunlight

:

because the formula makes ^'~' proportional to the fourth power

of the wave-length ; and every cloudless sunset and moonset and

sunrise and moonrise over the sea, and every cloudless view of

sun or moon below the horizon of the eye on a high mountain,

proves the transparency to be in reality much greater for red

light than for the average undimmed light of either luminary,

though probably not so much greater as to be proportional to the

fourth power of the wave-length. We may, however, feel fairly

sure that Bouguer's estimate of the loss of light in passing

vertically through the whole atmosphere is approximately true

for the most luminous part of the spectrum corresponding to

about the D line, wave-length 5"89 .
10~'' cm., or (a convenient

round number) 6 .
10~'' as Rayleigh has taken it. With this value

for X, and 372 .
10'' centimetres for A'~\ (8) gives n = 8-54 .

10^^ for

atmospheric air at 10° and at standard pressure. Now it is quite

certain that a very large part of the loss of light estimated by

Bouguer is due to suspended particles ; and therefore it is certain

that the number of molecules in a cubic centimetre of gas, at

standard temperature and pressure, is considerably greater than

8-54 .
10^8.

§ 59. This conclusion drawn by Bayleigh from his dynamical

theory of the absorption of light from direct rays through air,

giving very decidedly an inferior limit to the number of molecules

in a cubic centimetre of gas, is perhaps the most thoroughly well

founded of all definite estimates hitherto made regarding sizes or

numbers of atoms. We shall see (§§ 78... 79, below) that a much

larger inferior limit is found on the same principles by careful

T. L. 20
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Molecular, consideration of the loss of light due to the ultimate molecules

of pure air and to suspended matter undoubtedly existing in all

parts of our atmosphere, even where absolutely cloudless, that is

to say, warmer than the dew-point, and therefore having none of

the liquid spherules of water which constitute cloud or mist.

§ 60. Go now to the opposite extreme from the tentative

hypothesis of § 58, and, while assuming, as we know to be true,

that the observed refractivity is wholly or almost wholly due to

the ultimate molecules of air, suppose the opacity estimated by

Bouguer to be wholly due to suspended particles which, for

brevity, we shall call dust (whether dry or moist). These par-

ticles may be supposed to be generally of very unequal magni-

tudes : but, for simplicity, let us take a case in which they are all

equal, and their number only 1/10000 of the 8-54 , 10'^ which

in § 59 we found to give the true refractivity of air, with

Bouguer's degree of opacity for X, = 6.10-^ With the same

opacity we now find the contribution to refractivity of the

particles causing it, to be only 1/100 of the known refractivity

of air. The number of particles of dust which we now have is

8*54.10" per cubic centimetre, or 184 per cubic wave-length,

which we may suppose to be almost large enough or quite large

enough to allow the dynamics of § 56 for refractivity to be

approximately true. But it seems to me almost certain that

8*54 . 10" is vastly greater than the greatest number of dust

particles per cubic centimetre to which the well-known haziness

of the clearest of cloudless air in the lower regions of our

atmosphere is due ; and that the true numbers, at different times

and places, may probably be such as those counted by Aitken*

at from 42500 (Hydros, 4 p.m. April 5, 1892) to 43 (Kingairloch,

Argyllshire, 1 p.m. to 1.30 p.m. July 26, 1891).

§ 61. Let us, however, find how small the number of par-

ticles per cubic centimetre umst be to produce Bouguer's degree

of opacity, without the particles themselves being so large in

comparison with the wave-length as to exclude the application of

Rayleigh's theory. Try for example 1^= 10~^. X.^ (that is to say,

the volume of the molecule 1/1000 of the cubic wave-length, or

* Trans. B. S. K. 1894, Vol. xxxvii. Part ni. pp. (;75. fi72.
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roughly, diameter of molecule 1/10 of the wave-length) which Molecular,

seems small enough for fairly approximate application of Ray-
leigh's theory ; and suppose, merely to make an example, D' to be

the optical density of water, D being that of ether ; that is to say,

D'lD = (1-3337)' = 1-78. Thus we have {D' - D) T/D = •00078\^:

and with X-6.10-^ and with k-'= S-72 . 10", (1) gives ?? = 1-485. 10«,

or about one and a half million particles per cubic centimetre.

Though this is larger than the largest number counted for natural

air by Aitken, it is interesting as showing that Bouguer's degree of

opacity can be accounted for by suspended particles, few enough
to give no appreciable contribution to refractivity, and yet not too

large for Rayleigh's theory. But when we look through very

clear air by day, and see how far from azure or deep blue is the

colour of a few hundred metres, or a few kilometres of air with

the mouth of a cave or the darkest shade of mountain or forest,

for background ; and when in fine sunny weather we study the

appearance of the grayish haze always, even on the clearest days,

notably visible over the scenery among mountains or hills ; and

when by night at sea we see a lighthouse light at a distance of

45 or 50 kilometres, and perceive how little of redness it shows

;

and when we see the setting sun shorn of his brilliance sufficiently

to allow us to look direct at his face, sometimes whitish, oftener

ruddy, rarely what could be called ruby red ; it seems to me that

we have strong evidence for believing that the want of perfect

clearness of the lower regions of our atmosphere is in the main
due to suspended particles, too large to allow approximate ful-

filment of Rayleigh's law of fourth power of wave-length.

§ 62. But even if they were small enough for Rayleigh's

theory the question would remain. Are they small enough and

numerous enough to account for the refractivity of the atmo-

sphere ? To this we shall presently see we must answer un-

doubtedly "No"; and much less than Bouguer's degree of opacity,

probably not as much as a quarter or a fifth of it, is due to the

ultimate molecules of air. In a paper by Mr Quirino Majorana in

the Transactions of the R. Accademia dei Lincei (of which a

translation is published in the Philosophical Magazine for May,

1901), observations by himself in Sicily, at Catania and on Mount
Etna, and by Mr Gaudenzio Sella, on Monte Rosa in Switzerland,

determining the ratio of the brightness of the sun's surface to the

20—2
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Molecular, brightness of the sky seen in any direction, are described. This

ratio they denote by r. One specially notable result of Mr

Majorana's is that " the value of r at the crater of Etna is about

five times greater than at Catania." The barometric pressures

were approximately 53-6 and 76 cms. of mercury. Thus the atmo-

sphere above Catania was only 1-42 times the atmosphere above

Etna, and yet it gave five times as much scattering of light by its

particles, and by the particles suspended in it. This at once

proves that a great part of the scattering must be due to sus-

pended particles ; and more of them than in proportion to the

density in the air below the level of Etna than in the air above it.

In Majorana's observations, it was found that " except for regions

" close to the horizon, the luminosity of the sky had a sensibly

" constant value in all directions when viewed from the summit of

" Etna." This uniformity was observed even for points in the

neighbourhood of the sun, as near to it as he could make the

observation without direct light from the sun getting into his

instrument. I cannot but think that this apparent uniformity

was only partial. It is quite certain that with sunlight shining

down from above, and with light everywhere shining up from

earth or sea or haze, illuminating the higher air, the intensities

of the blue light seen in different directions above the crater

would be largely different. This is proved by the following

investigation ; which is merely an application of Rayleigh's theory

to the question before us. But from Majorana's narrative we

may at all events assume that, as when observing from Catania,

he also on Etna chose the least luminous part of the sky (Phil.

Mag., May 1901, p. 5CA), for the recorded results (p. 562) of his

observations.

§ 63. The diagram, fig. 1 below, is an ideal representation of

a single molecule or particle, T, with sunlight falling on it indi-

cated by parallel lines, and so giving rise to scattered light seen

by an eye at E. We suppose the molecule or particle to be so

massive relatively to its bulk of ether that it is practically un-

moved by the ethereal vibration ; and for simplicity at present we

suppose the ether to move freely through the volume T, becoming

effectively denser without changing its velocity when it enters

this fixed volume, and less dense when it leaves. In §§ 41, 42, of

Lecture XV. above, and in Appendix A, a definite supposition,
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attributing to ether no other property than elasticity as of an Molecular,

utterly homogeneous perfectly elastic solid, and the exercise of

mutual force between itself and ponderable matter occupying

the same space, is explained: according to which the ether within

the atom will react upon moving ether outside, just as it would

if our present convenient temporary supposition of magically

augmented density within the volume of an absolutely fixed

molecule were realized in nature. For our present purpose, we

may if we please, following Rayleigh, do away altogether with

the ponderable molecule, and merely suppose T to be not fixed,

but merely a denser portion of the ether. And if its greatest

diameter is small enough relatively to a wave-length, it will

make no unnegligible difference whether we suppose the ether in

T to have the same rigidity as the surrounding free ether, or

suppose it perfectly rigid as in §§ 1—46 of Lecture XIV. dealing

with a rigid globe embedded in ether.

§ 64. Resolving the incident light into two components having

semi-ranges of vibration ct, p, in the plane of the paper and

perpendicular to it ; consider first the component in the plane
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Molecular, having vibrations symbolically indicated by the arrow-heads, and

expressed by the following formula

157 Sin ——
,A

where u is the velocity of light, and \ the wave-leugth. The

greater density of the ether within T gives a reactive force on

the surrounding ether outside, in the line of the primary vibration,

and against the direction of its acceleration, of which the magni-

tude is

T (U - D) m ^iru liriit

D x'''-^ -(^^

This alternating force produces a train of spherical waves spread-

ing out from T in all directions, of which the displacement is, at

greatest, very small in comparison with ot ; and which at any

point E at distance r from the centre of T, large in comparison

with the greatest diameter of T, is given by the following ex-

pression*

^ cos -— {ut — r),
A,

with ^ = t^^'^^^^^^cos6> (10),

where is the angle between the direction of the sun and the

line TE. Formula (10), properly modified to apply it to the other

component of the primary vibration, that is, the component per-

pendicular to the plane of the paper, gives for the displacement at

E due to this component

27r
1] cos — {at — r),

A,

Hence for the t[uantity of light falling from T per unit of time,

* This formula is readily found from §§ 41, 42 of Lecture XIV. The complexity

of the formulas in §§ 8—40 is due to the inclusion in the investigation of forces and

displacements at small distances from T, and to the condition imposed that T
is a rigid spherical figure. The dynamics of §§ 33—36 with c-Q, and the details of

§§ 37—39 further simplified by taking u = qo , lead readily to the formulas (10) and

(11) in our present text.



BRIGHTXb:SS OF BLUE SKY. 311

on unit area of a plane at E, perpendicular to ET, reckoned in Molecular.

convenient temporary units, we have

-nTiD' -D)
r+T= '\-D

{^' cos' + p-") (12).

§ 65. Consider now the scattered light emanating from a large

horizontal plane stratum of air 1 cm. thick. Let T of fig. 1 be one

of a vast number of particles in a portion of this stratum sub-

bending a small solid angle D, viewed at an angular distance /3

from the zenith by an eye at distance r. The volume of this

portion of the stratum is H sec /3 r- cubic centimetres ; and there-

fore, if S denotes summation for all the particles in a cubic centi-

metre, small enough for application of Rayleigh's theory, and

q the quantity of light shed by them from the portion ft sec /9 r^

of the stratum, and incident on a square centimetre at E, per-

pendicular to ET, we have

T(D'-Dy
D -T nseCyQ(fl72cos2^4-/3-) (13).

Summing this expression for the contributions by all the

luminous elements of the sun and taking

to denote this summation, we have instead of the factor

•S7- cos- 6 + p',

cos- 6 j'ST' + Ip'

:

and we have jiff'- = I
p^ = ^S (14),

where S denotes the total quantity of light from the sun falling

perpendicularly on unit of area in the particular place of the

atmosphere considered. Hence the summation of (13) for all the

sunlight incident on the portion 11 sec /3 r"- of the stratum, gives

Q =t^ ^^^i)
^^Tasec^(icos^^ + |)>Sf (15).

§ QQ. To define the point of the sky of which the illumination

is thus expressed, let ^ be the zenith distance of the sun, and i/r

the azimuth, reckoned from the sun, of the place of the sky seen
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Molecular, along the line ET. This place and the sun and the zenith are at

the angles of a spherical triangle SZT, of which ST is equal to 6.

Hence we have

cos 6 = cos ^cos 13 + sin ^sin jB cos ^1^ (16).

Let now, as an example, the sun be vertical: we have ^— 0,

= fS, and (15) becomes

T{D'-D)~
D n.^ (cob ^ + sec 13) S (17).

This shows least luminosity of the sky around the sun at the

zenith, increasing to oo at the horizon (easily interpreted). The

law of increase is illustrated in the following table of values of

^ (cos yS + sec /3) for every 10° of /g from 0° to 90°.

/3 ^ (cos /3 + sec j8)

1

/3 ^ (cos/3 + sec/3)

0° 1-000 50° 1-099
10° I'OOO G0° 1 -250
20° 1-002

,

70° 1-633
30° 1-010 80° 2-966
40° 1-036 90° GO

§ 67. Instead now of considering illumination on a plane

perpendicular to the line of vision, consider the illumination by

light from our one-centimetre-thick great* horizontal plane

stratum of air, incident on a square centimetre of horizontal

plane. The quantity of this light per unit of time coming from

a portion of sky subtending a small solid angle H at zenith

distance (3 is Qcos^. Taking D. = sin/3d^d'y{r and integrating,

we find for the light shed by the one-centimetre-thick horizontal

stratum on a horizontal square centimetre of the ground,

/•2t fi

dyfr
Jo Jo

"'^

d^jr l^^d^ sin^.Q~^ 47r"

3X'

T{D'-D)
D S. .(18).

Now each molecule and particle of dust sheds as much light

upwards as downwards. Hence (18) doubled expresses the

* We are neglecting the curvature of the earth, and supposing the density and
comijosition of the air to be the same throughout the plane horizontal stratum to

distances from the zenith very great in comparison with its lieight above the

ground.
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quantity of light lost by direct rays from a vertical sun in cross- Molecular,

ing the one-centiraetre-thick horizontal stratum. It agrees with

the expression for k in (1) of § 55, as it ought to do.

§ 68. The expression (15) is independent of the distance of

the stratum above the level of the observer's eye. Hence if H
denote the height above this level, of the upper boundary of an

ideal homogeneous atmosphere consisting of all the ultimate

molecules and all the dust of the real atmosphere scattered uni-

formly through it, and if s denote the whole light on unit area of

a plane at E perpendicular to ET, from all the molecules and dust

in the solid angle 12 of the real atmosphere due to the sun's direct

light incident on them, we have

| = ^sec/3^>
T{D' - D)

n.i(cos-^6'-|-l) (19);

provided we may, in the cases of application whatever they

may be, neglect the diminution of the direct sunlight in its

actual course through air, whether to the observer or to the

portion of the air of which he observes the luminosity, and neglect

the diminution of the scattered light from the air in its course

through air to the observer. This proviso we shall see is prac-

tically fulfilled in Mr Majorana's observations on the crater of

Etna for zenith distances of the sun not exceeding 60°, and in

Mr Sella's observation on Monte Rosa in which the sun's zenith

distance was 50°. But for Majorana's recorded observation on

Etna at 5.50 a.m. Avhen the sun's zenith distance was 81°*71, of

which the secaut is 6'928, there may have been an important

diminution of the sun's light reaching the air vertically above the

observer, and a considerably more important diminution of his

light as seen direct by the observer. This would tend to make
the sunlight reaching the observer less strong relatively to the

sky-light than according to (19); and might conceivably account

for the first number in col. 8 being smaller than the first number
in col. 4 of the Table of § 69 below ; but it seems to me more

probable that the smallness of the first two numbers in col. 3,

showing considerably greater luminosity of sky than according to

(19), may be partly or chiefly due to dust in the air overhead,

optically swelled by moisture in the early morning. Indeed the

largeness of the luminosity of the sky indicated by the smallness
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Molecular, of the first three numbers in col. 3, in comparison with the corre-

sponding numbers of col. 4, is explained most probably by gray

haze in the early morning,

§ 69. The results of Majorana's observations from the crater

of Etna are shown in the following Table, of which the first and

third columns are quoted from the Philosophical Magazine for

May, 1901, and the second column has been kindly given to me
in a letter by Mr Majorana. The values of Bjs shown in col. 4

are calculated from § 68 (19), with the factor of sec ^ (cos^ ^ + 1)

taken to make it equal to Majorana's r for sun's zenith distance

44°*6, on the supposition that the region of sky observed was in

each case (see § 62 above) in the position of minimum luminosity

as given by (21). It is obvious that this position is in a vertical

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5

Time

Zenith
distance

of sun.

Eatio of

luminosity of

sun's disc to

luminosity of

sky.

r

S
s

Zenith distance

of least lumi-

nous part of

sky.

i8

5.50 A.M.

7

8

9

11

81-7

68-0

56-1

44-6

29-9

2570000
3125000
3650000
3930000
3760000

4820000
4610000
4310000
3930000
3370000

5-5

14-4

21-7

27-8

33-6

great circle through the sun, and on the opposite side of the

zenith from the sun; and thus we have d = ^+/3. Hence (19)

becomes

T(D'-Dy
D O . i sec )8 [cos- (^+ /3) + 1] . . .(20).

.(21).

To make (20) a minimum we have

2sin2(;S +
''^'"'^-s^^cosYi^+O

The value of /3 satisfying this equation for any given value of

^ is easily found by trial and error, guided by a short preliminary
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tabic of values of j3 for assumed values of /3 + ^. Col. 5 shows Molecular,

values of y8 thus found approximately enough to give the values of

Sjs shown in col. 4 for the several values of ^.

§ 70. Confining our attention now to Majorana's observations

at 9 a.m. when the sun's altitude was about 44<"'6
; let e be the

proportion of the light illuminating the air over the crater of

Etna which at that hour was due to air, earth, and water below

;

and therefore 1 — e the proportion of the observed luminosity of

the sky which was due to the direct rays of the sun, and expressed

by § 68 (19). Thus, for /3 = 27"-8, ^=W% and 6 = 72°-4, we have

S/s = 3930000/(1 - e), instead of the S/s of col. 4, § 69. With this,

equation (20) gives

'n^'-^)T.^^_^).4.1.S.10-. (22).

Here, in order that the comparison may be between the whole

light of the sun and the light from an equal apparent area of the

sky, we must take

12 = 7r/214-6-* = 1/14660,

being the apparent area of the sun's disc as seen from the earth.

As to H, it is what is commonly called the " height of the homo-

geneous atmosphere" and, whether at the top of Etna or at

sea-level, is

7-988 . 10^
[
1 + ^^o) centimetres

;

where t denotes the temperature at the place above which H is

reckoned. Taking this temperature as 15° C, we find

H = 8-43 . 10' centimetres.

Thus (22) becomes

'T(D'-Dy
D xni-e).-728.10-'' (23).

§ 71. Let us now denote by / and 1 —/ the proportions of

(23) due respectively to the ultimate molecules of air and to

dust. We have

D
* The sun's distance from the earth is 214-6 times his radius.

= A,y(l - e) . -728 .
10-» (24) ;
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Molecular, where n denotes the number of the ultimate molecules in a cubic

centimetre of the air at the top of Etna ; and T (D' — D)/D relates

to any one of these molecules ; any difference which there may be

between oxygen and nitrogen being neglected. Now assuming

that the refractivity of the atmosphere is practically due to the

ultimate molecules, and that no appreciable part of it is due to the

dust in the air, we have by § 56 (7),

.0002=,/J^-^) (25),

the first number being approximately enough the refractivity of

air at the crater of Etna (barometric pressure, 53'6 centimetres of

mercury). Hence

T(B'-D)
D

and using this in (24) we find

= -„l-6.10-^ (26),
71' ^ '

220

-=xy(rr^) ^2^>-

Here, as in | 58 in connection with Bouguer's estimate for loss

of light in transmission through air, we have an essential un-

certainty in respect to the effective wave-length ; and, for the

same reasons as in § 58, we shall take A, = 6 .
10~^ cm. as the

proper mean for the circumstances under consideration. With
this value of X, (27) becomes

n^ ,,,

"^

-, 1-69. 10^" (28).
f{\ -e) ^ ^

§ 72. In Mr Sella's observations on Monte Rosa the zenith

distance of the sun was 50°, and the place of the sky observed was

in the zenith. He found the brightness of the sun's disc to be

about 5000000 times the brightness of the sky in the zenith.

Dealing with this result as in §§ 70, 71, with ^=0 in (20),

and supposing the temperature of the air at the place of obser-

vation to have been 0° C, we iind

n'=^r^_^^2-M.m^ (29).

where e, _/", and n are the values of e, f, and n, at the place of

observation on Monte Rosa, Denoting now by N the number of

molecules in a cubic centimetre of air at 0° C. and pressure
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75 centimetres of mercury, we have, by the laws of Boyle and Molecular.

Charles, on the supposition that the temperature of the air was

15" on the summit of Etna, and 0° on Monte Rosa

75 /, 15 \ ,75

or iY = l-48/i = l-537i'

From these, with (28) and (29), we find

2-50 , „.„ 3-58

.(30).

""^ff^-"'' •/'(l-O
10^ .(31).

§ 73. To estimate the values of e and e' as defined in §§ 70, 72,

consider the albedos* of the earth as might be seen from a balloon

in the blue sky observed by Majorana and G. Sella over Etna and

over Monte Rosa respectively. These might be about 2 and "4,

the latter much the greater because of the great amount of snow

contributing to illuminate the sky over Monte Rosa. With so

much of guess-work in our data we need not enter mi the full

theory of the contribution to sky-light by earth-shine from below

according to the principle of §§ 67, 08, interesting as it is; and we

may take as very rough estimates '2 and '4 as the values of e and

e'. Thus (3
1
) becomes

N = H2
/

.101
5-97

/'
10' .(32).

§ 74. Now it would only be if the whole light of the sky were

due to the ultimate molecules on which the refractivity depends

that / or /' could have so great a value as unity. If this were

the case for the blue sky seen over Monte Rosa by G. Sella in

* Albedo is a word introduced by Lambert 150 years ago to signify the ratio of

the total light emitted by a thoroughly unpohshed solid or a mass of cloud to the

total amount of the incident light. The albedo of an ideal perfectly white body

is 1. My friend Professor Becker has kindly given me the following table of albedos

from Miiller's book Die Photometrie der Gestirne (Leipsic, 1897) as determined by

observers and experimenters.

Mercury 0-14 Uranus 0-60

Venus 0-76 Neptune 0-52

Moon 0-34 Snow 0-78

Mars 0-22 White Paper 0-70

Jupiter 0-62 White Sandstone 0-24

Saturn 0-72 Damp Soil 0-08
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Molecular. 1900, we should have /' = 1 , and therefore N = 5-07 . 10". But it

is most probable that even in the very clearest weather on the

highest mountain, a considerable portion of the light of the sky

is due to suspended particles much larger than the ultimate

molecules N., Oo, of the atmosphere ; and therefore the observa-

tions of the luminosity of the sky over Monte Rosa in the summer

of 1900 render it probable that N is greater than 5-97 . 10". If

now we take our estimate of § 50, for the number of molecules in

a cubic cm. of air at 0°, and normal pressure, N = 10^°, we have

1 -/= -088 and 1 -/' = '403 ; that is to say, according to the

several assumptions we have made, "688 of the whole light of the

portion of sky observed over Etna by Majorana was due to dust,

and only '403 of that observed by Sella on Monte Rosa was due

to dust. It is quite possible that this conclusion might be exactly

true, and it is fairly probable that it is an approximation to the

truth. But on the whole these observations indicate, so far as

they can be trusted, the probability of at least as large a value as

10-" for N.

§ 75. All the observations referred to in §§ 57—74 are vitiated

by essentially involving the physiological judgment of perception

of difference of strengths of two lights of different colours. In

looking at two very differently tinted shadows of a pencil side by

side, one of them blue or violet cast by a comparatively near

candle, the other reddish-yellow cast by a distant brilliantly white

incandescent lamp or by a more distant electric arc-lamp, or by

the moon ; when practising Rumford's method of photometry; it is

quite wonderful to find how unanimous half-a-dozen laboratory

students, or even less skilled observers, are in declaring This is

the stronger! or. That is the stronger! or. Neither is stronger

than the other! When the two shadows are declared equally

strong, the declaration is that the differently tinted lights from

the two shadowed places side by side on the white paper are,

according to the physiological perception by the eye, equally

strong. But this has no meaning in respect to any definite

component parts of the two lights; and the unanimity, or the

greatness of the majority, of the observers declaring it, only proves

a physiological agreement in the perceptivity of healthy average

eyes (from which colour-blind eyes would no doubt differ wildly).

Two circular areas of white paper in Sella's observations on
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Monte Rosa, a circle and a surrounding area of ground glass in Molecular.

Majorana's observations with his own beautiful sky-photometer

on Etna, are seen illuminated respectively by diminished sunlight

of unchanged tint and by light from the blue sky. The sun-lit

areas seem reddish-yellow by contrast with the sky-lit areas which

arc azure blue. What is meant when the two areas differing so

s]»londidly are declared to be equally luminous? The nearest

approach to an answer to this ([uostion is given at the end of

§ 71 above, and is eminently unsatisfactory. The same may be

truly said of the dealing with Bouguer's datum in § 57, though

the observers on whom Uouguer founded do not seem to have

been disturbed by knowledge that there was anything indefinite

in what they were trying to define or to find by observation.

§ 7G. To obtain results not vitiated by the imperfection of

the physiological judgment described in § 75, Newton's prismatic

analysis of the light observed, or something equivalent to it, is

necessary. Prismatic analysis was used by Rayleigh himself for

the blue light of the sky, actually before he had worked out

his dynamical theory. He compared the prismatic spectrum of

light from the zenith with that of sunlight diffused through

white paper ; and by aid of a curve drawn from about thirty

comparisons ranging over the spectrum from C to beyond F,

found the following results for four different wave-lengths.

C

Wave-length 656'2

Observed brightness ... 1

Calculated according to \~^
. 1

On these he makes the following remarks :

—
" It should be

" noticed that the sky compared with diffused light was even

" bluer than theory makes it, on the supposition that the diffused

" light through the paper may be taken as similar to that whose
" scattering illuminates the sky. It is possible that the paper

" was slightly yellow ; or the cause may lie in the yellowness

" of sunlight as it reaches us compared with the colour it

" possesses in the upper regions of the atmosphere. It would

" be a mistake to lay any great stress on the observations in

" their present incomplete form ; but at any rate they show that

"a colour more or less like that of the sky would result from

D h F
589-2 517-3 48G-2

1-64 2-84 8-60

1-54 2-52 3-34
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Molecular. " taking the elements of white light in quantities proportional

" to \~*. I do not know how it may strike others ; but in-

" dividually T was not prepared for so great a difference as the

" observations show, the ratio for F being more than three times

"as great as for G." For myself I thoroughly agree with this

last sentence of Rayleigh's. There can be no doubt of the

trustworthiness of his observational results; but it seems to me
most probable, or almost certain, that the yellowness, or orange-

colour, of the sunlight seen through the paper, caused by larger

absorption of green, blue, and violet ra^^s, explains the extreme

relative richness in green blue, and violet rays which the results

show for the zenith blue sky observed.

§ 77. An elaborate series of researches on the blue of the

sky on twenty-two days from July, 1900, to February, 1901, is

described in a very interesting paper, " Ricerche sul Bleu del

Cielo," a dissertation presented to the Royal University of Rome
by Dr Giuseppe Zettwuch, as a thesis for his degree of Doctor

in Physics. In these researches, prismatically analysed light from

the sky was compared with prismatically analysed direct sunlight

reduced by passage through a narrow slit ; and the results were

therefore not vitiated by unequal absorptions of direct sunlight

in the apparatus. A translation of the author's own account

of his conclusions is published in the Philosophical Magazine

for August, 1902; by which it will be seen that the blueness

of the sky, even when of most serene azure, was always much
less deep than the true Rayleigh blue defined by the X~* law.

Hence, according to Rayleigh's theory (see § 53 above) much of

the light must always have come from particles not exceedingly

small in proportion to the wave-length. Thus in Zettwuch's

researches we have a large confirmation of the views expressed

in §§ 54, 58, 61, 74 above, and §§ 78, 79 below.

§ 78. Through the kindness of Professor Becker, I am no^v

able to supplement Bouguer's 170-year old information with the

results of an admirable extension of his investigation by Professor

Muller of the Potsdam Observatory, in which the proportion

(denoted by p in the formula below) transmitted down to sea-level

of homogeneous light entering our atmosphere vertically is found

for all wave-lengths from 4"4.10~^ to 6"8.10~'', by comparison of
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the solar spectrum with the spectrum of a petroleum flame, for Molecular,

different zenith distances of the sun. It is to be presumed,

although I do not find it so stated, that only the clearest

atmosphere available at Potsdam was used in these observations.

For the sake of comparison with Rayleigh's theory, Professor

Becker has arithmetically resolved Mtiller's logarithmic results

into two parts ; one constant, and the other varying inversely as

the fourth power of the wave-length. The resulting formula*,

modified to facilitate comparison with §§ 57—59 above, is as

follows :

p ^ g-( -0887+ •0772^^1) _ 2lf)9,€~'°''^^^~* (33),

where z = \-^6 .
10~®. In respect to the two factors here shown,

we may say roughly that the first factor is due to suspended

particles too large, and the second to particles not too large, for

the application of Rayleigh's law. For the case of A, = 6 .
10~^

(^ = 1) this gives

p = -9152. -9258 = -847 (34).

§ 79. Taking now the last term in the index and the last

factor shown in (34) and dealing with it according to §§ 57—59

above; and still, as in § 55, using k to denote the proportionate

loss of light per centimetre due to particles small enough for

Rayleigh's theory, whether " suspended particles " or ultimate

molecules of air, or both ; we have e~*'^''°"°^ = '9258 which gives

^^-1 = 10"76 . 10'' cms. Hence if, as in § 58, we suppose for a

moment the want of perfect transparency thus defined to be

wholly due to the ultimate molecules of air, we should have, by

T (jD' — D)
the dynamics of refractivity, n -^^-y^ = '0006 ; and thence by

(1) of § 55 with X = 6.10~^ we should find for the number of

molecules per cubic centimetre n = 2"47 . 10^". But it is quite

certain that a part, and most probable that a large part, of the want

of transparency produced by particles small enough for Rayleigh's

theory is due to " suspended particles " larger than the ultimate

molecules : and we infer that the number of ultimate molecules

per cubic centimetre is greater than, and probably very much
greater than, 247 .

10^**. Thus from the surer and more complete

data of Miiller regarding extinction of light of different wave-

* Miiller, Die Photometrie der Gestirne, p. 140.

T. L. 21
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Moleculai-. lengths traversing the air, we find an inferior limit for the number

of molecules per cubic centimetre nearly three times as great as

that which Rayleigh showed to be proved from Bouguer's datum.

§ 80. Taking, somewhat arbitrarily, as the result of §§ 23—77

that the number of molecules in a cubic centimetre of a perfect

gas at standard temperature and pressure is lO'-", we have the

following interesting table of conclusions regarding the weights

of atoms and the molecular dimensions of liquefied gases, of water,

of ice, and of solid metals.

Mass of atom
Number of

atoms, or

Distance in cm.
from centre
to centre if

ranged in cubicSubstance or of H2O Density of molecules
in grammes H2O, in

cub. cm.
order with

actual density

H 0-45 .
10-2^ liquid at 17° absolute •090 200 .

1021 1-71 .

10-s

7-15 „ ,, ,, freezing point 1-27 178 „ 1-78 „

HjO 8-05 „ water 100 124 ,, 200 „

H2O 8-05 „ ice •917 114 ,, 2-06 „

H2O 8-05 „ vapour at 0° C. -487 . IQ-s 605 .
1015 118-2

N 6-29 „ liquid 1-047 166 .
1021 1-82 „

Argon 17-81 „ ^^
1-42 79-7,, 2-32 „

Gold 88-52 „ solid 19-32 218 ,, 1-66 „

Silver 48-47 „ >)
10-53 217 ,,

1-66 „

Copper 28-43 „ ,,
8-95 315 „ 1-47 „

Iron 25-15 „ ,,
7^86 313 ,, 1-47 „

Zinc 29-80 „ " 7^15 245 „ 1-60 „

§ 81. In the introductory Lecture (p. 14) we considered the

question " are the vibrations of light perjyendicular to, or are they

" in, the plane of polarization ?—defining the plane of polarization

"as the plane through the incident and reflected rays, for light

"polarized by reflection." We are now able to answer perpen-

dicular to the plane of polarization, with great confidence founded

on two experimental proofs both given by Stokes, and each of

them alone sufficient, I believe, for the conclusion.

I. The observed fact that a large proportion of the light of

the blue sky looked at in any direction perpendicular to the

direction of the sun, and not too nearly horizontal, is polarized in

the plane through the sun ; interpreted according to the dynamics

of Lecture VIIL, pp. 88, 89, 90, and of Lecture XVIL, §§ 52, 54,

63.

II. Observation of the change of the plane of polarization ex-

perienced by plane polarized light when diffractionally changed in
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direction through a large angle by passage across a Fraunhofer Molar,

grating; described and interpreted in Part II. of his great paper

" On the Dynamical Theory of Diffraction*." In a short Appendix,

pp. 327, 828, added to his Reprint, Stokes notices experiments

by HoItzniann-|-, published soon after that paper, leading to

results seemingly at variance with its conclusions, and gives a

probable explanation of the reason for the discrepance; and he refers

to later experiments agreeing with his own, by Lorenz of Denmark.

Thus we find in II. confirmation of the conclusion, first drawn

by Stokes from I., that the vibrations in plane polarized light

are perpendicular to the plane of polarization.

§ 81', Finally, we have still stronger confirmation of Stokes's

original conclusion, in fact an irrefragable independent demonstra-

tion, that the vibrations of light are perpendicular to the plane of

polarization, by Rayleigh ; founded on a remarkable discovery,

made independently by himself and Lorenz of Denmark, regarding

the reflection of waves at a plane interface between two elastic

solids of different rigidities but equal densities : That, when the

difference of rigidities is small, and when the vibratians are in

the plane of incidence, there are two angles of incidence (tt/S

and Stt/S), each of which gives total extinction of the reflected

light. That is to say ; instead of one " polarizing-angle," tan~i/x;

there are two " polarizing-angles " 22°.5 and 67°'5
; which is utterly

inconsistent with observation. The old-known fact (proved in § 123

below) that, if densities are equal and rigidities unequal, vibrations

perpendicular to the plane of incidence give reflected light obeying

Fresnel's " tan^^ent " law and therefore vanishing when the angle

of incidence is tan~' fx, had rendered very tempting, the false

supposition that light polarized by reflection at incidence tan~^ jjl

has its vibrations in the plane of incidence ; but this supposition

is absolutely disproved by the two angles of extinction of the

reflected ray which it implies for vibrations in the plane of

incidence and reflection.

We may consider it as one of the surest doctrines through the

whole range ofnatural philosophy, that plane-polarized light consists

of vibrations of ether perpendicular to the plane of polarization.

* Reprint of Mathematical and Physical Papers, Vol. ii. pp. 290

—

327.

t Poggendorff's Annalen, Vol. xcix. (1856), p. 446, or Philosophical Magazine,

Vol. XIII. p. 135.

21—2



LECTURE XVIII.

Thursday, October 16, 5 p.m. Written cifresh 1902.

Refection of Light.

Molar.
I 82. The subject of this Lecture when originally given was

"Reflection and Refraction of Light," I have recently found it

convenient to omit "Refraction" from the title because (§ 130

below), if the reflecting substance is transparent, and if we

know the laws of propagation of ethereal waves through it, we

can calculate the amount and quality of the refracted light for

every quality of incident light, and every angle of incidence,

when we know the amount and quality of the reflected light.

When the reflecting substance is opaque there is no " refracted
"

light ; but, co-periodic with the motion which constitutes the

incident light, there is a vibratory motion in the ether among

the matter of the reflecting body, diminishing in amplitude

according to the exponential law, 6~™°, with increasing distance

I) from the interface. When m~^ is equal to 10,000 wave-lengths,

say half-a-centimetre, the amplitude of the disturbance at one-

half centimetre inwards from the interface would be e~^ of the

amplitude of the entering light, and the intensity would be e"^,

or l/7'39, of the intensity of the entering light. The substance

might or might not, as we please, be called opaque ; but it would

be so far from being perfectly opaque that both theoretically

and experimentally we might conveniently deal with the case

according to tlie ordinary doctrine of " reflected " and " refracted
"

light. The index of refraction might be definitely measured by

using very small prisms, ' ot thicker than 1 mm. in the thickest

part. But, on the other hand, when the opacity is so nearly

perfect that in~^ is ten wave-lengths, or two or three wave-

lengths, or less than a wave-length, we have no proper application

of the ordinary law of refraction, and no modification of it can

conveniently be used. Omission to perceive this negative truth

has led some experimenters to waste precious time and work in

making, and experimenting with, transparent metal prisms of
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thickness varying from as nearly nothing as possible at the edge, Molar,

to something like the thickness of ordinary gold-leaf at distance

of two or three millimetres from the edge.

§ 83. A much more proper mode of investigating the pro-

pagation of ethereal vibrations through metals is that followed

first, I believe, by Quincke, and afterwards by other able experi-

menters
; in which an exceedingly thin uniform plate of the solid

is used, and the retardation of phase (found negative for metals

by Quincke !) of light transmitted through it is measured by the

well-known interferential method. Some mathematical theorists

have somewhat marred their work by holding on to " refraction,"

and giving wild sets of real numbers for refractive indices* of

metals (different for different incidences !), in their treatment of

light reflected from metals ; after MacCullagh and Cauchy had

pointed out that the main observed results regarding the reflection

of light from metals can be expressed with some approach to

accuracy by Fresnel's formulas with fi = tp + q, where p and q
are real numbers, and p certainly not zero : q very nearly zero for

silver, or quite zero for what I propose to call ideal silver (§§ 150,

151 below). It was consideration of these circumstances which

led me to drop " Refraction " fi'om the title of Lecture XVIII.

I 84. The theory of propagation of the ethereal motion

through an opaque solid, due to any disturbance in any part of

it, including that produced by light incident on its surface, is a

most important subject for experimental investigation, and for

work in mathematical dynamics. The theory to be tried for

(§ 159) is that of the propagation of vibratory motion through

ether, when under the influence of molecules of ponderable matter,

causing the formulas for wave-motion to be modified by making

the square of the propagational velocity a real negative quantity,

or a complex. We shall see in § 159 below that a new molecular

doctrine gives a thoroughly satisfactory dynamical theory of

what I li^:e called ideal silver, a substance which reflects light

without loss at every incidence and in every polarizational

azimuth ; its quality in wave-theory being defined by a real

negative quantity for l-he square of the propagational velocity

of imaginary waves through ether within it. Liquid mercury,

*
yu, is essentially the ratio of the propagational velocities in the two mediums,

one of which may, with good dynamical reason, be a complex imaginary. See

§8 144—152.
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Molar, or quicksilver as it used to be called, may possibly, when tested

with a very perfectly purified surface, be found to reflect light as

well as, or nearly as well as, Sir John Conroy succeeded in getting

a silver surface to do (§ 88 below) ; and may therefore fulfil my
definition of ideal silver: though Rayleigh found only "753 of the

incident light, to be reflected from fairly clean mercury under air*.

§ 85. Without any scientific photometry, any one can see that

the light reflected from gold, steel, copper, brass, tin, zinc, however

well polished, is very much less than from silver, and hence very

much less than the whole incident light. Though many excellent

investigations have been made by many able experimenters on

the polarizational analysis of light reflected from all these metals,

few of them have given results as to the proportion of the whole

reflected, to the whole incident, light. It seems indeed that,

besides Rayleigh, only two observers, Potterf and Conroy;]:, have

directly compared the whole light reflected from metals with the

whole incident light (see § 88 below). Conroy, using his most

perfect silver mirror, and angle of incidence 30°, found the propor-

tion of reflected light to incident light to be 97 o percent., for light

vibrating perpendicular to the plane of incidence, and 99'9 per

cent, for light vibrating in§ the plane of incidence ; and therefore

98'6 per cent, for common un polarized light. With speculum-metal

and steel and tin mirrors, for 30° of incidence, and unpolarized

light, he found the reflected light to be ;—speculum-metal 66'9

per cent., steel 54*9 per cent., and tin 44'4 per cent.|| From these

measurements, as well as from ordinary non-scientific observation,

we see that there is essentially much light lost in reflection from

otlier metals than silver; and, as the light does not travel through

the metal, it is quite certain that its energy must be converted

into heat in an exceedingly thin surface-region of the metal

(certainly not more than two or three wave-lengths). Hence the

square of the imaginary velocity of the imaginary light-wave in

other metals than silver cannot be a real negative quantity;

* Phil. Mag. 1892 ; Collected Papers, Vol. iv.

t Edinburgh Journal of Science, Vol. in. 1830, pp. 278—288.
+ Proc. R. S. Vol. xxvni. Jan. 1879, pp. 242—250; Vol. xxxi. Mar. 1881,

pp. 486—500; Vol. xxxv. Feb. 1883, pp. 26—41; Vol. xxxvi. Jan. 1884, pp. 187—

198 ; Vol. XXXVII. May, 1884, pp. 36—42.

§ I have found no other recorded case of greater reflectivity of vibrations in

than of vibrations perpendicular to the plane of incidence.

II
Proc. R. S. Feb. 1883, Vol. xxxv, pp. 31, 32.
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because, as we readily see from the mathematical treatment, this Molar,

would imply no conversion of light-energy into heat, an4 would

therefore (§§ 150, 157 below) imply total reflection at every angle

of incidence. Dynamical theory is sviggested in § 159, to explain

conversion of incident light into heat, among the molecules

within two or three wave-lengths of the boundary of the metallic

mirror. This is only an outlying part of the whole field of in-

vestigation required to explain all kinds of opacity in all kinds

of matter, solid, liquid, and gaseous.

§ 86. Let us think now of the reflection of light from perfectly

polished surfaces. If the substance is infinitely fine-grained the

polish may be practically perfect ; eo that no light is reflected

except according to the law of equal angles of incidence and

reflection. But in reality the molecular structure of solids gives

a surface which is essentially not infinitely fine-grained : and the

nearest approach to perfect polish produced by art, or found in

nature, on the surfaces of liquids and on crystalliue or fractured

surfaces of solids, is illustrated by a gravel-covered road made as

smooth as a. steam-roller can make it. Optically, the polish would

be little less than perfect if the distances between nearest neigh-

bours in the molecular structure are very small in comparison with

the wave-length of the incident light. In § 80 we estimated the

distances between nearest molecular neighbours in ordinary solids

and liquids at from lb .
10~* to 2 .

10~* cm., which is from 1/4000

to 1/3000 of the mean wave-length of visible light (6 .
10~^ cm.).

The best possible polish is therefore certainly almost quite practi-

cally perfect in respect to the reflection of light. But if the work

of the steam-roller is anything less than as perfect as it can pos-

sibly be, there are irregular hollows (bowls or craters) of breadths

extending, say, to as much as 1/200 of the wave-length of mean

visible light; and the polish would probably not be optically perfect.

The want of perfectness would be shown by a very faint blue light,

scattered in all directions from a polished mirror illuminated only

by a single lamp or by the sun. The best way to look for this

blue light would be to admit sunlight into an otherwise dark room

through a round hole in a window-shutter or a metal screen, as

thoroughly LHckened as possible on the side next the room ; and

place t>.e mirror to be tested in the centre of the beam of light at

a convenient distance from the hole. If the polish is optically

perfect, no light is seen from any part of the mirror by an eye
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Molar, placed anywhere not in the course of the properly reflected light

from sun or sky. That is to say, the whole room being dark, and

the screen around the hole perfectly black, the whole mirror would

seem perfectl}^ black when looked at by an eye so placed as not to

see an image (of the hole, and therefore) of any part of the sky or

sun. A condition of polish very nearly, hut not quite, optically

perfect, would be shown by a faint violet-blue light from the

surface of the mirror instead of absolute blackness. The tint of

this light would be the true Rayleigh \~* blue, if the want of per-

fectness of the polish is due to craters small in comparison with

the wave-length (even though large in comparison with distances

between nearest molecular neighbours). When this condition is

fulfilled, the blue light due to want of perfectness in the polish,

seen on the surface if viewed in any direction perpendicular to the

direction of the incident beam, would be found completely polar-

ized in the plane of these two directions. Everything in § 86 is

applicable to reflection from any kind of surface, whether the

reflecting body be solid or liquid, or metallic, or opaque with any

kind of opacity, or transparent. Experimental examination of the

polish of natural faces of crystals will be interesting.

§ 87. Valuable photometric experiments with reference to

reflection of light by metals have been made by Bouguer, Biot,

Brewster, Potter, Jamin, Quincke, De Senarmont, De la Provostaye

and Desains, and Conroy*. But much more is to be desired, not

only as to direct reflection from metals, but as to reflection at

all angles of incidence from metals and other opaque and trans-

parent solids and liquids. In each case the intensity of the

whole reflected light should be compared with the intensity of

the whole incident light ; in the first place without any artificial

polarization of the incident, and without polarizational analysis

of the reflected, light. It is greatly to be desired that thorough

investigation of this kind should be made. It would be quite an

easy kind of work-f- because roughly approximate photometry is

* Bouguer, Traite d'Optique, 1760, pp. 27, 131: Biot, Ann. de Chimie, 1815,

Vol. xciv. p. 209: Brewster, A Treatise on new Philosophical Instruments, Edin.

1813, p. 347; Phil. Trans. 1830, p. 69: Potter, Edin. Jour, of Science, 1830: De la

Provostaye and Desains, Aim. de Chim. et de Phys. [3], 1849, Vol. xxvii. p. 109, and

1850, Vol. XXX. pp. 159, 276: Conroy, Proc. E. S. ; see § 84 above. See Mascart,

Traite d'Optique, Vol. ii. 1891, pp. 441—459.

t Bouguer, Traite d'Optique, 1760, pp. 27, 131 : Arago, (Euvres Completes, Vol. x.

pp. 150, 185, 216, 468. See Mascart, Traite d'Optique, Vol. ii. 1891, pp. 441—501.
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always easy, except when rendered impossible by difference of Molar,

colour in the lights to be compared.

Absolute determinations of reflected lig) t per unit of incident

light cannot be made with great accuracy b" cause of the inherent

difficulty, or practical impossibility, of very accurate photometric

observations, even when, as is largely the case for reflected lights,

there is no perceptible difference of tint between the lights to be

compared.

§ 88. The accompanying diagram, fig. 1, shows, for angles of

incidence from 10° to 80°, the reflectivities* of silver, speculum-
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Fig. 1.

* I propose the word "reflectivity" to designate the ratio of the whole reflected

light to the whole incident light, whether the incident light is unpolarized as in

fig. 1; or plane polarized, either in or perpendicular to the plane of incidence,

as in figs. 4—7; and whether it is oi-dinary white light, or homogeneous light, or

light of any mixed tint.



830 LECTURE XVIII.

Molar, metal, steel, and tin, according to the observations of Potter,

Conroy, and Jamin ; and for all incidences from 0'' to 90° the

reflectivities of diamond, flint-glass, and water, calculated from

Fresnel's admirable formulas. These are, for almost all trans-

parent bodies even of so high refractivity as diamond, (§§ 96, 100

below), probably very much nearer the truth than any photo-

metric observations hitherto made, or possible to human eyes.

The ordinates represent the reflected light in percentage of the

incident light, at the angles of incidence represented by the

abscissas. The reflectivities thus given for the three transparent

bodies are the means of the reflectivities given in figs. 4, 5, 6 of § 102

below for light polarized in, and perpendicular to, the plane of

incidence and reflection. Jamin's results* for steel are given by

himself as the means of the reflectivities for light polarized in,

and perpendicular to, the plane of incidence and reflection ; each

determined photometrically by comparison with reflectivities of

glass calculated from Fresnel's formulas. The six curves for metals,

of this diagram (fig. 1), show I believe all the reflectivities that

have hitherto been determined by observation ; except those of

Jaminf for normal incidence of homogeneous lights from red to

violet on metals, and Rayleigh'sJ for nearly normal incidence of

white light on mercury and glass. All the curves meet, or if

ideally produced meet, in the right-hand top corner, showing total

reflection at grazing incidence.

§ 89. The accompanying sketches (figs. 2 a, 2 b) represent

what (on substantially the principle of Bouguer, Potter, and

Conroy) seems to me the best and simplest plan for making

photometric determinations of reflectivity. The centres of lamps,

mirror, and screen, are all in one horizontal plane, which is taken

as the plane of the drawings. The screens and reflecting face of

the mirror are vertical planes. R is the reflecting surface, shown

as one of the faces of an ^cute-angled prism. L, L' are two as

nearly as may be equal and similar lamps (the smaller the

horizontal dimensions the better §, provided the light shed on the

* Mascart, Traite d'Optique, Vol. ii. pp. 534, 536. t Ibid. p. 544.

+ Scientific Papers, Vols. ii. and iv. ; Proc. R.S. 1886, Phil. Mag. 1892.

§ The best non-electric light I know for the purpose is the ordinary flat-wicked

paraffin-lamp, with a screen having a narrow vertical slot placed close to the lamp-

glass, with its medial line in the middle plane of the flat flame. The object of the

screen is to cut off light reflected from the glass funnel, without intercepting any

of the light of the flame itself; the width of the slot should therefore he very
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mirror is sufficient). 11 is too far from R to allow its true position Molar,

to be shown on the diagram, but its direc, on as seen from K is

indicated by a broken straight line. W is an opaque screen coated

W

H

^

t

U
Fig. 2 b.

Fig. 2 a,

slightlj greater than the thickness of the flame. This arrangement gives a much

finer and steadier Hne of light than any unscreened candle, and vastly more light;

and it gives more light than comes through a slot of the same width from a

round-wicked paraffin-lamp. An electric lamp of the original Edison "hair-pin"

pattern, with a slotted screen to cut off reflected light from the glass, would be

more convenient than the paraffin-lamp, and give more light with finer shadows.
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Molar, with white paper on the side next E, the eye of the observer.

Fig. 2 a and fig. 2 h show respectively the positions for very

nearly direct incidence, and for incidence about 60". Each

drawing shows, on a scale of about one-tenth or one-twentieth,

approximately the dimensions convenient for the case in which

the mirror is a surface of flint-glass of refractive index 1"714;

and, as according to Fresnel's theory, represented by the mean of

the ordinates of curves 1 and 2 of fig. 6 (§ 102 below), having re-

flectivities 1/14 and 1/4 at incidences 0° and 60°. The eye at E
sees a narrow portion of the white screen next the right-hand edge

illuminated only by I, the image of X in the mirror; and all of the

screen on the left of that portion, illuminated by the distant lamp
L'. The distant lamp is moved nearer or farther till the light is

judged equal on the two sides of the border line between the

illumination due to I, the image of L, and the direct illumination

due to L'. By shifting L' slightly to the right, or slightly to the

left, we may arrange to have either a very narrow dark space, or

a space of double brightness, between the two illuminations ; and

thus the eye is assisted in judging as to the perfect equality of

the two. When, as in fig. 2 h, the angle of incidence exceeds
45° a dark screen DD is needed to prevent the light of L from

shining directly on the white screen, W. The method, with the

details I have indicated, is thoroughly convenient for reflecting

solids, whether transparent or metallic or of other qualities of

opacity
;
provided the mirror can be made of not less than two

or three centimetres breadth. But, as in the case of diamond,

when only a very small mirror is available, modification of the

method to allow direct vision of the lights to be compared (with-

out projection on a white screen) would be preferable or necessary.

' For liquids, of course, modification would be necessary to suit it

for reflection in a vertical plane.

§ 90. As remarked at the end of § 87, absolute determinations

of reflectivities cannot be made with great accuracy, because of the

imperfectness of perceptivity of the eye in respect to relative

strengths of light, even when the tints are exactly the same. On
the other hand, a very high degree of accuracy is readily attainable

by the following method*, when the problem is to compare, for

any or every angle of incidence, the reflected lights due to the

* Given originally by MacCuUagh. See his Collected Works, p. 239; also

Stokes, Collected Works, Vol. iii. p. 199.
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incidence of equal quantities of light vibrating in, and vibrating Molar,

perpendicular to, the plane of incidence.

Use two Nicol's prisms, which, for brevity, I shall call iVj and

No, in the course of the incident and reflected light respectively.

Use also a Fresnel's rhomb (F) between the reflecting surface

and N^. Set iVo, and keep it permanently set, with its two

principal planes at 45° to the plane of reflection, but with facilities

for turning from any one to any other of the eight positions thus

defined, to secure any needful accuracy of adjustment. For brevity,

I shall call the zeros of N^ and F, positions when their principal

planes are at angles of 45° to the plane of incidence and

reflection. In the course of an observation iVj and F are to be

turned through varying angles, n and /, from their zeros, till

perfect extinction of light coming through No is obtained.

§ 91. To begin an observation, with any chosen angle of

incidence of the light on the reflecting surface, turn N^ to a

position giving as nearly as possible complete extinction of light

emerging from N.^. Improve the extinction, if you can, by turning

F in either direction, and get the best extinction possible by

alternate turnings of JSfi and F. Absolutely complete extinction

is thus obtained at one point of the field if homogeneous light

is used, and if the Nicols and rhomb are theoretically perfect

instruments. The results of the completed observation are the

two angles {n, f) through which iV^ and F must be turned from

their zero positions to give perfect extinction by N^. From /
thus found we calculate by two simple formulas, (7) of § 93,

the ratios of the vibrational amplitudes of the two constituents

defined below, {^, g), of the reflected vibrations in the plane of

reflection, to the vibrational amplitude ((7) of the reflected vibra-

tions perpendicular to that plane. The definite constituents here

referred to are {^) vibrations in the same phase as G; and {g)

vibrations in phase advanced by a quarter-period relatively to G.

It is clear that if ^ = 0, complete extinction would be had without

turning F from its zero position, and would be found by the

same adjustment of N-^ as if there were no Fresnel's rhomb in the

train. (0 corresponds to the C" of §§ 117, 123, below.)

I 92. Figs. 3a, 36, are diagrams in planes respectively perpen-

dicular to the reflected, and to the incident, light. Let be a point

in the course of the light between the reflecting surface and the
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Molar. Fresnel's rhomb. Let OG be the plane of reflection of the light from

tlie reflecting surface, and let OZ be perpendicular to that plane.

O

Fig. 3 a.

Let ON^ be the vibrational plane* of the second Nicol; and OP
its "plane of polarization " (being perpendicular to OiVj). Let OF
be the plane through the entering ray, and perpendicular to the

facial intersectionsj" of the Fresnel's rhomb ; shown in the diagram

as turned through an angle /= N^OF from the zero position

ON^. Let OK be perpendicular to OF. In respect to signs we

see by § 158^ (1) that in fig. 3a, for reflected, and 36 for incident,

vibrations, OG is positive.

Considering the light coming from the reflecting surface and

incident on the Fresnel, let G sin at be the component along OZ,

and c^ sin oat — g cos at be the component along OG, of the dis-

placement at time i of a particle of ether of which is the

equilibrium position, ^'jC and gjC are two functions of the angle

of incidence to be determined by the observation now described.

By proper resolutions and additions for vibrational components

in the principal planes of the Fresnel, we find as follows :

sino)^

sinwi

c/ cos

c^sin

and — cos ft) t g cos {^ -Jj along OF
'

along OF

OK

— cos at g sin >) OK

•in

.(2).

* I use this expression for brevity to denote the plane of the vibrations of light

transmitted through a Nicol.

t An expression used to denote the intersections of the traversed faces and the

reflecting surfaces. See § 158^ below.
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By the two total internal reflections at the oblique faces of the Molar.

Fresnel, vibrational components in the plane OF are advanced a

quarter-period relatively to the vibrational components perpen-

dicular to OF. Hence to find the vibrational components at time

< at a point in the course of the light emerging from the Fresnel,

we must, in the components along OF of (1) and (2), change the

sin (ot into cos wt, and change the cos at into — sin wt ;
and leave

unchanged the components along OK. Thus we find for the

vibrational components at the chosen point in the course of the

light from the Fresnel towards the second Nicol, as follows

:

sin mt g cos

sin wt

and

/3in(^-y)+Ccos(^-/)

— cos wt g sin ( - — f\

cos (ot

along OF

„ OK

along OF

,. OK

...(3),

...(4).

^ 93. For extinction by the second Nicol, the sum of all the

vibrational components parallel to OiYo of the light reaching it

must be null; and therefore, by the proper resolutions and

additions, and by equating to zero separately the coefficients

of s'm cot and cos cot thus found, we have

c^ sin (^
-
/) + C cos (^

- fj sinf+ g cos [^
- fj cos/=

(5),

^ cos (^ -/) - C'sin (^ - fj cos/+ g sin
(^| -/) sin/=

(6).

Solving these equations for c^ and g, we find

1+C0S4/ 2 sin 2/
^~2 + sin4/^' ^~2 + sin4/'' ^

^•

§ 94. Go back now to the light emerging from the first

Nicol and incident on the reflecting surface. Let / be its
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Molar, vibrational amplitude. The vibrational amplitudes of its com-

ponents in, and perpendicular to, the plane of incidence are

/ cos i ^ — n and / sin (

—

when the Nicol is turned from its zero position, OQ, through the

angle n, as indicated in fig. Sb ; ON-^ being the vibrational plane of

the first Nicol.

§ 94'. Let S be the ratio of reflected to incident vibrational

amplitude for vibrational component 'perpendicular to the plane

OG. Considering next the component of the incident light having

vibrations in the plane OG ; let T and E be the ratios of the vibra-

tional amplitudes of two particular constituents of its reflected

light both vibrating in the plane OG, to the vibrational amplitude

of the incident component ; these two constituents being respec-

tively in the same phase as the component of the reflected light

vibrating perpendicular to OG, and in phase behind it by a quarter-

period*. We have

C=-I

T
S'

s. I COS
"JT

.4

From these and (7) we have

E1 -I- cos 4/ ,
(it

1^ —r? tan -
2 + sm4/ V4 S

T, g = Icosrj-n]E...(8)

.(9).

- 2 sin 2f , iTT
-.
—

fj tan -r -
2 + sm4/ V4

* When the reflecting body is glass, or other transparent isotropic solid or

liquid, Fresnel's prophecy (we cannot call it physical or dynamical theory) declares

S=^
sin (i - ,t)

sin (i + ,t)

'

T= - tan (i - ,1) E = 0.
tan (i + /)

The notation in the text is partially borrowed from Rayleigh (Scientific Papers,

Vol. III. pp. 496—512) who used S, and T, to denote respectively the "sine-formula,"

and the "tangent-formula," of Fresnel. What I have denoted in the text by E is,

for all transparent solids and liquids, certainly very small ; and though generally
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Thus our experimental result (/, n) gives the two constituents Molar.

{T, E) of the reflected vibrations in the plane of reflection, when

the single constituent {S) of the refiected vibrations perpendicular

to the plane of reflection, is known.

§ 95. Going back to § 90, note that there are four independent

variables to be dealt with :—the angle of incidence, the orientations

of the tw^o Nicol's prisms, and the orientation of the Fresnel's

rhomb. Any two of these four variables ma}' be definitely chosen

for variation while the other two are kept constant ; to procure,

when homogeneous light is used, extinction of the light which

enters the eye from the centre of the field ; that is to say, to

produce perfect blackness at the central point of the field. Theo-

retically there is, in general, just one point of the field (one point

of absolute blackness) where the extinction is perfect ; and always

before the desired adjustment is perfectly reached a black spot is

conceivably to be seen, but not on the centre of the field. By

changing any one of the four independent variables the black spot

is caused to move ; and generally two of them must be varied

to cause it to move towards the centre of the field for the desired

adjustment. What in reality is generally perceived is, I believe,

not a black spot, but a black band ; and this is caused to travel

till it passes through the middle of the field when the nearest

attainable approach to the desired adjustment is attained. When

faint or moderate light, such as the light of a white sky, is used,

the whole field may seem absolutely dark, and may continue so

while any one of the four variable angles is altered by half a

degree or more. For more minutely accurate measurements, more

intense light must be used ; a brilliant flame ; or electric arc-

light ; or lime-light ; or, best of all, an unclouded sun as in

Rayleigh's very searching investigation of light reflected from

water at nearly the polarizing angle, of which the result is given

in § 105 below.

§ 95'. An easy way to see that j ust two independent variables are

needed to obtain the desired extinction, is to confine our attention

to the centre of the field, and imagine the light reaching the eye

believed to be perceptible for substances of high refraugibility such as diamond,

Eayleigh has questioned its existence for any of them, and suggested that its non-

nullity may be due to extraneous matter on the reflecting surface. I believe, however,

that Airy, and Brewster, and Stokes who called it the adamantine property, and

Fresnel himself though it was outside his theory, were right in beheving it real.

See § 158, below.

T. L. '22
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Molar, from it when the extinction is not perfect, to be polarizationally

resolved into two components having their vibrational lines

perpendicular to one another. The desired extinction requires the

annulment of each of these two components, and nothing else.

Proper change of the two chosen independent variables deter-

minately secures these two annulments when what is commonly

called homogeneous light, that is, light of which all the vibrations

are of the same period, is used.

§ 95". In the detailed plan of §§ 90—94 the two independent

variables chosen are the orientation of the first Nicol, and the

orientation of the Fresnel's rhomb. This is thoroughly convenient if

N^ is mounted on a proper mechanism to give it freedom to move

in a plane perpendicular to its axis, and to keep its orientation

round this axis constant. The Fresnel should be mounted so as

to be free to move round an axis fixed in the direction of the light

entering it : and it should carry a short tube round the light

emerging from it into which N.2 fits easily. Thus, when the

Fresnel is turned round the line of the light reflected from the

mirror, it carries No round in a circle (as it were with a hollow

crank-pin), so that it is always in the proper position for carrying

the emergent light to the eye of the observer.

Two other choices of independent variables, each, I believe,

as well-conditioned and as convenient as that of §§ 90— 94, but

simpler in not wanting the special mechanism for carrying N.,

are described in § 98 below.

§ 96. Nothing in §| 90—95 involves any hypothesis : and we
have, in them, an observational method for fully, without any

photometry, determining TjS and EjS; which are, for incident

vibrations at 45° to the plane of incidence, the intensities of the

two constituents of the reflected light vibrating in the plane of

incidence, in terms of the intensity of the component of the re-

flected light vibrating perpendicularly to that plane. Fully carried

through, it would give interesting and important information, for

transparent liquids and solids, and for metals and other opaque

solids, through the whole range of incidence from 0° to 90°. It can

give extremely accurate values of TjS for transparent liquids and

solids; and it will be interesting to find how nearly they agree

COS (% ~\~ 1^
with the formula ' ;. '.,

, which Fresnel's "tangent-law" and
cos {l — ,l)

°

" sine-law " imply.
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§ 90'. Freynel himself used it* for reflection from water Molar,

and from gla.ss with incidences from 24 to 89° (not using the

T
Fresuel's rhomb), and found values for tan~^ -;r, differing from

, _, cos (i + ,{) . . 1,01-11
tan ~. by sometimes more than 1 ; but it has been

cos {% — ,%)•' '

supposed that these differences may be explained by the im-

perfection of his apparatus, and by the use of white lightf.

Similar investigation was continued by Brewster j, on several

species of glasses and on diamond. With, for example, a glass of

T
refractive index 1"4826, his observed results for tan~i ^ differed

cos (% -l- %^
from tan~^ —)-.

—'-4- by + 1° 4'; which he considered might be
COS(i — ,l)

J - ' 6

within the limits of his observational errors. For diamond, he

found greater deviations which seemed systematic, and not errors

of observation. With a Fresnel's rhomb used according to the

method of §§ 90—94 he might probably have found the definite

correction on Fresnel's formula, required to represent the polari-

zational analysis of reflection from diamond. Can it be that

both Fresnel and Brewster underestimated the accuracy of their

own experiments, and that even for water and glasses, devia-

pos (i "4" ? \

tions which they found from Fresnel's 7^—^{ may have been
"^ cos(i — ,i) "^

real, and not errors of observation ? The subject urgently demands

full investigation according to the method of §§ 90—98, with all

the accuracy attainable by instruments of precision now available.

§ 97. The reader may find it interesting to follow the formulas

of § 94 through the whole range of incidences from 0' to 90°.

For the present, consider only the case of the angle of incidence

which makes T=0. This, being the incidence which, when the

incident light is polarized in any plane oblique to the plane of

incidence, gives 90° difference of phase for the components of the

reflected light vibrating in that plane and perpendicular to it, has

been called by Cauchy, and I believe by all following writers, the

principal incidence. We shall see presently (§§ 97", 99, 105) that,

for every transparent substance, observation and dynamics show one

incidence, or an odd number of incidences, fulfilling this condition.

* Fresnel, (Euvres, Vol. i. p. 646.

t Mascart, Traite d'Optiqiie, Vol. 11. p. 466.

J Brewster, Phil. Trans. 1830. See also Mascart, Vol. 11. p. 466.

22—2
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Molar. By observation and dynamics we learn (§81 above), that it is

fulfilled not by the vanishing of S, but by the vanishing of T.

To make T=0 we have by (9) for the case of principal incidence,

1 + cos 4/= 0, and therefore /= ± 45°. This, by (9), makes (if we

take /= + 45°) for Principal Incidence,

^/>S^ = tan (n - 7r/4) = A; (10).

§ 97'. The k here introduced is Jamin's notation, adopted

also by Rayleigh. It is the ratio of the vibrational amplitude of

reflected vibrations in the plane of incidence to the vibrational

amplitude perpendicular to it, when the incident light is polarized

in a plane inclined at 45° to the plane of incidence, and when the

angle of incidence is such as to make the phases of those two com-

ponents of the reflected light differ by 90°. A: is positive or

negative according as the phase of the reflected vibration in the

plane of incidence lags or leads by 90° relatively to the component

perpendicular to it. It is positive when (as in every well assured

case* whether of transparent or of metallic mirrors) the obser-

vation makes n > 45° ; it would be negative if n < 45°.

§ 97". The angle n — jrj^i found by our observation of § 97 is

called the "Principal Azimuth." See § 158"^" below. It has been

the usage of good writers regarding the polarization of light, par-

ticularly in relation to reflection and refraction, to give the name

"azimuth "I"" to the angle between two planes through the direction

of a ray of light ; for instance, the angle between the plane of in-

cidence and the plane of vibration of rectilineally polarized light.

A "Principal Azimuth," for reflection at any polished surface, I

define as the angle between the vibrational plane of polarized light

incident at Principal Incidence, and the plane of the incidence,

to make the reflected light circularly polarized. There is one, and

only one. Principal Incidence for every known mirror : except

internal reflection in diamond and other substances whose refrac-

tive indices exceed 2'414 ; these have three Principal Incidences

(§
158'" below). The number is essentially odd: on this is founded

the theory of the polarization of light by reflection.

* See Jamin, Cours de Physique, Vol. ii. pp. 694, 695 ; also below, §§ 105, 154,

158% 159"', 179, 192.

t This, when understood, is very convenient ; though it is not strictly correct.

Azimuth in astronomy is essentially an angle in a horizontal plane, or an angle

between two vertical planes. A reader at all conversant with astronomy would

naturally think this is meant when a writer on optics uses the expression

"Principal Azimuth," in writing of reflection from a horizontal mirror.
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§ 98. The vibrational plane of the incident light is inclined Molar,

to the plane of incidence at an angle of n — 45° ; which, for the

Principal Incidence, is such as to render the two components

of the reflected light equal ; and therefore to make the light

circularly polarized. However a Fresnel's rhomb is turned, circu-

larly polarized light entering it, leaves it plane polarized. In

the observation, with the details of §§ 90—94, it is turned so

that the vibrational plane of the light emerging from it is per-

pendicular to the fixed vibrational plane of N^. Hence it occurs

to us to think that a useful modification of those details might

be;—to fix the Fresnel's rhomb with its principal planes at 45°

to the plane of reflection, and to mount No so as to be free

to turn round the line of light leaving the Fresnel's rhomb.

Alternate turnings of N., and A\ give the desired extinction for

any angle of incidence. Take /= in (1), (2), (8), (4); which

makes GOF = 4:5° in fig. 3 a. Let )h be the angle (clockwise in

the altered fig. 3 a) from OF to ON^; and put n = ^tt + a in fig. 3 b.

Eliminating c^ and g from (3), (4), by (8) and proceeding as in

§ 93, we find

T/S = tan a cos 2iu ; E/S = - tan a sin 2n, ; EIT=- tan 2n^...{W).

If a is positive observation makes Wo negative when taken acute.

For principal incidence it is - 45°, and EjS = tan a. The phasal

lag of (E, T) behind {S) is - ^n^. Negative is anti-clockwise in

fig. 8 a. See § 158-îxvii

§ 99. The following table shows, for six different metals,

determinations of principal incidences and principal azimuths

which have been made by Jamin and Conroy, experimenting

on light from different parts of the solar spectrum. This table

expresses, I believe, practically almost all that is known from

observations hitherto made as to the polarizational analysis of

homogeneous light reflected from metals. The differences between

the two observers for silver are probably real, and dependent on

differences of condition of the mirror-surfaces at the times of

the experiments, as modified by polishing and by lapses of time.

It will be seen that for each colour Jamin's ¥ is intermediate

between Conroy 's two values for the same plate, after polishing

with rouge and Avith putty powder respectively. On the other

hand, each of Conroy's Principal Incidences for silver is greater
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than Jamin's ; and by greater dififerences for the yellow and blue Molar,

light than for the red.

Experimental determinations of TIS and EjS, (9) or (10'),

through the whole range of incidence below and above the

Principal Incidence are still wanting.

§ 100. As for transparent solids and liquids, we ma}' consider

it certain that Fresnel's laws, giving

_^^ sin(t-,^) _^^t^n(^^ ^^^
sin(t + ,t) tan(i + ,t)

are ver}^ approximately true through the whole range of incidence

from 0° to 90"; but, as said in § 95, it is still much to be desired

that experimental determinations of TjS should be made through

the whole range ; in order either to prove that it differs much less

COS \% "4" %\
from p—^ than found experimentally by Fresnel himself and

Brewster; or, if it differs discoverably from this formula, to deter-

mine the dififerences. It is certain, however, that at the Principal

Incidence the agreement with Fresnel's formula (implying £*= in

the notation of § 94') is exceedingly close ; but the very small

deviations from it found experimentally by Jamin and Rayleigh

and represented by the values of k shown in the table of § 105

below, are probably real. An exceedingly minute scrutiny as to

the agreement of the Principal Incidence with tan~^yu,, Brewster's

estimate of it ;—a scrutiny such as Rayleigh made relatively to

the approach to nullity of k for purified water surfaces ; is still

wanted; and, so far as I know, has not hitherto been attempted

for water or any transparent body. See §§ 180, 182 below.

Hitherto, except in §§ 81, 84, 86, we have dealt exclusively

with what may be called the natural history of the subject, and

have taken no notice of the dynamical theory ; to the considera-

tion of which we now proceed.

§ 101. Green's doctrine* of incompressible elastic solid with

equal rigidity, but unequal density, on the two sides of an interface,

to account for the reflexion and refraction of light, brings out for

vibrations perpendicular to the plane of incidence (§ 128 below)

exactly the sine-law which Fresnel gave for light polarized in the

plane of incidence. On the other hand, for vibrations in the

* Camh. Phil. Soc, Dec. 1837 ; Green's Collected Papers, pp. 2-16, 258, 267, 268.
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Molar, plane of incidence it gives a formula (|§ 104, 105, 14G below)

which, only when the refractive index differs infinitely little from

unity, agrees with the tangent-law given by Fresnel for light

polarized perpendicular to the plane of incidence;—but differing

enormously from Fresnel, and from the results of observation, in

all cases in which the refractive index differs sufficiently from

unity to have become subject of observation or measurement.

§ 102. The accompanying diagrams, figs. 4, 5, 6, illustrate,

each by a single curve (Curve 1), the perfect agreement between

Green and Fresnel for the law of reflection at different incidences

when the vibrations are perpendicular to the plane of incidence

;

and by two other curves the large disagreement when the vibra-

tions are in the plane of incidence.

Curve 1 in each diagram shows for vibrations perpendicular to

the plane of incidence the ratio of the reflected to the incident

light according to Fresnel's sine-law

sin {i — ,iy

sin (i + ,i)_

dynamically demonstrated by Green on the hypothesis of equal

rigidities and unequal densities of the two mediums.

Curve 2 shows, for vibrations in the plane of incidence, the

ratio of the reflected to the incident light according to Fresnel's

tangent-law,

"tan {% — ,^y

tan {i 4- ,i)

Curve 3 shows, for vibrations in the plane of incidence, the

ratio of reflected to incident activity (rate of doing work) per

unit area of wave-plane, rigorously demonstrated by Green (§ 146

below) for plane waves incident on a plane interface between

elastic solids of different densities but the same rigidity; on the

supposition that each solid is absolutely incompressible, and that

the two are in slipless contact at the interface.

In each diagram abscissas from 0° to 90° represent " angles of

incidence," that is to say, angles between wave-normals and the

line-normal to the interface, or angles between the wave-planes

and the interface.

§ 108. Curves 2 and 3 of fig. 4 show for water a seemingly fair

agreement between Fresnel and Green for vibrations in the plane
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of reflection. But the scale of the diagrani is too small to show Molar,

important differences for incidences less than 60 or 65°, especially

in the neighbourhood of the polarizing angle, 53°"1
: this want is

remedied by the larger scale diagram fig. 7 showing Curves 2 and

3 of fig. 4; on a scale of ordinates 48*5 times as large, in which,

for vibrations in the plane of incidence, the unit for intensity

of light is the reflected light at zero angle of incidence, instead
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Fig. 4. Water, (^r^ 1-334)

of the incident light at incidence i as in the other diagrams.

Curve 2 in figs. 4 and 7 shows, for water, the absolute extinction

at angle of incidence tan~^/z given by Fresnel's formula. Curve 3

(Green's formula) shows, for a slightly smaller angle of incidence

(50°'0 instead of 53°* 1), a minimum intensity equal to "295 of

that of directly reflected light ; that is to say Green's formula
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Molar, makes the directly reflected light from water only 3^ times

as strong as the light reflected at the angle which gives least

of it.

§ 104. To test whether Fresnel or Green is more nearly right,

take a black japanned tray with water poured into it enough to

cover its bottom, and look through a Nicol's prism at the image
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Fig. 5. Flint Glass. (m= 1-714)

of a candle in the water-surface. You will readily find in half-a-

minute's trial a proper inclination of the light and orientation of

the Nicol to give what seems to you extinction of the light. To

test the approach to completeness of the extinction let an assistant

raise and lower alternately a piece of black cloth between the candle

and the water surface, taking care that it is lowered sufficiently

to eclipse the image of the candle when it is not extinguished by
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the Nicol. By holdino- the Nicol very steadily in your hand, and Molar,

turning to give the best extinction you can produce by it, you

will find no difference in what you see whether the screen is down

or up, which proves a very close approach to perfect extinction.

Judging by the brilliance of the image of the candle when viewed

through the Nicol at nearly normal incidence, and distances at
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Fig. G. Diamond. (m = 2-434)

which this image can be seen, I think we may safely guess that the

light reflected from the water at normal incidence was at least 500
(instead of Green's S^) times as strong as the imperceptible light

of the nearest approach to extinction which the Nicol gave at the

polarizing angle of incidence. And from Rayleigh's accurate experi-

ments (§ 105 below) we know that it is 25,000,000 times, when the

water surface is uncontaminated by oil or scum or impurity of any
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Molar, kind. It would be only 3^ times if Green's dynamics were applicable

(without change of hypotheses) to the physical problem. Hence,

looking at fig. 7, we see that, for water, Green's theory (Curve 3)

diflFers enormously from the truth, while Fresnel's formula

(Curve 2) shows perfect agreement with the truth, at the angle of

incidence 53^*1. Looking at fig. 4 we see still greater differences
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Fig. 7. Water.

between Curves 2 and 3 even at as high angles of incidence as

75", though there is essentially a perfect concurrence at 90°.

§ 105. Looking at Curve 3 in figs. 5 and 6 we see that for flint

glass Green's theory gives scarcely any diminution of reflected

light, while for diamond it actually gives increase, when the angle

of incidence is increased from zero to tan->, Brewster's polarizing
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angle. Yet even a hasty observation with no other apparatus Molar.

than a single Nicol's prism shows, both for flint glass and diamond,

diminution from the brightness of directly reflected light to what

seems almost absolute blackness at incidence tan->, when the

reflection is viewed through the Nicol with its plane of polariza-

tion perpendicular to the plane of reflection (that is to say, its

transmitted light having vibration in the plane of reflection).

One readily and easily observed phenomenon relating to

polarization by reflection is:—with a Nicol turned so as to transmit

the vibrations in the plane of reflection, diminution of reflected

light to nearly zero with angle of incidence increasing to tan~y

;

and after that increase of the reflected light to totality when the

angle of incidence is farther increased to 90^.

Another is:—for light reflected at a constant angle of incidence,

diminution from maximum to minimum when the Nicol is turned

90° round its axis so as to bring the direction of vibration of the

light transmitted by it from being perpendicular to the plane of

reflection to being in this plane. This diminution from maximum

to minimum is the difference between the ordinates of two curves

representing, respectively for vibrations perpendicular to the plane

of incidence and vibrations in the plane of incidence, the intensity

of the reflected light at all angles of incidence. These two curves,

if drawn with absolute accuracy, would in all probability agree

almost 'perfectly with Fresnel's sine-law and Fresnel's tangent-law

(Curves 1 and 2 of the diagrams) for all transparent substances.

We have, however, little or no accurately measured observational

comparisons except for light incident at very nearly the polariza-

tional angle. By a very different mode of experimenting from

that indicated in § 95 above, Jamin* found for eight substances

having refractive indices from 2-454 to 1'334, results shown in

the following table ; to which is added a measurement made by

Rayleigh for water with its surface carefully purified of oil or

scum or any other substance than water and air.

* Ann. de Chimie et de Physique, 1850, Vol. xxix., p. 303, aud 1851, Vol. x.xxi.,

p. 179 ; and p. 174 corrected by pp. 180, 181. (Confusion between Cauchy's e and

Jamin's k is most bewildering in Jamin's papers. After much time sadly spent in

trying to find what was intended in mutually contradictory Tables of results,

I have given what seems to me probably a correct statement in the Table belonging

to § 105.)
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Substance M

Angle of

Incidence

tan~' ya

Ratios of vibrational ampli-
tudes, and of strengths, of

reflected lights due to equal
incident lights vibrating in

and periDendicular to the
plane of incidence

"Siilfure d'arseuic trans-

parent " (Realgar) . .

.

" Blende ti-ansparente
"

(zinc sulphide)

2-454

2-371

2-434

1-714

1-487

1-441

1-366

1-334

1-334

67^-8

67°-l
• 67°-7

59°-7

56°-l
55°-2

53°-8

53°-l

53°-l

k

4- -0850

+ -0420

+ -0190

+ -0180

+ -0060

- -0084

+ -00208

- -00577

+ -0002

k-

1/138

1/567

1/2770

1/3086

1/27778
1/14172
1/231160
1/30030

1/25,000,000

Diamond
Flint Glass

"Verre"
Fluorine

Absolute Alcohol

Water (Jamin)
Water,with specially puri-

fied surface (Rayleigh)

Molar. The greatest numeric in the last column, 1/138, would be barely

perceptible on the diagram, fig. 7 ; and none of those for the other

seven substances would be perceptible at all without a large

magnification of the scale of ordinates.

§ 106. Although these results are related only to the ratio of

the ordinates of Curve 1 to those of Curve 2 for one angle of

incidence in each case, and do not touch the absolute values of the

reflection due to unit quantities of incident light, we may infer as

almost absolutely certain, or at all events (§§ 100, 125) highly

probable, that Curve 1 (Fresnel's sine-law) and Curve 2 (Fresnel's

tangent-law) are each of them about as nearly correct at all other

incidences as at the critical incidences for which the observations

were made. We shall see in fact (§§ 125, 133 below) in the dy-

namical theory to which we proceed, that the sine-law is absolutel}^

accurate for vibrations perpendicular to the plane of incidence, on

the supposition that the rigidities of the two mediums are equal

and their densities unequal: and that the only correction of Green's

dynamical postulates which can procure approximate annulment,

for the reflected light, of vibrations in the plane of incidence at

the angle tan~'/i, gives correspondingly close agreement with

Fresnel's tangent-law throughout the whole range of incidences

from 0' to 90°!
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(The following, §§107... Ill, is quoted from a paper written Molar,

by myself in September—October, 1888, and published in the

Philosophical Magazine for 1888, second half year.)

§ 107. " Since the first publication of Cauchy's work on the

" subject in 1830, and of Green's in 1837, many attempts have
" been made by many workers to find a dynamical foundation

" for Fresnel's laws of reflection and refraction of light, but all

"hitherto ineffectually. On resuming my own efforts since the

"meeting of the British Association at Bath, I first ascertained

" that an inviscid fluid permeating among pores of an incom-

" pressible, but otherwise sponge-like, solid does not diminish, but
" on the contrary augments, the deviation from Fresnel's law of

"reflection for vibrations in the plane of incidence. Having
" thus, after a great variety of previous efforts which had been
" commenced in connexion with preparations for my Baltimore

" Lectures of this time four years ago, seemingly exhausted
" possibilities in respect to incompressible elastic solid, without
" losing faith either in light or in dynamics, and knowing that

"the condensational-rarefactional wave disqualifies* any solid of

" positive compressibility, I saw that nothing was left but a solid

" of such negative compressibility as should make the velocity of

" the condensational-rarefactional wave, zero or small. So I tried

" it and immediately found tliat, with other suppositions unaltered

" from Green's, it exactly fulfils Fresnel's ' tangent-law ' for vibra-

" tions in the plane of incidence, and his ' sine-law ' for vibrations

^'perpendicular to the plane of incidence. I then noticed that

" homogeneous air-less foam, held from collapse by adhesion to

" a containing vessel, which may be infinitely distant all round,

" exactly fulfils the condition of zero velocity for the condensational-

" rarefactional wave ; while it has a definite rigidity and elasticity

" of form, and a definite velocity of distortional wave, which

"can be easily calculated with a fair approximation to absolute

" accuracy.

§ 108. " Green, in his original paper ' On the Reflexion and
" Refraction of Light ' had pointed out that the condensational-

" rarefactional wave might be got quit of in two ways, (1) by its

" velocity being infinitely small, (2) by its velocity being infinitely

" Green's Collected Papers, p. 246.
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Molar. " great. But he curtly dismissed the foruier and adupted the

"latter, in the following statement: 'And it is not difficult to
"

' prove that the equilibrium of our medium would be unstable

"'unless AIB>i/3. We are therefore comijelled to adopt the

"'latter value of AjB*,' (oo) 'and thus to admit that in the
"

' luminiferous ether, the velocity of transmission of waves pro-

"'pagated by normal vibrations is very great compared with that

'"of ordinary light.' Thus originated the 'jelly-' theory of ether
" which has held the field for fifty years against all dynamical
" assailants, and yet has hitherto failed to make good its own
" foundation.

§ 109. " But let us scrutinize Green's remark about instabilit}-.

"Every possible infinitesimal motion of the medium is, in the

"elementary dynamics of the subject, proved to be resolvable into

"coexistent equi-voluminal wave-motions, and condensational-

" rarefactional wave -motions. Surely, then, if there is a real

" finite propagational velocity for each of the two kinds of wave-
" motion, the equilibrium must be stable ! And so I find Green's

" own formula
"f"

proves it to be provided zue either suppose the

" mediiitn to extend all thorough boundless space, or give it a fixed
" containing vessel as its boundary. A finite portion of Green's

" homogeneous medium left to itself in space will have the same

"kind of stability or instability according as ^/5 > 4/3, or

" AJB < 4/3. In fact A — ^B, in Green's notation, is what I have

"called the 'bulk-modulus'| of elasticity, and denoted by k
" (being infinitesimal change of pressure divided by infinitesimal

" change from unit volume produced by it : or the reciprocal of

"what is commonly called 'the compressibility'). B is what
" I have called the ' rigidity,' as an abbreviation for ' rigidity-

" modulus,' and which we must regard as essentially positive,

" Thus Green's limit A/B > 4/3 simply means positive compres-

"sibility, or positive bulk-modulus: and the kind of instability

" that deterred him from admitting any supposition of A/B< 4/3,

" is the spontaneous shrinkage of a finite portion if left to itself

* A and B are the squares of velocities of the condensational and distortional

waves respectively ; supposing for a moment the density of the medium unity.

t Collected Papers, p. 253 ; formula (C).

J Encyclopaedia Britannicu, Article "Elasticity": reproduced in Vol. iii. of my
Collected Papers.
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" in a volume infinitesimally less, or spontaneous expansion if Molar.

" left to itself in a volume infinitesimally greater, than the

"volume for equilibrium. This instability is, in virtue of the

" rigidity of the medium, converted into stability by attaching

" the bounding surface of the medium to a rigid containing vessel.

" How much smaller than 4/3 may AjB be, we now proceed to

"investigate, and we shall find, as we have anticipated, that for

" stability it is only necessary that A be positive.

§ 110. "Taking Green's formula (C); but to make clearer the

" energy-principle which it expresses (he had not even the words

"'energy,' or 'work'!), let W denote the quantity of work re-

" quired per unit volume of the substance, to bring it from its

"unstressed equilibrium to a condition of equilibrium in which

" the matter which was at {x, y, z) is at {x -\- ^, y -\- r), z + ^)

;

"
^, V> K being functions of x, y, z such that each of the nine

" differential coefficients d^/dx, d^/dy, . . . drj/dx .

.

. etc. is an in-

" finitely small numeric ; we have

2 ( \dx dy dz

+ B
\dy dz) \dz dxJ \dx dy) _

-4,b(^ ^+^ ^ +^ ^^1 .. (1)
\dy dz dz dx dx dy)]

"This, except difference of notation, is the same as the formula

" for energy given in Thomson and Tait's Natural Philosophy,

"§693(7).

§ 111. "To find the total work required to alter the given

" portion of solid from unstrained equilibrium to the strained

"condition (^, rj, ^) we must take IjidxdydzW throughout the

"rigid containing vessel. Taking first the last line of (1);

"integrating the three terms each twice successively by parts

"in the well-known manner, subject to the condition f =0, r] = 0,

" ^ = at the boundary ; we transform the factor within the last

" vinculum to

/// •^ ^ dz dy dx dz dy dx

T. L. 23
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Molar. " Adding this with its factor — 45 to the other terms of (1)

"under H ldxdi/dz, we find finally

jjjdxdydzW= Ijfjdxdydz 1^ (g
d^ dv d^\'

dy dz

+ B
dy dz) \dz decJ \dx dy) ^

.(2).

"This shows that positive work is needed to bring the solid to

" the condition (f, rj, ^) from its unstrained equilibrium, and

" therefore its unstrained equilibrium is stable, if A and B are

" both positive, however small be either of them."

§ 112. The equations of motion of the general elastic solid

taken direct from the equations of equilibrium, with p to denote

density, are, as we found in Lecture II. pp. 25, 26

drl_dP dU dT
dt^ dec dy dz

dhi^dU dQ dS
dp

d'^

dx

dT

dz

dR

•(3);

'^
dt"^ dx dy dz )

where f, r], ^ denote (as above from Green) displacements ; P, Q, R,

normal components of pull (per unit area) on interfaces respec-

tively perpendicular to x, y, z; and ;S^, T, U respectively the

tangential components of pull as follows :

—

q{= pull parallel to y on face perpendicular to z

1= » „ z „ „ „ „ y

T

U

,, ,, 4/
> }> }) ' ^

>, ,y Z
y }> >} , X

,1 „ sc
> 5> )> , z

„ ,, X
J » >} > y

y } » » , X

,..(4).

§ 113. For an isotropic solid we had in Lecture XIV. (p. 191,

above).
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where

(k - In) S + 2n ^ ; Q = (A: - ln)S+ 2n^ ;

^

Il = (k-ln)8 + 2nf^

doc dy dz

Using these values of S, T, U, P, Q, R in (3) we find

d-ri , , . xdS „„

Molar.

....(6):

.(7).

dt

d'^

.(8).

dS^=(k + i-)^ + ^^'^

I 114. Taking d/dx of the first of equations (8), d/dy of the

second, and d/dz of the third, and adding we find

''S=^^=« (^>'

where A = k + |m (10),

this being Green's "A" as used in §§ 108, 111 above.

Put now

d
^^ = ^-i^-''-^ ^^ = ^--dy^-'' ^. = ^-gv-^s

dx dy dz

.(11),

.(12):which implies

and we find, by (8),

Equations (9), (12), and (13) prove that any infinitesimal dis-

turbance whatever is composed of specimens of the condensa-

tional-rarefactional wave (9), and specimens of the distortional

wave (13), coexisting; and they prove that the displacement in

the condensational-rarefactional wave is irrotational, because we

see by (11) that an absolutely general expression for its com-

ponents, ^ — ^i, v — Vi^ K— ti. if denoted by f,, V-i, ?2, is

_d^ _d^ _d<ir
^'~ dx '

'^'~
dy ' ^'~ dz

(14),

23—2
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Molar, where, when 8 is known, "^ is determined by

V^ = B* .(15).

Hence, as 8 satisfies (9), we have

dV"
= AV"'^r .(16);

and we see, finally, that the most general solution of the equations

of infinitesimal motions is given by

r=?i + ^2, ^='71+^2, ^=ri + ^2 (17):

provided |i, t]^, ^i satisfy (12) and (13); and fa, %, ?2 satisfy (14)

and (16).

§ 115. The general solutions of (11) and (12) for plane equi-

voluminal waves, and of (14) and (16) for plane condensational-

rarefactional waves are as follows (easily proved by differentia-

tions) :

—

p^ vt. f. / nr. .T -4- R, 11 A- <M,^\ \

A B G ^ \ u I

with

with

= / -, and a^A + jS.B + ^^0^0

^ = '^± = k = Hf(t- °f^^+^^+ 'y^^Al

a2 /32 72 V V

»=yk + in

.(18),

.(19);

where J? is a constant, equal to the displacement in the con-

densational-rarefactional wave when /= 1 ; A, B, C, are constants

equal to the x-, y-, ^^-components of the displacement, due to

the equivoluminal wave when/=0; («!, /3i, 71), (oj, /^o, 7.1) are

the direction-cosines of the normals to the wave-planesf of the

* Poisson's well-known fundamental theorem, in the elementary mathematics

of force varying inversely as the square of the distance, tells us that when 5 is

known, or given arbitrarily through all space, V'^S is determinate; being the

— A
potential of an ideal distribution of matter, of which the density is equal to j- .

+ By "wave-plane" of a plane wave I mean any plane passing through particles

all in one phase of motion. For example, in sinusoidal plane waves the "wave-

plane " may be taken as one of the planes containing particles having no displace-

ment but maximum velocity, or it may be taken as one of the planes having

maximum displacement and no velocity. For an arbitrary impulsive wave (as

expressed in the text with / an arbitrary function through a finite range, and zero

for all values of the argument on either side of that range) the " wave-plane " may
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two waves ; and u, v are the propagational velocities of the equi- Molar.

voluminal and condensational-rarefactional waves respectively. In

the condensational-rarefactional wave in an isotropic medium, the

displacement or line of vibration is in the direction (a.,, ^.,, y^),

normal to the wave-plane,

§ 116. For the problem of reflection and refraction at an

interface between two mediums, which (following Green) we shall

call the upper medium and the lower medium respectively, let the

interface be XOZ, and let this plane be horizontal. Let the

wave-planes be perpendicular to XOY. This makes 71 = 0, 72 =
in (18) and (19). For brevity we shall frequently denote by P,

the plane of incidence and reflection.

§ 117. Beginning now with vibrations perpendicular to P,

we have A = 0, B = 0; and (18) becomes, for an incident wave as

represented in fig. 8,

^=Cf{t-ax + by) (20),

where

a = sin iju, and b = cos i/u, with tc ^ - (21).

I'^ Y

\^^^
X' ^^v «-'

,1-^

X

Fig. 8.

OZ is perpendicular to the diagram towards the eye.

The wave-planes of incident (/), reflected (/'), and refracted

(,7), waves are shown in fig. 8 for the particular case of inci-

dence at 30°, and refractive-index for flint-glass = 1"724; which

makes ,i = 16°"9.

be taken as any plane through particles all in the same phase of motion. In this

case we have a wave-front and a wave-rear ; in the sinusoidal wave we have no
front and no rear. I have therefore introduced the word "wave-plane" in prefer-

ence to the generally used word " wave-front."
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\^^it\i,u = J'- (22),

where

Molar. For the reflected and refracted waves we may take respectively

180° — i, and ,i instead of i, and C", ,0 instead of C. We have

sin ,z sin i

,u u ' "W ,p

and C and ,G by equations (28) below. Thus for the displace-

ments in the two mediums, due to the three waves, we have

^+^'= Cf(t — ax + by) + C'J (t — ax —by) in upper medium... (23),

and

X= ,Gf {t — ax + ,hy) in lower medium... (24),

,6 = cos ,il,u, with ,u =
.
/ — (25);
V ,p

fi and ,u being both positive. Remember that y is negative in

the lower medium. Remark that, by (21), (22), (25), we have

b^ = u-'-a\ ,}f- = ,u-^ - a" (25)'.

The sole geometrical condition to be fulfilled at the interface is

l;+^'=X when y=0, which gives C + (7' = ,C ...(26).

The sole dynamical condition is found by looking to § 113 (5). It is

S=,S when 2/
=

; giving nb (C - C") = ,n,b,C . . .(27).

From these we find

^, hi-,bn
^

2bn^ .

,b,n + bn ,b,n + bn

§ 118. The interpretation of these formulas is obvious when

the quantities denoted by the several symbols are all real. But in

an important and highly interesting case of a real incident wave,

expressed by the first term of (23) with all the symbols real,

imaginaries enter into (24) and (25) by ,b being imaginary

;

which it is when
a~^ < ,u (29);

or, in words, when the velocity of the trace of tlie wave-planes on

the interface is less than the velocity of the wave in the lower

medium. In this case a^ — ,w~^ is positive: denoting its value by q^

we may put ,b = — iq*, where q is real; positive to suit notations

in § 119. Thus (28) becomes

^, _ bn -\- iq,n „ _ b'n^ — (^,n^ -f 2iqbn,n ^ |

bn — iq,n bV + q^,n^ \ /^q\

„ _ 2bn ^ _ 2bn (bn + cq,n) ^
' bn — Lq,n bhi^ -\-

q^ ,71^

* See foot-note on § 158" below.
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We have also in (24) an imaginary, ,h = — 2q, in the argument ofjT Molar,

for the lower medium.

§ 119. To get real results we must choose / conveniently to

make f(t — ax — iqy) = F + cG, where F and G are real. We may
do this readily in two ways, (31), or (32), by taking t, an arbitrary

length of time, and putting

/.,, . , s 1 t — aoc + by — tT

^^ t- ax + hy + LT {t - ax + by)" + t"^

This makes

/./,
1 7 \

^ _ t — ax—t{T — qy)

...(31),

or

f(t — ax+ by) = e'-'i^-^^+^J" = cos o) (t- ax + by) + 1 sin tw (^ — ax+by)

f(t- a^+,%) =e"-'*-«=«-'92'> = e^^y [cos (o(t-ax) + t sin (o{t- ax)]

(32).

The latter of these is the proper method to show the results

following the incidence of a train of sinusoidal waves ; the former,

which we shall take first, is convenient for the results following

the incidence of a single pulse.

§ 120. With (23), (24), and (30), it gives for the incident wave
in the upper medium

?=,-;-''"+fV'".g (33).
(t — ax + by)- + T^ ^ ^

and for the reflected wave in the upper medium

[(6''n^-g^,?2^)(^-ga;-6y)+2^&?t,?jT]+f[2g67i,n(^-a/g-%)-(6^?i^-g^w^)T]

{bni" + q^Tv") [{t -ax- byf + t^]

(34),

and for the disturbance in the lower medium

2 [[6W {t — ax) + qbn,n (t — qy)] + t, {qbn,n (t — ax) — bhi^ (t - qy)]} „
'^~

(b'-ii' + q\n') [(t - axf + (r - qyf]

(35).

The real parts of these three formulas represent a certain form

of arbitrarily given incident wave : and the consequent reflected

wave in the upper medium, and disturbance (a surface-wave.



360 LECTURE XVIII.

Molar, analogous to a forced sea-wave) in the lower medium. The

imaginary parts with c removed, represent another form of incident

wave and its consequences in the upper and lower mediums. In

neither case does any wave travel into the lower mediiim away

from the interface, and therefore the whole activity of the incident

wave is in each case carried on by the reflected wave in the upper

medium ; that is to say, we have total reflection. It is interesting

to see that in this total reflection, the reflected wave in each case

differs in character from the incident wave, except for direct

incidence ; and it differs by being compounded of two constituents,

one of the same character as the incident wave for that case,

and the other of the same character as the incident wave for

the other case. This corresponds to the change of phase (§§ 152

and 158'^, below) by total internal reflection of waves of vibration

perpendicular to P.

§ 121. The accompanying diagram (fig. 9) shows the characters

of the two forms of incident wave, and of two constituents of the

forced surface-wave in the lower medium, referred to in | 120.

The two curves represent, from t = — <x) to t = + oo , the part of

the displacement of any particle in the upper medium, due to

one or other alone of the two forms of incident wave. The

abscissa in each curve is t. The ordinates of the two curves

are as follows

Curve 1, ,-; r, and Curve 2,

The unit of ordinates in each case is t~^

The disturbance in the lower medium is a forced wave, of

character represented by a combination of these two curves,

travelling under the interface at speed a~\

§ 122. All the words of § 120 apply also to the total reflection

of sinusoidal waves, with this qualification, that the two char-

acters of incident wave are expressed respectively by a cosine

and a sine, and the " difference " becomes simply a difference of

phase. Thus having taken the real parts of the formulas we

get nothing new by taking the imaginary parts. The real parts

of (23) and (24), with (32) for / and with (30) for C and ,C,

give us

Incident wave, G cos co (t — ace + hy) (36)

;
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Molar. ^Reflected wave, \

< ^ {b-n^ -q'^ ,n'^)cos(o(t - ax-by)— 2qbn,nsm(a(t—ax-by) r • -y^' ^

'

[
6VT5>^ J

[Forced wave in lower medium, "1

I

„ 2bn e~'"92' [hn cos o}(t — ax) — q,n sin (o{t— ax)'\

<

[
b-n^ + q\7i^ J

.(38).

Thus we see that the amplitude of the resultant reflected wave

is C; that its phase is put forward ta,n~^ [2qbn,nl{b^n^ — q^i'n^)];

and that the phase of the forced wave-train in the lower medium

is before that of the incident wave by tan~^ {q,nlbn).

§ 123. Leaving for § 158', the case of total reflection, and

returning to reflection and refraction, that is to say, b and ,6 both

real, we see that equations (28) give for the case of equal rigidities

— (^' _,l> — b _ cot /i — cot i _ sin (i — ,i)

C fb + b cot,* + coti sin (^ + ,*)

which is Fresnel's "sine-law"; and, belonging to it for the

refracted ray,

,G 2 cot i 2 cos i sin ,i , , ^,
-7^ = -. .= —.——. . (40).
C cot ,1 + cot % sm {,% -{-%)

In the case of equal densities and unequal rigidities we have

njiii = sin^ tysin*^ ,1 and equations (28) give

cos i sin ,i

C _ cos ,i sin i _ sin 2i — sin 2,{ _ tan (i — ,{)

G cos % sin ,1 sin 2i + sin 2,i tan (t + ,i)

cos fi sin i

which is Fresnel's "tangent-law"; and, belonging to it for the

refracted ray,

,C 2 sin { cos i sin 2i , , ^.— z= -—

.

,
—

, = ^,
, (42).

G sin ,i cos ,t -I- sin i cos i sin 2 ,i + sin 2i

The third member of (41) is in some respects more convenient

than Fresnel's beautiful " tangent-formula."

§ 124. These formulas, valid for pulses as well as for trains

of sinusoidal waves, show, without any hypothesis in respect to

compressibility or non-compressibility of ether, that, if the densities
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of the mediums are equal on the two sides of the interface, Molar.

Fresnel's "tangent-law" is fulfilled by the reflected waves, if the

vibrations are parallel to the interface ; and therefore the reflected

light vanishes when the angle of refraction is the complement of

the angle of incidence. Hence non-polarized light incident at

the angle which fulfils this condition would give reflected light

consisting of vibrations in the plane of the incident and reflected

rays. Now (§ 81) we have seen from Stokes' dynamical theory of

the scattering of light from particles small in comparison with

the wave-length, as in the blue sky, and also from his grating

experiments and their theory, and (^§
81') confirmation by Rayleigh

and by Lorenz of Denmark, that, in light polarized by reflection,

the vibrations are perpendicular to the plane of polarization

defined as the plane of the incident and reflected rays ; that is to

say the vibrations in the reflected ray are parallel to the interface.

Hence it is certain that the densities of the mediums are not

equal on the two sides of the interface ; and that the densities

and rigidities must be such as not to give evanescent reflected ray

for any angle of incidence, when, as in § 123, the vibrations are

parallel to the interface.

§ 125. On the other hand, formulas (39), (40) show that the

supposition of equal rigidities not only does not give evanescent

ray for any angle of incidence, but actually fulfils Fresnel's

"sine-law" of reflection for all angles of incidence when the vibra-

tions are parallel to the interface. Looking back to (28) and (39),

we see that Fresnel's " sine-law " is expressed algebraically by

>b>n-bn ^,bj-b

fb,n + bn ,b + b \ /-

If this equation is true for any one value of b/,b other than

or X , we must have 71/,n = 1. Hence if, with vibrations parallel

to the interface, Fresnel's "sine-law" is exactly true for any one

angle of incidence other than 90°, the rigidities of the mediums
on the two sides are exactly equal, and the " sine-law" is exactly

true for all angles of incidence ; a very important theoi^em.

§ 126. Going back now to the more difficult case of vibrations

in the plane of incidence, let us still take the interface as XOZ
and horizontal; and the wave-planes perpendicular to XOY.
Instead of the single displacement-component, ^, and the single
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Molar, surface-pull-component, S, of §§ 117—125, we have now two dis-

placement-components, ^, 7) ; and two surface-pull-components, Q,

perpendicular to the interface, and U parallel to the direction X
in the interface. The interfacial conditions are that each of these

four quantities has equal values on the two sides of the inter-

face. We have now essentially the further complication of two

sets of waves, equivoluminal and condensational-rarefactional,

which are essentially to be dealt with. We might suppose the

incident waves in the upper medium to be simply equivoluminal

or simply condensational-rarefactional ; but incidence on the inter-

face between two mediums of different densities or different

rigidities would give rise to reflected waves of both classes in the

upper medium, and to refracted waves of both classes in the

lower medium. It will therefore be convenient to begin with

incident waves of both classes in the upper medium.

§ 127. Going back now to § 115, according to the details chosen

in I 126, and taking J for the angle of incidence of condensational-

rarefactional waves, we have 7i = 0, C = 0, 7.2 = 5 and we may put

«! = sin z, A = Gcosi, a^ — sinj,

ySi = — cos i; B = G sin i; ySa = — cos j.

Thus instead of (18) and (19) we now have

.(44).

cos I sin i

with

^ . / , a; sin i — y cos i\
= Gf(t /

j.

/n

V P

.(45),

V2

smj
;=Hf[t-

X Bin J
— y cosj

with
k + in

.(46),

as the two constituents for the incident waves. Let now ,u, ,G, ,i,

and ,v, ,H, ,j be the values of the constants for the waves in the

lower medium.

For the reflected waves in the upper medium we have — cos i,

— cosj, instead of cos i, cos j; while sin i, sin J are the same as for

the incident waves. Let — G', + H', be the constants for the

magnitudes of the reflected rays corresponding to G, H, for the
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incident rays. Thus for the total displacement-components due Molar,

to the four waves in the upper medium we have

i. • r-i , ( , a; sin I — v cos I \ . . TT, I . a; sin i — w cos 9\"\

^=cosiG;/u ^
j + sin_;i(/ U ^

—

^ ^j

r^i fl . X sin % -f- 11 cos i\ . . tt, ,^ I ^ sin / 4- v cos i

+ cos %Gf[t "^^ + sm J H't [t -^—"^ ^

• • />^ /. a; sin I — ?/ cos i\ rr r ( . ^sinj — ycosj\
V = smiGf [t ^ j-CQS:)Hf(t --L-^ ^j

• ri'j'f^ o) sin i + y cos i\ • rr/^ /^ a; sin i + 1/ cos i\— sm I Gf 1 1 j + cos J 11f f t —
)

•(47),

and for total displacement-components in the lower medium the

same formulas with ,i, ,j, ,u, ,v, ,G, ,H, 0, 0, in place of {, j, u, v,

G, H, G', H' respectively.

I 128. Taking from these formulas the resultants of the (f, rj)

components of the displacements in the several waves, we have as

follows :

—

X sin i — y cos i^
Incident, Gf

Equivoluminal wave \ Reflected, G'f

(Refracted, ,Gf

[Incident, Hf

s Reflected, H'f

Refracted, ,Hf

Condensational-rare-

factional wave

t-

X sin i + y cos i\

u J

X sin ,i — y cos ,i\

,u J

xsin j — y cos j\

V )

X sin j + y cos j\
^ V ;

^
_ X sin ,j - y cos

,j\

,v
)'

§ 129. Putting now y = Q to find displacement-components at

the interface, and equating values on the two sides, we see in the

first place that the arguments of/ with y zero must be all equal

;

and that the coefficient of x is the reciprocal of the velocity of the

trace of each of the four waves on the interface ; and if we denote

this velocity by a~^ we have

_ sm ^ _ sin ,i _ sm j sm ,j

ti ,u V ,v
.(48).
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Molar. The last three of these equations express the laws of refi'action

of waves of either class in the lower medium consequent on waves

of either class in the upper medium. They show that the sines of

the angles of incidence and refraction are inversely as the propa-

gational velocities in the two mediums, whether the two waves

considered are of the same species or of the two different species.

For brevity in what follows we shall put

cost ,

u '

cos,r

A
cos^

= c,

COS
,

;

.V

= ,c .(49),

from which we find

a^ + c- = v~

a^ + ,h^ = iir"' = — ; a^ + ,c- = ,v~'^ =
,n

k + ^n

,k + i,n

.(50).

§ 130. Putting now f{t — ax) = -v/r, we find by (47) with y =

^=[bu{G + G') + av(H+H')]ir
|

7] = [au(G-G') + cv(-H+H')]fl
^'^ ^'

as the displacement-components of the upper medium at the

interface.

Using now (47) to find Q and U by (6) and (5) of § 113, and

putting
;?/
= we find, as the components of surface-pull of the

upper medium at the interface

Q = n[2abu (G + G') - hv (H + H')] f^

U = n[gu{G-G') + 2acv(H-H')]yir^

where g = }f — a-,

nh = {k - f 7i)
u-2

-1- 2wc2 = p + 27i (c^

-

y-^) = p- 2na\

Taking the terms of (51) and (52) which contain G, and H,
and in them substituting ,G, ,H, ,6, ,c, ,g, ,h, ,v, ,n, ,k for G, H, h, c,

g, h, V, n, k, we find for the two refracted waves in the lower

medium the displacement-components, and the surface-pull-com-

ponents, at the interface, as folloAvs :

—

,^ = {,h,u,G + a,v,H)y^

,7] = {a,u,G-,c,v,H)y\r

,Q — in [2a,h,u,G — ,h,v,H'\ ^ I

, U= ,n [,g,u,G + 2a,c,v,H] yjr

.(52);

..(53).

.(54).
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Equating each component for the two sides, as said in § 126, Molar,

we find the following four equations for determining the four

required quantities, ,0, ,H, G\ H', in terms of the two given

quantities G, H,

bu{0+G') +av{H + H')= ,h,ii,G+ a,v,H ]

au(G-G') -cv{H-H') = a,u,G- ,c,v,H

7i[2abu{G+G') -hv{H+ H')] = ,n[2a,b,u,G- ,h,v,H]\

n [gu (G - G') + 2acv {H - H')] = ,n {,g,u,G + 2a,c,v,Hy

,.(55).

§ 131. Considering for the present G — G' and H + H' as the

known quantities, and G + G', H—H', ,G, ,H, as unknown; first

find two values oi G \-G' from the first and third of equations (55),

and two values of H — H' from the second and fourth of (55).

Thus we have

av
G + G' = j^(,h,u,G+a,v,H)-P{H + H')

bu bu

{H + H')

,.(56).

H-H' = --{a,u,G-,c,v,H) +— {G-G')

The equalities of the second and third members of these two

double equations may be taken as two equations for the deter-

mination of ,(t, ,H in terms of G + G', and H+H'. With some

simplifying reductions they become

2a,b(n - ,n),u,G + [,p + 2{n - ,n)a^],v,H = pv {H+H')

[,p + 2(?i — ,n) a^] ,UiG— 2a,c (n — ,n) ,v,H = pu (G — G')
.(57).

Finding ,G and ,H from these, and using the results in either

the firsts or the seconds of the pairs of equations (56), we have

G + G' and H-H' in terms oi G - G' s^nd H+H'. These last

two equations may be used to find G' and H' in terms of G and H.

Thus we have finally G', H', ,G, ,H in terms of the given

quantities G, H. This, of course, might have been found directly

from the four equations (55) by forming the proper determinants.

The algebraic work is somewhat long either way.
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Molar. § 132. But the process we have followed in § 131 has the

advantage of giving us the two intermediate equations (57);

wdth the great simplification which they present in the case

n = ,n, for which they become

,p,v,H=pv{H + H'), ,p,u,G = pu{G-Q') (58).

Let us now work this case out to the end, with the further

simplification H=0; because the particular problem which we

wish to solve is to find the two reflected waves (G', H') and the

two refracted waves {,G, ,H) due to a single incident equi-

voluminal wave {G). Eliminating ,G, ,H from the first two of (55),

by (58) with H = 0; and then finding G' and H' from the two

equations so got, we have

-«'=5-^S^« (•^«).

-H'=2 ^'P-'Y
r -G (60),

,pb + p,o + L V \ /'

where L = ^'P~P^''''
(61).

,pc \-p,c

Lastly (58) gives ,«= 2 -^-^^^^ G (62),

P^ I
-,H= Ĵ'P-pY /̂ G (63).

,pb + p,b + L,v ^ ^

This completes the theory of the reflection and refraction of

waves at a plane interface of slipless contact between two ordinary

elastic solids, with any given bulk-moduluses and rigidities.

§ 133. Remark now that by equations (49), (48), we have

,b u cos ,i sin i cos ,i ,^,^
j-= .= -•—- -. (64);

,u cos I sin ,1 cos i
v /

'

and by (50) with 7i = ,n, p/,p = ,u^/it,^ (65);

whence, by (64), p| ^ sin^cos^'

,po sm t cos I

Hence, we see that if Z = we have

— G' _ sin 2i — sin 2,t _ tan (i — ,%) ^
G sin 2i + sin 2,i

~ tan (t + ,t) ^ ^'

which is Fresnel's formula for reflection when the vibrations are in

the plane of incidence.
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Looking to (61) we see that this could only be the case for Molar,

other than direct incidence by either c, or ,c, or both being

infinitely great; because, § 129 (48), a can only be zero for direct

incidence (i = 0). By (50) we see that to make c or ,c very great,

we must have v or ,v very small. Returning to this suggestion in

(Lect. XIX. § 167), we shall find good physical reason to leave, for

undisturbed ether, ?; = oo as Green made it : and to let ,v be small

enough, to make L not absolutely zero but as small as required

to give the closeness of approximation to truth which observation

proves for Fresnel's formulas for the great majority of transparent

liquids and solids, including optically isotropic crystals ; and yet

large enough to give modified foimulas representing the devia-

tions from Fresnel found in diamond, sulphide of zinc, sulphide of

arsenic, etc. (see § 105 above and § 182 below).

§ 134. Meantime we shall consider some interesting and

important characteristics of the general problem of § 130 without

the limitation n = ,n : and of its solution for the case n = ,n

expressed by § 123 (89), (40) and § 132 (59)... (63), with the

modification due to v — co in space containing no ponderable

matter ; and with the special further modification regarding waves

or vibrations of ether in the space occupied by metals (solid or

liquid) to account for the observational ly discovered facts of

metallic reflection.

§ 135. Consider first direct incidence, whether of an equi-

voluminal or of a condensational-rarefactional wave. For this we

have in §§ 129, 130,

* = ,*"=j = /i = 0; a = 0; c = v-'; ,c = ,v~';\

u-^ = h"- = g = k=P-- ^u-^ = ^^. = ^g = ^k = 'j^. [•

These details reduce (55) to

G + G'= ,Q\

H-H'= ,h\

Pv{H+H')=,p,v,h\

pu(G-G')-= ,p,u,G j

The first and fourth of these give G' and ,G in terms of G ; the

T. L. 24

.(68).
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Molar, second and third give H' and ,^in terms of H. Thus our formulas

verify what is obvious without them ; that a directly incident wave,

if equivoluminal, gives equivoluminal reflected and transmitted

waves ; and if condensational-rarefactional, gives condensational-

rarefactional reflected and transmitted waves. For direct incidence,

remark that in the equivoluminal waves the displacement is parallel

to the reflecting surface, and in the x direction ; in the conden-

sational-rarefactional waves it is perpendicular to the reflecting

surface, which is the y direction. For ratios of these displace-

ments we find, as follows, from (68) ;

—

(Equivoluminal) -,f^ =
'^'^^-^^ '^^.1p^ (69);^ ^ 6r ,p,u + pu G ,p,u + pu

(Condensational-rarefactional) ,^ = '--
, '-n = —

H ,p,v + pv H ,p,v -\- pv

(70).

In respect to the general theory of the reflection of waves at

a plane interface between two elastic solids of different quality,

it is interesting to see that, provided only they are sliplessly

connected at the interface, we have, for the case of direct incidence,

the same relations between the displacements of the reflected and

transmitted waves and of the incident wave in terms of densities

and propagational velocities, for equivoluminal waves of transverse

vibration, as for condensational-rarefactional waves (vibrations in

the line of transmission). If, on the other hand, the connection

between the two solids were merely by normal pressure, and if

the surfaces of the two solids at the interface were perfectly

frictionless, and allowed perfect freedom for tangential slipping

;

the reflection in the case of directly incident waves of transverse

vibration would be total, and there would be no transmission of

waves into the other solid.

§ 136. In respect to physical optics the solution (69) is ex-

ceedingly interesting. If we eliminate p, ,p from it by

p = mr^, ,p = ,n,u-'\

we find

— G' ,nu — n,u ,G 2n,u
^ -

, ^- (71).
Cr ,nu-\-n,u G ,riu + n,u

Hence, denoting ?t/,?/ by jjl (tlie refractive index), we see that,
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for the reflected wave, in the two cases of equal rigidities and Molar.

equal densities, we have respectively,

— - -^—^ and — - ^^^ (12)

Thus G'/G is equal but with opposite signs in the two cases

;

and therefore, as the ratio of the intensity of the reflected light

to the intensity of the incident light ia equal to (G'jGy, we see

that it is equal to

(^;iJ (^^>'

and is the same in the two cases of equal densities and equal

rigidities ; an old known and very important result in physical

optics. It was, I believe, first given by Thomas Young ; it is

also found by making i = in Fresnel's formulas for reflection of

polarized light at any incidence. But lull dynamical theory

proves that, if the refractivity yu, — 1 is prodiiced otherwise than

by either equal rigidities or equal densities, the ratio of reflected

light to incident light would not be exactly equal to (73). This

dynamical truth was referred to in my introductory Lecture

(pp. 15, 16, above); and I had then come to the conclusion from

Professor Rood's photometric experiments that the observed

amount of reflected light from glass agrees too closely with (73)

to allow any deviation from either equal rigidities or equal

densities, sufficient to materially improve Green's dynamical

theory of the polarization of light by reflection. This conclusion

is on the whole confirmed by Rayleigh's very searching investi-

gation of the reflection of light from glasses of different kinds*;

but the great differences of reflectivity which he found in the

surface of the same piece of glass in different states of polish,

rendered it impossible to get thoroughly satisfactory results in

respect to agreement with theory; as we see by the following

statement which he gives as a summing-up of his investigation.

" Altogether the evidence favours the conclusion that recently

" polished glass surfaces have a reflecting power differing not more
" than 1 or 2 per cent, from that given by Fresnel's formula ; but

* " On the Intensity of Light Reflected from certain surfaces at nearly Perpen-

dicular Incidence," Proc. R. S., xli. pp. 275—294, 1880; and Scientific Papers, ii.

pp. 522—542.

24—2
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Molar. " that after some months or years the reflection may fall off from

" 10 to 30 per cent., and that without any apparent tarnish.

" The question as to the cause of the falling off, I am not in

" a position to answer satisfactorily. Anything like a disintegration

" of the surface might be expected to reveal itself on close in-

" spection, but nothing of this kind could be detected. A super-

" ficial layer of lower index, formed under atmospheric influence,

"even though no thicker than 1/100000 inch, would explain a

" diminished reflection. Possibly a combined examination of the

" lights reflected and transmitted by glass surfaces in various

" conditions would lead to a better understanding of the matter.

"If the superficial film act by diffusion or absorption, the trans-

" mitted light may be expected to fall off. On the other hand,

"the mere interposition of a transparent layer of intermediate

" index would entail as great an increase in the transmitted as

" falling off in the reflected light. There is evidently room here

" for much further investigation, but I must content myself with
" making these suggestions."

§ 137. Consider next grazing incidence (i = 90°, 6 = 0, a = u~'^)

of an equivoluminal wave of vibrations in the plane of incidence,

and therefore very nearly perpendicular to the reflecting surface.

We see immediately that equations (55) are satisfied by

H = 0, H' = 0, ,H=0, ,G = 0, G-G' = 0.

This shows that, whether for equal or unequal rigidities, we have

approximately total reflection, and that the phase of the reflected

light corresponds to G' = G. Looking now to §136(71), we see

that in the case of equal rigidities of the two mediums G'/G is

negative for direct incidence, while we now find it to be positive

for grazing incidence. Hence if it is real for all incidences it

must be zero for one particular incidence. This is fundamental
in the dynamics of polarization by reflection and of principal

incidences.

§ 138. On the other hand, for equal densities and unequal

rigidities, look to § 135 (69); and we see that G'j G is positive for

direct incidence : and by § 137 it is + 1 for grazing incidence.

Hence, it cannot vanish just once or any odd number of times

when i is increased from 0° to 90°; but it can vanish twice or

an even number of times. This is essentially concerned in the
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explanation of the remarkable discovery of Lorenz and Rayleigh, Molar.

referred to in § 81 above.

§ 138'. Lastly; going back to § 123, we see that our notation

has secured that, for direct incidence, C'/G is negative or positive

just as is G'/Gy according as the rigidities or the densities of the

two mediums are equal. But at grazing incidence, C'/G, while

still negative for equal rigidities, is positive for equal densities.

§ 139. So far everything before us, djaiamical and experi-

mental, confirms Green's original assumption of equal rigidities

and ditferent densities to account for light reflected from and

transmitted through transparent bodies. Before going on in

Lecture XIX. to the promised reconciliation between Fresnel and

dynamics for transparent substances, let us, while keeping to the

supposition of equal rigidity of ether throughout vacant space and

throughout space occupied by ponderables of any kind, briefly

consider what suppositions we must make in respect to our

solution of § 132 [(59)—(63)], to ex'^lain known truths regarding

the reflection of light from metals or other opaque bodies.

§ 140. The extremely high degree of opacity presented by all

metals for light of all periods, from something considerably longer

than that of the extreme red of the visible spectrum (2"5 .10~" sees.

for A line) to something considerably less than that of the extreme

violet (r3 .
10"^' sees, for H line), is the most definite of the visible

characteristics of metals : while the great brilliance of light re-

flected from them, either directly or at any angle other than

grazing incidence*, compared with that reflected from glass or

* As obliquity of incident light is increased to approach more and more nearly

grazing incidence, the brilliance of the reflected light approaches more and more

nearly to equality with the incident light. At infinitely nearly grazing incidence

we find theoretically (§ 137) total reflection from every polished surface; polish

being defined as in § 86 above. Indeed we find observationally in surfaces such as

sooted glass, which could scarcely be called polished according to any definition, a

manifest tendency towards total reflection when the angle of incidence is increased

to nearly 90°.

A striking illustrative experiment may be made by placing, on a table covered

with a black cotton-velvet tablecloth, two pieces of plate glass side by side, with an

arrangement of light and screen as indicated in the accompanying sketch. Z, is a

lamp which may be held by hand, and raised or lowered slightly at pleasure. 00'

is an opaque screen. PP' is a screen of white paper resting on the table. It would

be startling, if we did not expect the result, to see how much light is reflected from
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Molar, crystals or from the most brilliantly polished of commonly known

and seen non-metallic bodies, is their most obvious and best known

quality. The opacity of thin metal plates hitherto tested for all

visible lights from red to violet has been found seemingly perfect

for all thicknesses exceeding 3. 10"^ cm. (or half the wave-length

of yellow light in air). "When, in the process of gold-beating,

the thickness of the gold-leaf is reduced to about 2 . 1 0"^ cm. (or

about one-third of the wave-length of yellow light) it begins to

be perceptibly translucent, transmitting faint green light when

illuminated by strong white light on one side. The thinnest of

ordinary gold-leaf (-7.10"° cm., or about one-eighth of the wave-

length of yellow light) is quite startlingly translucent, giving a

strong green tinge to the transmitted light. Silver foil 1"5 .10~-' cm.

thick (considerably thinner than translucent gold-leaf) is quite

opaque to the electric light so far as our eyes allow us to judge
;

the soot above the bouudary of the shadow of OiJ'. The experiment is rendered

still more striking by placing a flat plate of polished silver beside the two glass

plates, and seeing how nearly both the sooted and the clean glass plates come in

rivalry with the silver plate in i-espect to totality of reflection, when L is lowered to

P o

o

p 1 *L

more and more nearly grazing incidence of its light. It is interesting also to take

away the paper screen, and view the three plates and the lamp by an eye placed in

positions to receive reflected light from the three mirrors, sooted, polished glass,

and polished silver.

Another interesting experiment may be made by looking vertically downwards

through a Nicol at the three surfaces, or at a clean surface of mercury or water,

illuminated by light from L at nearly grazing incidence in a dark room. A sur-

prisingly large amount of light is seen from the sooted surface, and is found

to be almost wholly polarized to vibrations perpendicular to the plane through L

and the line of vision. If the glass and silver are very well polished and clean,

little or no light will be seen from them ; unless L is very intense, when probably

a faint blue light, polarized just as is the light from the soot, will be visible,

indicating want of molecular perfectness in the polish, or a want of optical

perfectness in the most perfect polish possible for the molecular constitution of

the solid or liquid, according to the principles indicated in § 86 above.
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but it is transparent to an invisible violet light through a small Molar.

range of wave-length from about 3"07.10~^ to 3'32 .10~-'cm.*

(periods from 1-02. 10~i'^ to I'll.lO"!' of a second).

§ 141. The extreme opacity of metals is quite lost for Roentgen

rays (which are probably light of much shorter period than 10~^' of

a second); sheet aluminium of thicknesses up to two or three

centimetres being transparent for them. For some qualities of

Roentgen rays even thick sheet lead is not perfectly opaque.

§ 142. We have no experimental knowledge in respect to the

opacity of exceedingly thin metallic films for radiant heat of

longer periods than that of the reddest visible light. It seems

not improbable that through the whole range of periods up to

2.1()~" of a second, through which experiments on the refractivity

and reflectivity of rock-salt and sylvin have been made by Langley,

Rubens, Paschen, Rubens and Nicols, and Rubens and Aschkinaas

(see above, Lecture XII. p. loO), the opacity of gold-leaf and other

of the thinnest metal foils man be as complete, or nearly as com-

plete, as it is for visible light.

§ 143. But, when we go to very much longer periods, we
certainly find these thin metal foils quite transparent for variations

of magnetic force. Thus, sheet copper of thickness 7.10"^ cm.

(about a wave-length of orange light in air), though almost per-

fectly opaque to variation of magnetic force of period one-third or

one-fourth of 1/(8.10'') of a second, is almost perfectly transparent

for periods of magnetic force of three or four times 1/(8.10") of

a second, and for all longer periods.

Taking greater thicknesses, we find a copper plate two milli-

metres thick, almost a perfect screen, that is, almost perfectly

opaque, in respect to the transmission of the magnetic influence

of a little bar-magnet rotating 8000 times per second f; somewhat

opaque, but not wholly so, when the speed is 100 times per second;

almost, but not perfectly, transparent, that is to say, very slightly

* See pp. 185, 186 of Popular Lectures and Addresses, Vol. i., Ed. 1891 (Fiiday

Evening Eoyal Institution Lecture, Feb. .3, 1883), where experiments illustrating the

reflectivity and the transparency of some exceedingly thin films of platinum, gold,

and silver, supplied to me through the kindness of Professor Dewar, are described.

t See § 3 of Appendix K, "Variational Electric and Magnetic Screening,"

reprinted from Proc. E. S. Vol. xlix. April 9, 1891 ; also 3Iat}i. and Phys. Papers,

Vol. III. Art. oil. "Ether, Electricity, and Ponderable Matter," § 35.
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Molar, if perceptibly obstructive, when the speed is once per second ; not

perceptibly obstructive, when the period is 10 seconds or more.

Now, according to what is without doubt really valid in the

so-called electro-magnetic theory of light, we ma}'^ regard as a

lamp, a bar-magnet rotating about an axis perpendicular to its

length, or having one pole caused to vibrate to and fro in a straight

line. We may regard it as a lamp emitting light of period equal

to the period of the rotation or of the vibration. For the light

of this lamp, sheet copper two millimetres thick is almost per-

fectly transparent if the period is anything longer than one second
;

but it is almost perfectly opaque if the period is anything less than

1/8000 of a second down to one eight hundred million millionth of

a second (the period of extreme violet light); and is probably quite

opaque for still smaller periods down to those of the Roentgen

rays, if we regard these rays as due to vibrators giving after each

shock a sufficient number of subsiding vibrations to allow a period

to be reckoned. Whatever the distinctive characteristic of the

Roentgen light, sheet copper two millimetres thick is perceptibly

translucent to it, and sheet aluminium much more so.

§ 144. We may reasonably look for a detailed and satisfactory

investigation, mathematical and experimental intelligence acting

together, by which we shall thoroughly understand the continuous

relation between the reflection and translucence of metals and

transparent bodies, and the phenomena of electric and magnetic

vibrations in insulating matter, in non-magnetic metals, in soft

iron, and in hardened steel, for all vibrational periods from those of

the Roentgen rays to ten or twenty seconds or more. The in-

vestigation must, of course, include non-periodic motions of ether

and atoms. It cannot but show the relation between the electric

conductivity of metals and their opacity. It must involve the

consideration of molecular and atomic structures. Maxwell's

electro-magnetic theory of light was essentially molar*; and there-

fore not in touch with the dynamics of dispersion essentially

* " Suppose, however, that we leap over this difficulty [regarding electrolysis] by

"simply asserting the fact of the constant value of the molecular charge, and that

"we call this constant molecular charge, for convenience in description, one

"molecule of electricity.

"This phrase, gross as it is, and out of harmony with the rest of this treatise,

"will enable us at least to state clearly what is known about electrolysis, and to

"appreciate the outstanding difficulties." Maxwell, Electricity and Magnetism,

Vol. I. p. 312.
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involved in metallic reflection and translucency ; though, outside Molar,

his electro-magnetic theory, he was himself one of the foremost

leading molecularists of the nineteenth century : witness his

kinetic theory of gases ; and his estimates of the sizes and

weights of atoms; and his anticipation of the Sellmeier-Helmholtz

molecular dynamics of ordinary and anomalous dispersion, in a

published* Cambridge Examination question.

§ 145. First, however, without any molecular hypothesis, and

without going beyond Green's purely molar theory of infinite

resistance to compression, and equal effective rigidities of ether in

all bodies and in space void of ponderable matter, let us try how

nearly we can explain the high reflectivity and the great opacity

of metals. Either great rigidity, or great density, or both great

rigidity and great density, of ether in metals would explain these

two properties : but we have agreed not to assume differences of

rigidity, and there remains only great density. It is interesting

to remark however, that infinite rigidity would give exactly the

same law as infinite density ; because each extreme hypothesis

would simply keep the ether at the interface absolutely unmoved
;

and this even if we allow the ether to be compressible within

liquids and solids, as we are going to do later on.

§ 146. Go back now to § 132 (59)—(63), and, following

Green, make v = x , and ,y = x . This makes, by (50), c = ,c = — aff;

and reduces (61) and (59) to

L = KaL (74),

and

-G' ,pb-p,h-Kcu /(,ph-p,h)- +Khi\ . ,
, ,

v /jl, »\n]

where K J'^' P^\ <^ = tan-^^ , ./. = tan- ^^^^ i

,p+p ,po-p,h "^ ,po + p,bj

(75).

* Eayleigh, in a footnote appended in 1899 to the end of his paper "On the

Reflexion and Refraction of Light by Intensely Opaque Matter" (Phil. Mag. 1872;

republished as Art. xvi. of his Scientific Papers, Vol. i.), writes as follows:

"I have lately discovered that Maxwell had (earlier than Sellmeier) considered

" the problem of anomalous dispersion. His results were given in the Mathematical

"Tripos Examination, Jan. 21, 1869 (see Cambridge Calendar for that year),"

In this examination question the I'iscous term, subsequently given by Helmholtz,

is included.

t Take -at (not +at), a being positive, in order that, in § 128, //, of the upper

medium may have extinctional factor e~"'*^, and, H, of the lower, may have

extinctional factor e""^. See footnote on § 158". See also § 128 and (49), and (54).
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Molar. This agrees with Greta's result*; and the square of the first

— C
factor of the final expression for j^ i^ ^^^ formula by which

curve 3 of figs. 4, 5, 6, for water, flint-glass, and diamond, in

§§ 102, 103 above, were calculated.

§ 147. To realize this solution in the most convenient w^ay for

physical optics, put

/(6') = e-^ = cos ft)^ + i sin w^ (76);

and take

for incident wave
U an

with same continued for reflected wave, where s denotes a space

in the path of the incident ray, continued in the reflected ray.

Use these in | 128, and for the real problem take the real part

of each expression so found. We thus have, for the vibrational

displacements,

Incident wave,

Reflected wave,

G cos wit
u

wit--)-(4> + f)

...(78).

I 148. Let now for a moment ,p/p = go . This makes

K/,p = 1 ; (j) —yp' = i] and gives, for vibrational displacement in

the reflected wave

— (rsin CO it-- 2i G sin t--] + 7r-2i
n.

Thus the formulas show, for vibrations in the plane of inci-

dence, that, at every incidence, the reflection is total (which we

know without the mathematical investigation, because there is

no loss of energy) ; and that the reflected ray is advanced in phase

TT — 2i relatively to the incident ray. The former proposition is

proved for vibrations perpendicular to the plane of incidence by

the formula (39) of §123; but with just tt for phasal change.

Hence incidence at 45° instead of the 70° to 76° of melals (§ 99

above), gives 90° of phasal difference ; and it is easy to see from

Green, Mathematical Papers, p. 2G7.
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the formulas that values of ,plp large enough to give the Molar,

brilliance of metallic reflections could not give any approach

to the elliptic and circular polarizations which observations show

(§ 99 above) in all metallic reflections. Thus, though our trial

hypothesis of great effective density of the ether in the substance

could give reflections, and therefoi-e general appearances, un-

distinguishable to the naked eye from what we see in real metals,

it foils utterly to explain the qualities of the reflected light

discovered by pidarizational analysis. Seeing thus that no real

positive effective density in the substance can explain the qualities

of metallic reflection, we infer that the effective density is negative

or imaginary ; and thus we are led by strictly dynamical reasoning

to the brilliant prevision of MacCullagh and Cauchy that metallic

reflection is to be explained by an imaginary refractive index.

§ 149. In § 159 below we shall find, by a new molecular

theor}' to which I had been led by consideration of very different

subjects, a perfectly clear and simple dynamical explanation of a

real negative quantity for effective density of ether traversed

by light-waves of any period within certain definite limits, in a

space occupied by a solid or liquid or gas. We shall also find

definite molecular and dimensional conditions which may possibly

give us a sure molecular foundation for an imaginary effective

density; though we are still very far fi-om a thorough working-

out of the full dynamical theory.

We conclude the present Lecture with a short survey of the

quasi wave-motion which can exist in an elastic medium having

a definite negative or imaginary effective density ,p ; and of the

reflection of light at a plane surface of such a medium.

§ 150. Let the rigidity be n, real ; and the density ,/3, an

unrestricted complex as follows

,p = -S7 (cos — i sin (^) (79),

where zr and
(f)

are real, and for simplicity may be taken both

positive. This gives for propagational velocity of equivoluminal

waves

^u = w (cos
^(f) + L sin ^^) ;

,u-^ = w~^ (cos h,^ - i sin |0),'

, /n . . . r...(80).
where 10 = ^/ — , a real velocity
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Molar. For displacement at time t, considering only equivoluminal wave-

motion, let 7] -f LT]' denote displacement in a wave-plane perpen-

dicular to OX ; and choosing for our arbitrary function

f{e) = e-\

we have rj + tr]' = e""('-^^'") (81);

whence, taking ,u~^ from (80), we find, as a real solution,

?7 = €-"^'" ***/'" cos (u(^- cos |-</)«/w) (82).

This shows that the wave-plane travels in the -f- ^-direction with

velocity lu sec ^^, and with vibrational amplitude diminishing

according to the exponential law e
- <" si» ^^ Ww It ig interesting to

remark that the propagational velocity of this subsidential wave is,

in virtue of the factor sec|^, essentially greater than the velocity

in a medium of real density equal to the modulus, ct, of our

imaginary density; and is infinite when ^</)= 90°. This illustrates

Quincke's discovery of greater velocity of light through a thin

metallic film than through air.

§ 151. Remark now that, according as the real part of the

complex, ,p, is positive or negative,
(f)

is <90°, or >90''
; that, in the

extreme case of ,p real positive,
(f)

is zero; and that, in the other

extreme case (,p a real negative quantity), cf) is 180^ In every

case between those extremes,
^(f)

is between 0° and 90°, and

therefore both cos ^(f)
and sin

^(f)
are positive. This implies loss

of energy in the inward travelling wave: except in the second

extreme case, ^^ = 90°, when its propagational velocity is infinite
;

and (82) becomes

V = e-'-^/'^sin (ot (83),

which represents standing vibrations of ether in the substance,

diminishing inwards according to the exponential law ; and

therefore proves no continued expenditure of energy. We con-

clude that, for our ideal silver, the effective quasi-density of

ether in the metal is essentially real negative: but that for all

metals of less than perfect reflectivity it must be a complex, of

which the real part may be either negative or positive.

§ 152. Confining our attention for the present to ideal silver,

and to merely molar results of the molecular theory promised for

Lecture XIX., let us put, in §§ 123, 132,

-fx' = i'- (8-i),
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where v^ denotes a real positive numeric ; and let us find the Molar,

difference of phase between the two components, given respec-

tively by §§ 123 and 132, due to incident light polarized in

any plane oblique to the plane of incidence. That difference of

phase is 90° for Principal Incidence (see § 97 above). I have

gone through the work with Green's supposition ^=00, ,?; = 00
,

in § 132 ; and using the formula for G'\G so given in § 147, I have

found that for all values of v"- from to x it makes the Principal

Incidence between 0° and 45". Now observation gives the

Principal Incidences for all colours of light and all metals,

between 45° and 90° (see table of § 99, showing for all cases

of metallic reflection hitherto made, so far as generally known,

Principal Incidences ranging from 66° to 78°). Hence polarizational

analysis of the reflected light as thoroughly disproves, for metallic

reflection, Green's assumption of propagational velocity infinite

for condensational-rarefactional waves within the metal, as it was

disproved for transparent substances in §§ 104, 105 by mere

observation of unanalysed reflectivities.

I
153. Hence, anticipating Lecture XIX. as we did in § 133

above, let us, while still keeping v = go in the ether outside the

metal, now make ,v small enough inside the metal to practically

annul L. This reduces (39) and (59) of § 123 and § 132, to

-C

_

,b-b
_

- G'

^

,ph- p,b .

C ,b + b' G ,pb + p,b ^ ^"

Putting now in (39) and in this

'-='-,-, ^ = -v'; ~ = -.^* (86),
b ,u p ,u

cos,I ^/{v•'+B\\\-i) ^where r = -.
= -. K^' )'

cos I V cos I

c A ~G' - Lvr - 1 vr -

1

, .

G — Lvr + 1 w + t

-G' v-ir .„„.
and —j^f—

=

(o9)-
G v + ir ^ '

* The sign minus is chosen here in order that e^^ not e~Pi' may be the reducing

factor of ,G; j}'^ being a positive length. See foot-notes on §§ 146, 158".
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Molar. Pat now tan-1— = 6', tan-i - = ^ (90).
vr V

This reduces (88) and (89) to

-C cos^-tsin^ .

-—pr- = —-^ ;—;^ = cos2^- tsin 26 (91),
6' cos ^ + 4 sin 6 ^ '

-0' cos ^ - 1 sin ^ ocv • ot^ /no\and —i^r- = ^^
• ^r = cos 2^ — t sin 2^ (92).

Lt cos ^ + t sin ^

These formulas express total reflection for the two cases re-

spectively of vibrations perpendicular to the plane of incidence,

and vibrations in this plane ; and they give us 20 and 2^, which

we may, for brevity, call " the phases of the vibrations." Thus,

calling P the plane of incidence and reflection, we find

Phase of vibration perpendicular to P — phase of vibration in P

= 2(^-6*) (93)

This means that the vibration perpendicular to P precedes the

other by 2 (^ - d).

Whatever positive value v" has, this difference is essentially

zero for i= 0; and we find that it increases through + 90° to

+ 180° when i is increased from 0° to 90°; as illustrated in the

accompanying tables for the two cases, v- = 'o, i/-=10.

i 6'=tan-i —
vr V

2 (^ - 0)

o o o o
54-7 54-7 0-0

10 53-5 55-9 4-8

20 50-1 591 18-0

30 45-0 63-4 36-8

40 38-7 68-2 59-0

50 31-7 72-9 82-4

53-2 29-3 74-3 90-0

60 24-1 77-4 106-6

70 16-2 81-7 131-0

80 8-2 85-9 155-4

90 0-0 90-0 180-0
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I jK,:^

10 17.0 l'"5
I

^.„
20 ift.r

17-8 yX
Qn ^"'^ 7S-7

^'0
^^ 15-7 ' ^ '

4-J,

^^ 11-9 ^
7«-S

60 ^oi 26-8 .;??

7^-ft 44-0 ^ ^

0-0
I ^0.^ 118-6

^ ^
180-0

^^=lofthJ?^-''"^^^ ^^ incidence
f53°-2 fn .

f^ifference 2 ^^ ^
''^^^ "^^^^^Is observafinn \ -P^ncipal

ence 2(^_^^ tQ j^ positive fi 7 "^ ^^^^^s the phase- hepJa^eofreiieetiontofagt^^^^^ .s to sa,, the vibratC
^'J It; as we finri u ^ • 1 ^ ^eniiiu the vib}-flfi"r.n

^ ^^^
^ '"'^^^^^^^^«^^-^-byd,.an7itr;::^^^^^^^^^^

^"nciparineLtcr?f! "^"^^^^^^-^i^-I method for fi,,- ,
follows. For P ' '' ^''y ^i^en value of ^ f '"^ ^^^

^oi Pnncipal Incidence we have " '' ''^^'^'^''' ^'

^^isgivestan2^tan2^--_7
• , W.I'O^'m algebra, from (.90)

whence, S'^^^^^^lJCz.Jr^) = - 1
^^.^^

Taking the greater root of .K-
~ W-

given by (87) fo.
• •

^^ -!)/(-+
1)

•> ^^O for^ in terms of ^ and .
^ ^

""^ ^^ ^^^ «"d tan^V for the

Molar.
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Molar. Principal Incidence. (The less root of ilie quadratic is rejected,

because it makes tan-i negative.)

The following table has been thus calculated directly, to show

for fourteen values of v or v'-, the Principal Incidence, /.

V ^2 tan I I

0-00 0-00 1-000 45°0

0-50 0-25 1-193 50-0

0-71 0-50 1-333 53-1

1-00 1-00 1-554 57-2

1-41 2-00 1-887 62-1

2-00 4-00 2-387 67-2

2-45 6-00 2-786 70-3

3-16 10-00 3-438 73-8

3-74 14-00 3-982 75-9

4-00 16-00 4-223 76-6

4-47 20-0 4-680 77-9

6-00 36-0 6-160 80-8

10-00 100 10-10 84-3

14-00 196-0 14-07 85-9

20-00 400-0 20-05 87-1

§ 15G. The converse problem of finding v- for any given

Principal Incidence, by (96) and (97), yields a cubic equation

for v^. The table of § 155 proves that this cubic equation has

one, and only one, real positive root for every value of / between

45" and 90° ; and no real positive root for values of / between
0° and 45°. For our present purpose it is most easily solved by

trial and error, aided by the table of § 155. I have thus found for

the three Principal Incidences measured by Conroy for red,

yellow, and blue light respectively, incident on his silver film

polished with putty powder (table of § 99 above), the following

values of v and v^.

I V V-

Red 76° 29'

74° 37'

71° 33'

3-9

3-3

2-7

15-2

10-9

7-29

Yellow
Blue

§ 157. The diagram of § 88 shows that Conroy's silver film,
polished as he polished it with putty powder, may be regarded as
almost our ideal silver: this view is confirmed by his three
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Principal Azimuths, 43° 51', 43° 52', 43° 0', being each as nearly Molar.

a good approximation to 45° as it is. (See § 159" below.) But

their shortcomings of from one to two degrees below 45° are no

doubt real, and point to the correction of the real values of v-

by the addition of small purely imaginary terms. Thus, to fit

the formulas of § 150 to Conroy's silver, we may, keeping ts a

positive quantity, take <^ = 180° — %; where %, which would be

zero for ideal silver, may for real silver, have some small value of

a few degrees.

§ 158. It would be interesting to pursue the subject further,

and include with silver, other metals for which we have the

experimental data such as those shown in the table of § 99.

To do this, we may conveniently in (87), (88), (89), put

i/2 = j3(cos%-tsin;^) (98);

and use the experimental data of Principal Incidence and

Principal Azimuth to determine in each case the two unknown

quantities p cos "^ and p sin ^ : but time forbids. This would

be, in fact, a working out of the theory, or empirical formula, of

MacCullagh and Cauchy, to comparison with observational results

regarding metallic reflection, such as has been done by Eisenlohr,

Jamin, Conroy, and others*. The agreement of the theory with

observation has been found somewhat approximately, but not

wholly, satisfactory. Stokes, as communicator of Conroy's paper,

No. III. {Proc. R.8., Feb. 15, 1883), comments on this want of

perfect agreement; and suggests that it is to be accounted for by

the inclusion in respect to metallic reflection of what he proposes to

call "the adamantine property" of a substance ; being the property

required to explain the deviation, from Fresnel's law of reflection

of light by transparent bodies, discovered more than eighty years

ago by Airy, in diamond. This adamantine property, as we
shall see in Lecture XIX., § 173, is to be explained dynamically

by assuming a small imaginary iq, for the velocity of condensa-

tional-rarefactional waves in the substance ; not small enough to

utterly annul L in our formulas of § 132. Its magnitude is

measured by the ratio qju, which I propose to call adamantinism.

Some deviation from exact equality between the effective rigidities

of ether in the two mediums might also be invoked to aid in

procuring agreement between dynamical theory and observation,

* Basset, Physical Optics, §§ 371, 380; Mascart, Traite cVOptique, Vol. ii.

T. L. 25
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Molar, for reflection of light from all substances, transparent, or metallic

or otherwise opaque.

§ 158'. Meantime, I finish this Lecture XVIII. on the Re-

flection of Light with an application of § 123 (39), and § 132 (59)

with Z = 0, to the theory of Fresnel's rhomb.

Let the medium in which u is the velocity of light be a trans-

parent solid or liquid ; and let the other medium be undisturbed

ether. We cannot now continue Green's convenient usage adopted

in § 116, and call the former "the upper" and the latter "the lower."

We now have

,n>v\ p> ,p; ,i>i\ ,ulu=/j,; p/,p=fjir; sin ,i = pu sm i ; b=cosi/u; fb=cos,{/,u...(9^

For convenience, to suit the case of ,t > i, write as follows,

the equations cited above,

—

^'_6-^6. G'_ p,b-,ph

C b + ,b' p,b + ,pb
^^^ ^'

the sign minus being transfen-ed from their first members because,

in virtue of ,i > i, C'/G is now positive through the whole range of

non-total reflection, [t = to i= sin~^ {1 //x) giving ,t = 90°]; and

G'/G is positive through the range up to the Brewsterian angle of

zero reflected ray [i = to t = tan~i (1//^)]- From i = tan~i (1 //x.) to

i = sm~^(l/lj,), G'jG decreases from to —1; and it is imaginary-

complex of modulus 1, through the whole range of total reflection

[i = sin-i(l//i) to t = 90°].

§ 158". When i is between sin-i(l//x) and 90°, ,6^ is real

negative; and, denoting its value by —q^ (as in § 118), we have

,6 = -ig*; whereg^ft^^^'^'"^''"-^ (98'").
yU-COSZ

^

Remark that q increases from to oo when i is increased from
sin-i {lip) to 90°. Using (98'") in (98") we find,

G'_h+iq. G'_p?q-cb
G b-iq' G~ p?q+Lb ^^^ '''

whence, by De Moivre's theorem,

C C
-^ = cos 2\/r -I- 1 sin 2>/r ; --:^ = cos 2;^ - 1 sin 2;)^ (98'),

where A|r = tan-i|;
;;^
= tan-^ -^ (98^').

6' p.'q

* The sign minus is here chosen in order that el'^y, not e"*"^', may be the

reducing factor of ,C and ,G for the disturbance in the ether outside, see § 128
;

y being zero at the reflecting surface, and negative outside.
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By (98"') and (98"') we see that ^|r increases from 0° to 90° and Molar.

X decreases from 90° to 0°, when i is increased from

sin-'ifj,-') to 90°.

§ 158'". Putting for a moment qlh = x, we find

.(98^")-

Equating this to zero we find, for {'^ + x) ^ minimum,

q/b = fi-\ which makes yfr = x = tan-^ (/x-^) (98"");

and to make q/b = fj,~\ we have tan'-i = 2/{/j,^ — !)• We infer that

when i is increased from sin~' (/i""0 to tan~^ \/[2/(/u.^ — 1)], {^jr + x)
decreases from 90° to 2 tan~^ (/^^O ^^^ then increases to 90°

again, when i is increased to 90°. This will be useful to us

in S 158^

§ 158'^ Realising now, as in § 147, we find real solutions as

follows, for vibrations perpendicular to, and in, the plane (P) of

incidence and reflection :

—

Vibrations

perpendi-

cular to P

Vibrations
J

inP

Incident wave G cos o) i t

u

Reflected wave C cos (*-i) + 2V.'

Incident Avave G cos wit
V u

Reflected wave G cos
^-9-^%jl

...(98'0;

\
...(980.

Thus we see that the reflected vibrations in P are set back in

phase by 2(ylr + x) relatively to the reflected vibi'ations perpendi-

cular to P. By §
158'" we see that this back-set is 180° at the

two incidences, i = sin"^ (/^~0. and i = 90° (the limits of total

reflection); and that it decreases to a minimum, 4 tan~^ (fi~^), at

the intermediate angle of incidence i = tan~i V[2/(/i^ — 1)].

The back-sets of the phase through the whole range of total

reflection for four refractive indices, 146, I'o, I'ol, and I'G are

shown in the Table II. of § 158'' below.

Column 1 represents angles of incidence.

25—2
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Molar. Columns 2 and 3 of Table II. represent the absolute back-sets

of phase by reflection respectively in, and perpendicular to, P.

Column 4 represents the back-set of phase of vibrations in P,

relatively to vibrations perpendicular to P, produced by a single

reflection.

The numbers in Column 4, doubled, are the total back-sets by

two reflections, at the same angle of incidence i, of vibrations in,

relatively to vibrations perpendicular to, P. Each of these numbers

is between 180° and 360°; and therefore it indicates virtually a

setting-forward of the phase of vibrations in P, relatively to the

phase of those perpendicular to P, by the amount to which each

number falls short of 360°. Hence the numbers in Column 5 of

Table II. represent virtual advances of phase of the vibrations in,

relatively to the vibrations perpendicular to, P, after two reflections.

§ 158\ It will be seen that all the phasal differences shown

in Column 4 of Table II. are obtuse angles : with minimum values

shown in Table I., which is extended to include zinc sulphide,

Total Internal Reflection. Table I.

Refractive index
Brewsteriaii

angle
tan-i (1//.)

Limiting inci-

dence for total Incidence for
minimum phasal

Minimum
phasal

/* reflection

sin-i(l/M)

dilFerence

tan-\/[2/(M--l)]
diff'erence

4 tan-i (l/ju)

1-46 34° 24'-5 43° 14' 53° 3' 137° 38'

1-50 33 41-25 41 49 51 40 134 45
1-51 33 30-75 41 28 51 20 134 3

1-60 32 0-25 38 41 48 83 128 1

(Zinc Sulphide) 2-371 22 52 24 57 33 20 91 28

M = cot 22°i = 2-414 22 30 24 28 32 46 90

(Diamond) 2-434 22 20 24 15 32 31 89 20

(Realgar) 2-454 22 10 24 3 32 15 88 40

diamond, and realgar. By Table I. we see that the phasal differ-

ences for internal reflection in glasses, and all known transparent

bodies of refractive index less than 2-414, are obtuse for all angles

of incidence through the whole range of total internal reflection.

This conclusion was very startling to myself, because for eighty

years we have been taught that, for total internal reflection in

glass, the phasal difference was an acute angle in a single re-

flection ; and that it was 45° for each reflection in the Fresnel
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rhomb, instead of 135° which we now know it is. How it is so, Molar.

we can easily see by the following simple considerations.

(1) Circularly polarized light in every case of direct incidence

and reflection (metallic or vitreous, external or internal), has its

circular orbital motions in the same absolute directions in the

direct and the reflected waves. Hence if the orbital motion ideally

seen by an eye receiving the incident light is anti-clockwise, it is

clockwise to an eye receiving the reflected light. (Hence the

arrangement in respect to signs in figs. 3 a and 3 6 of § 92 above

is explained thus :—First imagine the two diagrams as corre-

sponding to normal incidence: for the incident light, fig. 36, with

its face down, looked up to; and for the reflected light, fig. 3a,

with its face up, looked down on. Then incline the two planes

continuously to suit all incidences from i = 0, to i = 90°.)

(2) Taking first, external reflection of light, of circular anti-

clockwise orbits, incident on glass of negligible adamantinism*

;

increase the angle of incidence from 0" to the Brewsterian tan~^/A.

The motion constituting the reflected light is in clockwise elliptic

orbits, of increasing ellipticity, with long axes perpendicular to

the plane of reflection, till at tan~^/u, it is rectilineal. Increase

now the angle of incidence to 90° : the orbital motions are elliptic

anti-clockwise with diminishing ellipticity (long axes still perpen-

dicular to the plane of reflection) ; and become infinitely nearly

circular when the incidence is infinitely nearly grazing.

(3) Proceed now as in (2), but with internal instead of

external reflection at a glass surface : the incident circularly

polarized light being anti-clockivise. With increasing incidences

from i=0, the reflected light is clockwise elliptic with increasing

ellipticity, till it becomes rectilineal at the Brewsterian tan"~^(l//i).

Increase i farther : the reflected light is now anti-clockiuise elliptic,

with diminishing ellipticity till it becomes circular at the limit of

total internal reflection, sin~^(l//i). Increase i farther up to 90°:

the reflected light is elliptic, still anti-clockiuise, with ellipticity

increasing to a maximum when * = sin~^ \/[2/(Ai'" — 1)] and

diminishing till the orbit becomes again infinitely nearly circular

when i is infinitely little less than 90°.

* For the change from the present statement, required by adamantinism when

perceptible, see below, §§ 178—182.
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Molar. (4) With, instead of glass, an ideal substance whose refrac-

tive index is 2-414; anti-clockwise circularly polarized light,

incident at angles increasing from 24" 28', gives total reflection,

and anti-clockwise circular orbits, becoming elliptic, with ellip-

ticities increasing to rectilineal vibrations when i = 32° 46'.

Farther increase of i up to 90" gives elliptic orbits of ellipticities

diminishing to circularity at i = 90°: all anti-clockwise.

(5) Diamond and realgar, and all other substances having

fji > 2*414, have three principal incidences for internal reflection

;

one with non-total i-eflection at the Brewsterian angle tan~'(l//u.)

;

and two within the range of total reflection ; one less, the other

greater, than the incidence which makes the phasal difference

a minimum. Anti- clockwise circularly polarized light, incident

at any angle between the last-mentioned two principal incidences,

gives clockwise elliptic orbits for the reflected light
;
presenting

a minimum deviation from circularity (minimum ellipticity we

may call it) at some intermediate angle.

(6) It is interesting to remark that in every case, according

as the phasal difference is obtuse or acute, the reflected light is

anti-clockwise or clockwise, when the incident light is circular

anti-clockwise. This with §
158^^'' gives a simple means for ex-

perimentally verifying the statements (1), (2), (3), (4), (5). The

experimental proof thus given of the truth, that the phasal

difference in every case of approximately grazing incidence is 180"",

is very easy and clear; as it can be arranged to show simul-

taneously to the eye the incident and the reflected light ; both

extinguished simultaneously by the same setting of the analysing

fresnel (or quarter-wave plate) and nicol.

(7) The rule of signs referred to in (1) of the present section,

and illustrated in figs. 3 a and 3 6 of §92, must be taken into

account to interpret the meaning of phasal difference of two recti-

lineal components of reflected light, due to incident recti lineally

vibrating light. Thus we see that if the vibrational plane of the

incident light is turned anti- clockivise front P, the orbital motions

of the reflected light are anti-clockwise, or clockwise, according as

the component vibrating in, is set back or advanced, relatively to

the component perpendicular to P. See § 158"" below.



Total Internal Reflection. Table II.



Total Internal Reflection. Table IL continued.

CoL 1 CoL 2 CoL 3 CoL 4 CoL 5

\Ij and X calculated only 2('l'+x) ; beinp actual 3(5()*-4(.A+ x); being

to the nearest minute, phasal back-set of virtual phasal ad-

except in the case of vibrations in, rela- vance of vibrations

their equality tively to vibrations in, relatively to vi- !

i perpendicular to,

P, produced by one
reflection

brations perpen-
|

dicular to, P, pro-
duced by two reflec-

2^ 2x tions

(1=1-51 41° 28'-3 0° 0' 180° 0' 180° 0' 0° 0'

42 14 40 147 16 161 56 36 8

43 25 6 126 8 151 14 57 32
44 32 30 112 46 145 16 69 28
45 38 38 102 46 141 "24 77 12
46 44 94 42 138 42 82 36
47 48 54 87 42 136 36 86 48
48 53 30 82 4 135 34 88 52
49 57 46 76 58 134 44 90 32
50 61 50 72 26 134 16 91 28
51 65 44 68 20 134 4 91 52
51 20-41 67 1-7 67 1-7 134 3-4 (min.) 91 53-2 (max.)

52 69 30 64 36 134 6 91 48
53 73 6 61 12 134 18 91 24
54 76 38 58 2 134 40 90 40
54 37 90
55 80 6 55 6 135 12 89 36
56 83 26 52 22 135 48 88 24
57 86 44 49 48 136 32 86 56
58 89 58 47 22 137 20 85 20
59 93 8 45 4 138 12 83 36
60 96 16 42 54 139 10 81 40

70 125 40 25 22 151 2 57 56

80 154 4 11 32 165 36 28 48

90 180 180

M= l-60 38 40-9 180 180
39 10 48 152 48 163 36 32 48
40 22 12 126 40 148 52 62 16
41 29 36 111 50 141 26 77 8
42 35 38 101 6 136 44 86 32
43 40 56 92 36 133 32 92 56
44 45 42 85 40 131 22 97 16
45 50 4 79 48 129 52 100 16
46 54 18 74 38 128 56 102 8

47 58 14 70 6 128 20 103 20
48 62 66 4 128 4 103 52
48 33-0 64 0-6 64 0-6 128 1-2 (min.) 103 57-6 (max.)
49 65 38 62 24 128 2 103 56
50 69 6 59 6 128 12 103 36
51 72 34 56 2 128 36 102 48
52 75 54 53 14 129 8 101 44
53 79 6 50 38 129 44 100 32
54 82 18 48 10 130 28 99 4

55 85 24 45 52 131 16 97 28
56 88 28 43 42 132 10 95 40
57 91 30 41 40 133 10 93 40
58 94 30 39 42 134 12 91 36
58 44 90
59 97 26 37 52 135 18 89 24
60 100 20 36 6 136 26 87 8

70 128 2 21 34 149 36 60 48

80 154 18 10 12 164 30 31

90 180 180
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§ 158^'. That most exquisite invention, Fresnel's rhomb, Molar,

produces a difference of phase of 90° between vibrations in, and

vibrations perpendicular to, P. By § 158'" we see that this can

only be with glass of refractive index greater than 1*496. Thus,

the table for refractive index 1*46 shows 84° 44' for the maximum
value in Column 5. The other three tables show, for refractive

indices To, I'ol, and 1'6 respectively, maximum values in Column 5,

90°28'-8, 91°53'-2, and 103°57'-6. In each of these cases, there

are of course two incidences which make the difference of phase

exactly 90". Fresnel pointed out* that the larger of the two is to

be preferred to the smaller; because, with the larger, the differ-

ences of refractivity, for the different constituents of white light,

make less error from the desired 90° difference of phase. The

larger of the two incidences is to be preferred, also, because small

differences from it make less error on the 90° phasal differences,

than equal differences from the other. For the same reason, the

less the refractive index exceeds 1'496, the better. Fresnel's first

rhomb was made of glass, of refractive index 1*.51, from the

factory of Saint Gobain : our tables show that 1"5 would reduce

the phasal errors to about half those given by 1'51, for equal

Fig. 9'.

small errors in the direction of the ray. It would thus give an

appreciably better instrument than Fresnel's own. The accom-

panying diagram, figure 9', represents a section perpendicular to

* Collected Papers, Vol. i. p. 792; original date 1823.
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.raloM the traversed faces and the reflecting surfaces of the rhomb, for

refractive index 1'51, as cut by Fresnel; with acute angles of

54° 87', so that the rays for its proper use may enter and leave

perpendicularly to the traversed faces. If p denote the perpen-

dicular distance between the two long sides of the parallelogram,

the length of the long side is 2ptant (or p. 2"816 with i= 54° 37'):

the length of the short side is j9. cosec ?* (or jj. 1'226). The
perpendicular distance between the entering and the leaving rays

is /). 2 sin t (or p. 1-6306).

§ 158"'. The length of the long side is chosen such that a

ray, entering perpendicularly* through the centre of one face,

passes out perpendicularly through the centre of the parallel face,

Fresnel's diagram is far from fulfilling this condition; and so are

many of the diagrams in text-books, and scientific papers on the

subject. The last diagram I have seen shows only about a quarter

of normally entering light to suffer two reflections; and rather

more than half of it to pass straight through without any reflection

at all. Airy's and Jamin's diagrams are correct and very clear.

Fresnel must, in 1823, have given clear instructions to his work-

man (with or without a diagram); and, to this day, opticians make
Fresnel's rhombs of right proportions to fulfil the proper condition

in respect to the entering and leaving rays. But twenty years

after Fresnel's invention we learn from MacCuUaghf that Fresnel

rhombs were made by DoUond (and probably also by other

opticians ?), with Fresnel's 54° 37' for the acute angle, but with

refractive indices differing from his lol. I am assured that

some opticians of the present day make the acute angle correct

according to the refractive index of the glass, to give exactly 90°

phasal difference of the components of the normal ray. I do not

know if they realize the importance of having glass of refractive

index as little above 1'496 as possible.

I
158^'"'. MacCullagh appreciated the beauty and value of

Fresnel's rhomb, and as early as 1837 had begun using it for

research. But he was at first much perplexed by unexpectedly

large errors, until he found means of taking them into account,

* This, for brevity, I call a " normal ray."

t " On the Laws of Metallic Eeflection and the mode of making experiments upon

Elliptic Polarization," Froc. Royal Irish Academy, May 8, 1843. MacCullagh's

Collected Papers, p. 240.



ERRORS FOUND BY MACCULLAGH, 895

"and of making the rhomb itself serve to measure and to eliminate Molar,

"them." He good-naturedly adds;—"The value of the rhomb as

"an instrument of research is much increased by the circumstance

"that it can thus determine its own effect, and that it is not at all

"necessary to adapt its angle exactly to the refractive index of the

"glass." This proves a very forgiving spirit: perplexity and loss

of time in his research gratefully accepted in consideration of his

having been led to an enlarged view of the value of the Fresnel

rhomb as an accurate measuring instrument

!

§ 158'\ MacCullagh had two rhombs from the same maker

each "cut at an angle of 54^° as prescribed by Fresnel." He found

one of them wrong phasally by .'3°, the other by 8°
! He does not

say whether the errors were of excess or defect ; but we see that

they must have been excess above 90°, because- no refractive index

greater than 1"5, with i = .54° 37', gives as large a defect below 90°,

as 3°. This we see by looking at the following Table, calculated

M i 2^ 2X 2(V + X)
360°

-4(V + X)

Excess
above 90°

1-5

1-51

1-6

1-7

1-8

54° 37' 78° 4'

78 48
84 14
'88 32
91 44

57° 28'

56 12

46 44
39 4

33 20

135° 32'

135
130 58

127 36
125 4

88° 56'

90
98 4

104 48
109 52

-1° 4'

+ 8 4

14 48
19 52

according to § 158^ with i = 54° 37', for four refractive indices,

other than Fresnel's I'ol. We also see that the refractive indices

of the rhombs, supplied by Dollond to MacCullagh, must have

been between 1'51 and 1'6.

§ 158^ Notwithstanding MacCullagh's good-natured remark,

it is important that the acute angle of a Fresnel rhomb should be

made, as accurately as possible, such that the phasal difference

shall be exactly 90°, for light of definitely specified period (sodium

light for example), when the direction of the ray is exactly per-

pendicular to the entering and leaving faces. But however

trustworthy may be the instrument-maker's work, MacCullagh's

principle of determining the error in the practical use of the

instrument, and eliminating it if it is perceptible, is highly im-

portant and interesting. It may be carried out, either, as he did
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Molar, it himself, by means of observations on metallic reflection : or,

as he suggested, by observations on total reflection at a sepa-

rating surface of glass and air; a much simpler subject than

metallic reflection. Or, as simplest method when two Fresnel's

rhombs are available, we may place them with leaving face of

one, and entering face of the other, parallel and close together,

and mount the two rhombs so as to turn independently round

a common axis perpendicular to these surfaces through their

centres. The arrangement is completed by mounting two nicols

so as to turn independently, one of them round the central

ray entering the first rhomb, and the other round the central ray

leaving the second rhomb : and providing three graduated circles,

by which differences of angles turned through between the first

nicol and first fresnel; between the two fresnels; and between the

second fresnel and the second nicol ; may be measured. The

mechanism to do this is of the simplest and easiest. The experi-

ment consists in letting light ; entering through the first nicol

and traversing the two fresnels and the second nicol ; be viewed

by an eye seeing through the second nicol. The best approach to

extinction that can be had, is to be produced by varying the

three measured angles. For simplicity we may suppose that the

three zeros of the three pointers, on the three circles, are set so

that, using for brevity facial intersections to denote intersections

of the traversed faces and reflecting surfaces of a fresnel, we have

as follows :

—

(1) When the first index is at zero on the first circle, the

vibrational lines of the light emerging from the first nicol are

perpendicular to the facial intersections of the first fresnel.

(2) When the second pointer is at zero on its circle, the facial

intersections of the first fresnel are parallel to those of the second,

(3) When the third index is at the zero of the third circle,

the facial intersections of the second fresnel are perpendicular to

the vibrational lines of light entering the second nicol.

Thus if ?ii, a, ??., denote the readings on the three circles; ??i is

the inclination of the vibrational lines of the first nicol to the

reflectional plane* of the first fresnel ; a is the inclination of the

facial intersections of the first fresnel to those of the second ; and

* For brevity I call "reflectional plane" of a fresnel, the plane of reflection of a

normal ray. It is perpendicular to the facial intersections.
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oi-iis the inclination of the reflectional plane of the second fresnel to Molar,

the vibrational lines of the light emerging from it. The diagram,

figure 9", shows these angles all on one circle, ideally seen by an eye

looking through the second nicol. OV^, OF^, OF.^, OV-^, represent

planes through the central emergent ray respectively parallel to the

vibrational lines of the first nicol, the reflectional plane of the

Fig. 9".

first fresnel, the reflectional plane of the second fresnel, and the

vibrational lines of the second nicol set to let pass all the light

coming from the second fresnel. OKi, OK.,, represent planes

through the common axis perpendicular to OFi and OF2.

§ 158'''. Let now sin t denote the displacement at time t, of a

point of ether in the light passing from the first nicol to the first

fresnel. This implies a special unit of time, convenient for the

occasion, according to which the period of the light is 27r ; and it

takes as unit of length, the maximum displacement of the ether

between the first nicol and the first fresnel. Following the light

through the apparatus;—^first resolve the displacement into two

components, cos n^ sin t, sin /?! sin t, parallel to OF^ and OKi. The

phase of the former of these is advanced 90° + ei relatively to the

latter by the two total reflections in the first fresnel, if e^ denote

its error, which ought to be zero. Thus, at any properly chosen

point in the space traversed by the light between the two fresnels,

the displacement of the ether at time t is

cos /ij cos (t + e,) parallel to OF^ ; sin
??.i

sin t parallel to OK^.
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Molar. Resolving each of these into two components, we have, for the

light entering the second fresnel,

cos a cos 7ti cos {t + ei) — sin a sin n^ sin t parallel to OF^

.

. .(98^')

;

sin a cos n^ cos (t + gj) + cos a sin n^ sin t parallel to OK^. . .(98'^'').

The former of these is advanced 90° + 62 relatively to the latter,

by the two reflections in the second fresnel, e., being its error ; and

thus, at any properly chosen point in the light passing from the

second fresnel to the second nicol, the displacement of the ether

at time t is

— cos a cos 7ii sin (t + e^ + e.^ — sin a sin n^ cos {t + e.^,

parallel to Oi^.... (98-^"')
;

sin a cos i^ cos {t + e^ + cos a sin n^ sin t, parallel to OK^

.

. .(98'^'^).

We have now to find the condition that the resultant of these

shall be rectilineally vibrating light. This simply implies that

(98'''") and (98^'^) are in the same phase ; and, OV^ being the line

of the resultant vibration, we have

A B
2-' = ^' = -cot». (98"),

where A, B and A', B' denote the coefficients found by reducing

(98^»') and (98"^) to the forms A cos t + Bsm t, and A' cos t + B' sin t.

Thus, performing the reductions, and putting

tan Wj = Ai, tann2 = A2, tan a =j (98=^^'),

we find

— 1 _ — sin (ei + 62) — Kj cos ^2 _ — cos {e^ 4- e<^ + h^j sin gj

A-a j cos 61 — j sin 61 + hi

(98^™).

These are two equations for finding the two unknowns, 61,^2; when

^1, fh,jy are all known; one of them being chosen arbitrarily, and

the other two determined by observation, worked to produce

extinction of the emergent pencil (compare §§ 95, 95', above). V^

in the diagram (fig. 9") is perpendicular to the position of the

vibrational line of the second nicol when set for extinction.

§ 158^"'. The experimenter will be guided by his mathematical

judgment, or by trial and selection, to get the best conditioned

values of hi, h,^,j, for determining gj, e^. We must not take y^i
= 1

(that is to say, we must not set the entering nicol fixed with its

vibrational lines at 45° to the principal planes of the first fresnel)
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SIMPLIFICATION WHEN ERRORS ARE SMALL. 899

because in the case Ci = (the tirst fresnel true), the light entering Molar,

the second fresnel would be circularly polarized, and therefore the

turning of the second fresnel would have no effect on the quality

of the emergent light ; which would be plane polarized if, and only

if, this fresnel, like the first, is true (compare § 98 above). We
must not fix h^ = 0, because this would render the first fresnel

nugatory. It occurs therefore to take n^ = 22^° which makes

hr'-k = 2 and h, = -^U2 (98""')-

Probably this may be found a good selection if, for any reason, it

is thought advisable to fix /ij and leave j variable.

If Ci, e.i are so small that we may neglect e^^, e^, e^e^, (98^"')

becomes

whence we have two simple equations for gj, e^

Bi J _ 1 fhi

J

From these we see that, as e^ and e.2 are small, the observation must

make h^ and h^ each very nearly unity unless j is taken either very

small or very great. It may be convenient to fix y = 1, (a = 45°),

and to find n^, n., by experiment.

§ 158^"'. When both the fresnels are perfectly true (^i =0, e.j=0),

formula (98^^) shows that h^ = hi, if j = ; and /^ = l/^*i' if i = ^ :

but if J has any value between and go , we must have n^ = n^ = 45",

while a may have any value. That is to say, the first fresnel

produces exactly circular orbits and the second rectifies them.

When ??i is any angle between and 90°, we have elliptically

or circularly polarized light, represented by (98^') and (98^") with

ei = 0. This is light leaving the first and entering the second

fresnel. In passing through the second fresnel it becomes con-

verted into rectilineally vibrating light, represented by (98^'") and
(98^'^) with ei = and e, = 0. Thus we see that §§ 158^—158^",

with gj = and e^ = passim, expresses simply and fully the theory

of the conversion of rectilineally vibrating light into elliptically

or circularly polarized light, and vice versa ; by one true Fresnel's

rhomb. A diagram with rules as to directions in the use of

Fresnel's rhomb is given below in §
158''''".

§§ 90—98 above
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Molar, contain the application of the theory to ordinary reflection at

the surfaces of transparent solids, or liquids, or metals : the first

fresnel of § 158'^ being done away with, and the reflection substi-

tuted for it. The corresponding application to total internal

reflection is much simpler, because the intensities of incident

and reflected components are equal. It allows the difference of

phase, produced by the reflection, to be measured with great

accuracy ; and a careful experimental research, thus carried out,

would no doubt prove the difference of phase, produced between

the two components by the reflection, to agree very accurately

with the obtuse angles calculated for different incidences according

to (98") and | 158'".

§ 158"'^. About a year ago, in making some preliminary

experiments by aid of a Fresnel's rhomb, to illustrate §§ 90—100,

152, 153, I interpreted the phasal difference of the rhomb ac-

cording to Airy's Tracts ; but found error, or confusion, in respect

to phasal change by one internal reflection in glass, and by metallic

reflection. I looked through all the other books of reference

and scientific papers accessible to me at the time ; and I have

continued the inquiry to the present time, by aid of the libraries

of the Royal Society of London, and the University of Glasgow

;

but hitherto without success, in trying to find an explicit state-

ment as to which of the two components is advanced upon the

other in the Fresnel's rhomb. I have therefore been obliged to

work the problem out myself mathematically for the Fresnel's

rhomb ; and with the knowledge thus obtained, to find by experi-

ment which of the two components is advanced on the other by

metallic reflection. Of all the authors I have hitherto had the

opportunity of studying, only Airy in respect to Fresnel's rhomb,

and Jamin, and Stokes *, and Basset in respect to metallic re-

flection, have explicitly stated which component of the light is

advanced in phase.

In Airy's Tracts, 2nd edition (1831), page 364, I find a

thoroughly clear statement, agreeing with Fresnel's own, regard-

ing the Fresnel's rhomb and total internal reflection :
—

" If the

"light be twice reflected in the same circumstances and with the

" same plane of reflection, the phase of vibrations in the plane of

" incidence is more accelerated than that of the other vibrations

* Mathematical and Physical Pajjcm, Vol. ii. p. 360.
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" by 90°." In truth, the vibrations in the plane of incidence are Molar,

not advanced 90°, but set back 270". They are therefore virtually

advanced 90°, relatively to the vibrations perpendicular to the

plane of incidence.

In Basset's Physical Optics (Cambridge 1892), page 339, 1 find,

stated as a law arrived at by Jamin by experiment, with reference

to metallic reflection, the following :

—

"(1) The ivave which is polarized perpendicularly to the plane

" of incidence, is more retarded than that which is polarized in the

"plane of incidence."

By experiment I have verified this, working with a Fresnel's

rhomb, interpreted according to Airy, and § 158^' above. In reading

Jamin's experimental paper I had felt some doubt as to his mean-

ing because his expression " vibrations polarisees dans le plan de

I'incidence " (I quote from memory) may have signified, not that

the plane of polarization*, but that the line of vibration, was

in the plane of incidence. That Basset's interpretation was

correct is however rendered quite certain by a clear statement in

Jamin's Cours de Physique, Vol. ii. page 690, describing relative

advance of phase of vibrations perpendicular to the plane of inci-

dence of light reflected from a polished metal. This phasal relative

advance he measured by a Babinet's compensator, and found it to

increase from zero at normal incidence, to 90° at the principal

incidence, I; and up to 180° at grazing incidence. He would

have found not advance, but back-set, if he had used a Fresnel's

rhomb interpreted according to the mathematical theory given (by

himself as from Fresnel) in pages 783 to 787 of the same volume,

with the falsified formulas (98^^").

§ 1.58^^. The origin of the long standing mistake regarding

the Fresnel's rhomb is to be found in Fresnel's original paper,

" Memoire sur la loi des modifications que la reflexion imprime
" a la lumiere polarisde " : reproduced in Volume i. of Collected

Papers, Paris 1876, pages 767 to 799. In page 777 we find

* Considering the inevitable liability to ambiguity of this kind, I have abandoned

the designation "plane of polarization"; and have resolved always to specify or

describe with reference to vibrational lines. Abundant examples may be found in

the earlier parts of the present volume illustrating the inconvenience of the desig-

nation "plane of polarization." In fact "polar" and "polarization" were, as is

now generally admitted, in the very beginning unhappily chosen words for

differences of action in different directions around a ray of light. These differences

are essentially not according to what we now understand by polar quality.

T. L. 26
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Molar. Fresnel's own celebrated formulas, for reflected vibrational ampli-

tudes and their ratio, correctly given as follows :

—

tan {i - ,i) sin {i - ,i)
^

cos (i-,i) „;

tan (i + ,i)
'

sin {i + ,i)
'

cos {i + ,i)
'"^

It is obvious that the first two of these expressions must have

the same sign, because at very nearly normal incidences the

tangents are approximately equal to the sines, and at normal

incidences, the two formulas mean precisely the same thing

;

there being, at normal incidence, no such thing as a difference

between vibrations in, and vibrations perpendicular to, a plane of

incidence. Yet, notwithstanding the manifest absurdity of giving

different signs to the " tangent formula " and the " sine formula

"

of Fresnel, we find in a footnote on page 789 (by Verdet, one of

Fresnel's editors), the formulas changed to

tan {i — ,i) sin {i — ,i)

tan {i + ,i)
'

sin {% + ,i)

.(98""),

in consequence of certain "considerations" set forth by Fresnel

on pages 788, 789. I hope sometime to return to these " con-

siderations " and to give a diagram showing the displacements of

ether in a space traversed by co-existent beams of incident and

reflected light, by which Fresnel's " petite difiiculte " of page 787

is explained, and the erroneous change from his own originally

correct formulas is obviated. The falsified formulas (98"") have

been repeated by some subsequent writers ; avoided by others.

But, so far as I know, no author has hitherto corrected the conse-

quential error, which gives an acute angle instead of an obtuse

angle for phasal difference in one total internal reflection; and gives

90° phasal difference instead of 270° in the two reflections of the

Fresnel's rhomb ; and gives 90° back-set, instead of the truth

which is 90° virtual advance, of vibrations in the plane of incidence,

relatively to vibrations perpendicular to the plane of incidence, in

a Fresnel's rhomb. The serious practical error, in respect to which

of the two components experiences phasal advance in the Fresnel's

rhomb, does not occur in any published statement which I have

hitherto found. Airy accidentally corrected it by another error.

All the other authors limit themselves to saying that there is a

phasal difference of 90° between the two components, without

saying which component is in advance of the other.
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§ ISS'"'. In Fresnel (page 782), and Airy (page 362), where Molar.

^—1 is first introduced with the factor \/(/j?sin-i — 1), the positive

sign is taken accidentally, without reference to any other con-

sideration. A reversal of sign, wherever J— I occurs in the

subsequent formulas, would have given phasal advance instead

of phasal back-set, or back-set instead of advance, in each con-

clusion. If the authors had included the refracted wave (Airy,

page 358) in the new imaginary investigation so splendidly dis-

covered by Fresnel, they would have found it necessary, either to

reverse the sign of V— 1 throughout, or to reverse the interpreta-

tion of it in respect to phasal difference, given as purely con-

jectural by Fresnel, and by Airy (page 363) quoting from him :

because with this interpretation, and with the signs as they stand,

they would have found for the " refracted wave," a displacement

of the ether increasing exponentially, instead of diminishing

exponentially, with distance from the interftice (see footnote on

§ 158" above). It is exceedingly interesting now to find that an

accidentally wrong choice of signs, in connection with V— 1,

served to correct in the result of two reflections, the practical

error of acute instead of obtuse for the phasal difference due

to one reflection, which is entailed by the deliberate choice of

a false sign in the real formulas of (98''^'')
: and that, thus led,

Airy gave correctly the only statement hitherto published, so far

as I know, as to which of the two components experiences phasal

advance in Fresnel's rhomb.

I
158^^". Note on circular polarization in metallic or vitreous

or adamantine reflection. Referring to Basset's Physical Optics,

page 329, edition 1892, I find Principal Azimuth defined as the

angle between the plane of polarization of the reflected light,

and the plane of the reflection, when the incident light is circularly

polarized light incident at the angle of principal incidence. This

really agrees with the, at first sight, seemingly different definition

of Principal Azimuth, given in § 97" above : because it is easily

proved that when rectilineally vibrating light, is converted into

circularly polarized light by metallic or other reflection ; the

azimuth of the vibi'ational plane of the incident light, is equal to

the azimuth of the plane of polarization of the reflected light

when circularly polarized light is converted into rectilineally

vibrating light by reflection on the same mirror. The fact that k

26—2
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Molar, is positive for every case of j^rincipal incidence (§ 97') is included

and interpreted in the following statement :

—

Consider the case of plane polarized light incident on a

polished metallic, or adamantine, or vitreous, reflector. For sim-

plicity of expressions let the plane of the reflector be horizontal.

To transmit the incident light let a nicol, mounted with its axis

inclined to the vertical at any angle i, carry a pointer to indicate

the direction of the vibrational lines of the light emerging from it,

and incident on the mirror. First place the pointer upwards

in the vertical plane through the axis ; which is the plane of

incidence of the light on the mirror. The reflected light is of

rectilineal vibrations in the same plane. Now turn the pointer

anti-clockwise through any angle less than 90°. The reflected

light consists of elliptic, or circular, anti-clockwise orbital motions.

If i = 1, the principal incidence ; the two axes of each elliptic

orbit are, one of them horizontal and perpendicular to the plane

of incidence and reflection; the other in this plane.

To avoid any ambiguity in respect to " clockwise " and " anti-

clockwise," the observer looks at the nicol, and at the circle in

which its pointer turns, from the side towards which the light

emerges after passing through it : and he looks ideally at the

orbital motion of the reflected light from the side towards which

the reflected light travels to his eye. See § 98 above.

In external reflection of rectilineally vibrating light by all

ordinary transparent reflectors, including diamond (but not realgar),

the deviation from rectilineality of the reflected light is small,

except for incidences within a few degrees of the Brewsterian

tan~^/i. See diagram of § 178 below (figures 11 and 12), for

diamond.

§ 158^^"'. The rules for directions in elliptic and circular

polarization by a Fresnel's rhomb are represented by the annexed

diagram, figure 9'". 0' and are the centres of the entering and

exit faces. OK is a line parallel to the facial intersections. OF
represents the plane of the reflections in the rhomb, being a plane

perpendicular to the four optically effective faces.

Cases tti, a^, a^. Plane polarized light enters by 0'. OVi,
OV^, OFj, are parallels through to the vibrational lines of the

entering light ; they are of equal lengths, to represent the displace-

ments as equal in the three cases. The orbits of the exit light in
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the three cases are represented by (1) ellipse, (2) circle, (3) ellipse; Molar.

being drawn according to the geometrical construction indicated

in one quadrant of the diagram.

Cases bi, 62, &$• The orbits in three cases of equally strong

circularly and elliptically polarized entering light, having axes

along OF and OK, shown with their centres transferred to 0, are

represented by (1) ellipse, (2) circle, (3) ellipse. OV,', OV^, OV,',

represent the displacements in the exit light, which in each of

these three cases consists of rectilineal vibrations.

Fig. 9"

The direction of the orbital motions of the exit light in cases a,

and of the entering light in cases h, is, in each of the six cases,

anti-clockwise, as indicated by the arrowheads on the ellipses and

circle.

Thus we have the following two rules for directions :

—

Rule (a). When the vibrational plane of entering light must
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Molar, be turned anti-clockwise to bring it into coiucidence with OK,

the orbital motions in the exit light are anti-clockwise.

Rule {h). When the orbital motion of circularly or elliptically

polarized entering light, having axes parallel to OK and OF, is

anti-clockwise, the vibrational plane of the exit light is turned

anti-clockwise from OK:

These rules, and the diagram, hold with a "quarter-wave

plate" substituted for the fresnel, provided homogeneous light of

the corresponding wave-length is used. The principal plane of

the quarter-wave plate in which are the vibrations of waves of

greatest propagational velocity, is the OF of the diagram.

§ 159. The beautiful discovery made seventy years ago by

MacCullagh and Cauchy, that metallic reflection is represented

mathematically by taking an imaginary complex to represent the

refractive index, fi, still wants dynamical explanation. In 1884

we saw (Lee. XII. pp. 155, 156) that — yu,- is essentially real and

positive through a definite range of periods less than any one of

the fundamental periods, according to the unreal illustrative mech-

anism of unbroken molecular vibrators constituting the ponderable

matter; embedded in ether, and acting on it only by resistance

between ether and the atoms against simultaneous occupation of

the same space. This gave us a thoroughly dynamical foundation

for metallic reflection in the ideal case of no loss of light, and for

the transmission of light through a thin film of the metal with

velocity (as found by Quincke), exceeding the velocity of light in

void ether. It however gave us no leading towards a dynamical

explanation of the manifestly great loss of light suffered in reflection

at the most perfectly polished surfaces of metals other than silver

or mercury (see § 88 above). But now the new realistic electro-

ethereal theory set forth in Appendices A and E, and in §§ 162... 168

below, while giving for non-conductors of electricity exactly the same

real values of
fj?,

negative and positive, as we had from the old

tentative mechanism, seems to lead towards explaining loss of

luminous energy both in reflection from, and in transmission

through, a substance which has any electric conductivity, however

small. In App. E § 30, J. J. Thomson's theory of electric conduction

through gases is explained by the projection of electrions out of

atoms. If this never took place, the electro-ethereal theory would,

like our old mechanical vibrator, give loss of energy from trans-

mitted light only in the exceedingly small proportion due to the
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size of the atoms according to Rayleigh's theory of the blue sky Molecular

(§ 58 above). Ou the other hand the crowds of loose electrions

among under-loaded atoms, throughout the volume of a metal, by

which its high electric conductivity is explained in App. E § 30, may

conceivably give rise to large losses of energy from reflected

light ; losses spent in heating a very thin surface layer of the

metal by irregular motions of the electrions. This seems to me

probably the true dynamical explanation of the imaginary term

in v^ of § 158 (98). See also § 84 above.

§ 159'. In every case of practically complete opacity (that is

to say, no perceptible translucency from the most brilliant light

falling on a plate of any thickness greater than three or four

wave-lengths, or about 2 . lO"-* cm.), measurement of the principal

azimuth, which can be performed with great accuracy by aid of

two nicols and a Fresnel's rhomb (§§ 97—97" above), gives an

interesting contribution to knowledge regarding loss of luminous

energy in the reflection of light. The notation of § 94' gives

^^ sin^ a + (T- + £'0 cos- a (98'=^')

as the reflectivity for light vibrating in azimuth a from the

plane of incidence (§ 88, foot-note); so that in every case of

practical opacity,

1 - [;S'2 sin= a + (T-^ -f- ^") cos^ a] (98^'")

represents loss of luminous energy by conversion into heat in a

thin surface stratum of less than 2 .
10"'' cm. thickness.

§ 159". For perfect reflectivity (98^''") must be zero for every

value of a, and for every incidence. Hence, as S, T, E are inde-

pendent of a, we have, at every incidence,

S-'^T"--^E^ = 1 (98-"'").

Hence for the incidence making T=0 (that is the principal

incidence), S"^ = E'^ = 1 : which makes E/S = ± 1 in every case of

perfect reflectivity, in total internal reflection for instance. There-

fore the principal azimuth, being tan~^ {EjS) for principal inci-

dence, is ± 45°, if the reflectivity is perfect. (See § lo7 above.)

§ 159'". Observation and mathematical theory agree that the

principal azimuth is positive in every case : for interpretation of

this see § loS'"'" above. They also agree that in every case short

of perfect reflectivity the principal azimuth is < 45°, not > 45°.



LECTURE XIX.

Friday, October 17, 3.30 p.m., 1884. Written afresh, 1903.

Reconciliation between Fresnel and Green.

Molecular. This Lecture or " Conference " began with the consideration

of a very interesting report, presented to us by one of our twenty-

one coefficients, Prof. E. W. Morley, describing a complete soki-

tion, worked out by himself, of the dynamical problem of seven

mutually interacting particles, which I had proposed nine days

previously (Lecture IX. p. 103 above) as an illustration of the

molecular theory of dispersion with which we were occupied.

His results are given in the following Table.

Solution for Fundamental Periods, Displacement, and Energy

Ratios of a System of Spring-connected Particles. By Edward
W. Morley, Cleveland, Ohio.

m^\, 4, 16, 64, 256, 1024, 4096.

C'=l, 2, 3, 4, 5, 6, 7, 8.

Fundamental Periods corresponding to outer ends of

Springs 1 and 8 held fixed.

t'^ •2889 •9952 3-350 11-362 39^12 137-89 680-2

1

t2~
3-4618 1-00483 0-29849 0-0880078 0-0255607 0-0072564 0-0014701

1 _
T

1-860 1^002 •546 •296 •159 •0851 •0383
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(X-—
X-t

Molecular.

^1 1 1 1 1 1 1 1

X2 -•231 1-000 1-351 1-456 1-487 1^496 1^499

^3 •014 -•341 1^047 1-589 1-761 1^813 1-829

X4 -•III 27 •025 -•431 1^129 1-787 1^997 2-066

^5 •vl5 -•III 50 •033 --511 1-223 1^960 2^216

Xg - •VIII 26 •v30 - •HI 68 -040 -•581 1^322 2^203

Xj •XI 13 - -viiiSl •v39 --III 81 •045 -•628 1^717

Energy Ratios, or values of
niiXi

»»l-l-l^ 1 1 1 1 1 1 1

m^«' •213 3^998 7-30 8-48 8-85 8-96 8-99

WlyTj' •n33 1^864 17-54 40-41 49-64 52-58 53^54

m^x;- •v47 •039 11-88 81-66 204-35 255-34 273^14

"'o-''5'
•1x61 •IV 65 •28 66-73 382-71 983-10 1157^52

m^x-^ •XIV 7 •VIII 9 •III 47 1-62 345-60 1788-13 4968^41

"'7^7' •XX 7 •XII 1 •VII 63 -002 8-42 1616^99 12080-04

Sum 1^216 6^902 38^0004 199-90 1000-57 4706^10 18542-64

At present our subject is the dynamical reconciliation between Molar.

Fresnel and Green, not only in respect to reflection and refrac-

tion at an interface between two isotropic transparent bodies,

as promised in Lecture XVIII. §§ 188, 189, but also in respect to

the propagation of light through a transparent crystal (double

refraction) as promised in Lecture XV. § 45.

§ 160. In my paper on the reflection and refraction of light

{Fhil. Mag. 1888, 2nd half-year), an extract from which is quoted

in §§ 107—111 of Lecture XVIII., I have shown (§§ 109—111)

that a homogeneous portion of an elastic solid with its boundary
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Molar, held fixed is stable if its rigidity (n) is positive ; even though its

bulk-modulus (^) is negative if not less than —^n. And in § 115

it is shown that the propagational velocity (v) of condensational-

rarefactional waves in any homogeneous elastic solid (or fluid if

n = 0) is given by the equation

"V^^' w
In virtue of this equation it had always been believed that the

propagational velocity of condensational-rarefactional waves in an

elastic solid was essentially greater than that of equivoluminal

waves, which is . /-. The Navier-Poisson doctrine, upheld by

many writers long after Stokes showed it to be wrong (see

Lecture XI. pp. 123, 124 above, and Appendix I below), made

k = |w (see Lecture VI. p. 61 above), and therefore the velocity of

condensational-rarefactional waves = \/3 times that of the equi-

voluminal wave. The deviations of real substances, such as metals,

glasses, india-rubber, jelly, to which Stokes called attention, were

all in the direction of making the resistance to compression greater

than according to the Navier-Poisson doctrine ; but it was pointed

out in Thomson and Tait (§ 685) that cork deviates in the opposite

direction and is, in proportion to its rigidity, much less resistant

to compression than according to that doctrine. In truth, without

violating any correct molecular theory, we may make the bulk-

modulus of an elastic solid as small as we please in proportion to

the rigidity provided only, for the sake of stability, we keep it

positive. A zero bulk-modulus makes the velocity of condensational-

rarefactional waves equal to \/| times that of equivoluminal waves.

But now, to make peace between Fresnel and Green, we want for

ether ; if not all ether, at all events ether in the space occupied by

ponderable matter, a negative bulk-modulus just a little short of

— |w, to make the velocity (v) very small in comparison to a/--

And now, happily (§ 167 below), a theory of atoms and electrions

in ether, to which I was led by other considerations, gives us

a perfectly clear and natural explanation of ether through void

space practically incompressible, as Green supposed it to be ; while

in the interior of any ordinary solid or liquid it has a large enough

negative bulk-modulus to render the propagational velocity of
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condensational-rarefactional waves exceedingly small in comparison Molar.

with that of equivoluminal waves.
(

:'

§ 161. In my 1888 Article I showed that if v is very small,

or infinitely small, in proportion to the propagational velocity of

equivoluminal waves in the two mediums on the two sides of a

reflecting interface, or quite zero, Fresnel's laws of reflection and

refraction are very approximately, or quite exactly, fulfilled. About

fourteen years later I found that, as said in § 46 of Lecture XV.,

it is enough for the fulfilment of Fresnel's laws that the velocity

of the condensational-rarefactional waves in one of the two mediuvis

be exceedingly small. During those fourteen years, I had been

feeling more and more the great difficulty of believing that the

compressibility-modulus of ether through all space couM be nega-

tive, and so much negative as to make the propagational velocity

of condensational-rarefactional waves exceedingly small, or zero.

One chief object of the long mathematical investigation regarding

spherical waves in an elastic solid, added to Lecture XIV. (pp. 191

—219 above), was to find whether or not smallness of propaga-

tional velocity of condensational-rarefoctional waves through ether

void of ponderable matter could give practical annulment of energy

carried away by this class of waves from a vibrator constituting a

source of light. I found absolute proof that the required practical

annulment was not possible ; and I therefore felt forced to the

conclusion stated in § 32, p. 214: "This, to my mind, utterly

"disproves my old hypothesis of a very small velocity for irro-

" tational wave-motion in the undulatory theory of light." Now,

most happily, seeing that it is enough for the dynamical verification

of Fresnel's laws that the velocity of the condensational-rare-

factional wave be exceedingly small for either one or other of the

mediums on the two sides of the interface, I can return to my old

hypothesis with a confidence I never before felt in contemplating

it. It is, I feel, now made acceptable by assuming with Green

that ether in space void of ponderable matter is practically incom-

pressible by the forces concerned in waves proceeding from a source

of light of any kind, including radiant heat and electro-magnetic

waves; while, in the space occupied by liquids and solids, it has a

bulk-modulus largely enough negative to render the propagational

velocity of condensational-rarefactional waves exceedingly small in

comparison with that of equivoluminal waves in pure ether. We
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Molar, have now no difficulty with respect to getting rid of the condensa-

tional-rarefactional waves generated by the incidence of light on a

transparent liquid or solid. They may, with very feeble activity,

travel about through solids or liquids, experiencing internal re-

flections, almost total, at interfaces between solid or liquid and air

or vacuous ether; but more probably (§ 172 below) they will be

absorbed, that is, converted into non-undulatory thermal motion,

among the ponderable molecules, without ever travelling as waves

through more than an exceedingly small space containing ponder-

able matter (solid, or liquid, or gas). Certain it is that neither

ethereal waves, nor any kind of dynamical action, within the body,

can give rise to condensational-rarefactional waves through void

ether if we frankly assume void ether to be incompressible.

ecular. § 162. So far, we have not been supported in our faith by

any physical idea as to how ether could be practically incom-

pressible when undisturbed by ponderable matter ; and yet may be

very easily compressible, or may even have negative bulk-modulus,

in the interior of a transparent ponderable body.

Do moving atoms of ponderable matter displace ether, or do

they move through space occupied by ether without displacing it?

This is a question which cannot be evaded: when we are concerned

with definite physical speculations as to the kind of interaction

which takes place between atoms and ether; and when we

seriously endeavour to understand how it is that a transparent

body takes wave-motion just as if it were denser than the

surrounding ether outside, and were otherv/ise undisturbed by

the presence of the ponderable matter. It is carefully considered

in Appendix A, and in Appendix B under the heading " Cloud I."

My answer is indicated in the long title of Appendix A, " On the

" Motion produced in an Infinite Elastic Solid by the motion

" through the space occupied by it, of a body acting on it only by
" Attraction or Repulsion." This title contradicts the old scholastic

axiom, Tivo different j)ortions of matter cannot simultaneously

occupy the same space. I feel it is impossible to reasonably gain-

say the contradiction.

§ 163. Atoms move through space occupied by ether. They

must act upon it in some way in order that motions of ponderable

matter may produce waves of light, and in order that the vibratory
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motion of the waves may act with force on ponderable matter. Molecula

We know that ether does exert force on ponderable matter in

producing our visual perception of light ; and in photographic

action ; and in forcibly decomposing carbonic acid and water by

sunlight in the growth of plants; and in causing expansion of

bodies warmed by light or radiant heat. The title of Appendix A
contains my answer to the question What is the character of the

action of atoms of matter on ether? It is nothing else than

attraction or repulsion.

§ 164. But if ether were absolutely incompressible and in-

extensible, an atom attracting it or repelling it would be utterly

ineffectual. To render it effectual I assume that ether is capable

of change of bulk ; and is largely condensed and rarefied by large

positive and negative pressures, due to repulsion and attraction

exerted on it by an atom and its neutralising quantum of electrions.

As in Appendix A, §§ 4, 5, I now for simplicity assume that an

atom void of electrions repels the ether in it and around it with

force varying directly as the distance from the centre for ether

within the atom, and varying inversely as the square of the

distance for ether outside. I assume that a single separate

electrion attracts ether according to the same laws; the radius

of the electrion being very small compared with the radius of any

atom. I assume that all electrions are equal and similar, and

exert equal forces on ether.

§ 165. While keeping in view the possibility referred to in

§ 6 of Appendix E, I for the present assume that the repulsion of

a void atom* on ether outside it is equal to an integral number of

times the attraction of one electrion on ether ; same distances

understood. An atom violating this equation cannot be unelec-

trified. I continue to make the same assumptions as in Appendix D
in respect to mutual electric repulsion between void atoms and

void atoms ; attraction between void atoms and electrions ; and

repulsion between electrions and electrions. And as in Appendix A
an " unelectrified atom " is an atom having its saturating quantum

of electrions within it.

* For brevity I use the expression " void atonj " to signify an atom having no

electrion within it.
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Molar. § 166. I assume that the law of compressibility of ether is

such as to make the mean density of ether within any space which

contains a large number of unelectrified atoms, exactly equal to

the natural density of ether undisturbed by ponderable matter.

If there were just one electrion within each atom this assumption

would exactly annul displacement of the ether outside an atom by

the repulsion of the atom and the attraction of the electrion ; and

would very nearly annul it when there are two or more electrions

inside. Thus the ether within each atom is somewhat rarefied

from the surface inwards: and farther in, it is condensed round each

electrion. In a mono-electrionic atom, the spherical surface of

normal density between the outer region of rarefaction and the

central region of condensation, I call for brevity, the sphere of con-

densation. In a poly-electrionic atom the density of the ether

decreases from enormous condensation around the centre of each

electrion to exactly normal value at an enclosing surface, the space

within which I shall call the electrion's sphere of condensation.

It is very approximately spherical except when, in the course of

some violent motion, two electrions come very nearly together.

§ 167. I assume that the law of compressibility of ether is

such as to make the equilibrium described in § 166 stable ; but so

nearly unstable that the propagational velocity of condensational-

rarefactional waves travelling through ether in space occupied by

ponderable matter, is very small in comparison with the propa-

gational velocity of equivoluminal waves through ether undisturbed

by ponderable matter.

§ 168. Lastly I assume that the effective rigidity of ether in

space occupied by ponderable matter is equal to that of pure ether

undisturbed by ponderable matter. This is not an arbitrary

assumption : we may regard it rather as a proposition proved

by experiment, as explained in Lecture I. pp. 15, 16 and §§ 81', 136

of Lectures XVII. and XVIII. But, as will be shown in Lee. XX.,

§ 237 below, it is somewhat satisfactory to know that it follows

directly from a natural Avorking out of the set of assumptions of

§§ 163—167.

§ 169. Return now to § 132. This is merely Green's wave-

theory extended to include not only the equivoluminal waves but
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also the condensational-rarefactional waves resulting from the Molar,

incidence of plane equivolnminal waves on a plane interface

between two sliplessly connected elastic solids of equal rigidities,

each capable of condensation and rarefaction. Let us suppose

that in either one or other of the two mediums the propagational

velocity of the condensational-rarefactional wave is very small.

This makes L very small as we see by using (48) and (50) to

eliminate a, c, and ,c from (Gl) which gives

jr^ (,p-pysmHu--
...(100).

fp \/{v~^ — sin^ iu~^) + p '\/{,v~^ — sin' iu~^)

§ 170. If either the upper or the lower medium be what we

commonly call vacuum, (in reality ether void of ponderable matter),

the upper for example, we have y = oo , and (100) becomes

I ^ i'P - p)\sm[ iirl
^

,pL sin iu''^ + p ^/{fV'^ — sin" iu~^)

whence when ,v is very small

li^ (>P- py
sin'' nr\v (102),

P

where = denotes approximate equality. If v and ,v are each very

small (100) becomes
- j^.J^_pyBmHu-^v,v

,p,v + pv

thus by (100), (102) and (103), we see not only, as said above in

§ 133, that Fresnel's Laws are exactly fulfilled if either v or ,v is

zero. We see farther how nearly, to a first approximation, they are

fulfilled if V = 00 , and ,v is very small; also if v and ,v are both

very small.

Probably values of ,v, or of v and ,v, as small as m/500 or ?//1000

may be found small enough, but w/lOO not small enough, to give

as close a fulfilment of Fresnel's Laws as is proved by observation.

See § 182 below.

§ 171. Thus so far as the reflection and refraction of light are

concerned, the reconciliation between Fresnel and Green is com-

plete : that is to say we have now a thoroughly realistic dynamical

foundation for those admirable laws which Fresnel's penetrating

genius prophesied eighty years ago from notoriously imperfect

dynamical leadings. (See §§ 106, 107 above.)
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Molar. § 172. The only hitherto known deviation from absolute

rigour in Fresnel's Laws for the reflection and refraction of light

at the surface of a transparent body in air or void ether, or at the

interface between two transparent bodies liquid or solid, is that

which was discovered by Sir George Airj' for diamond in air more
than eighty years ago, and many years afterwards was called by

Sir George Stokes the adamantine property. (See § 158 above.)

It is shown in the Table of § 105 above along with corresponding

deviations discovered subsequently by Jamin in other transparent

bodies solid and liquid. It now appears by (102) and (103) that

the explanation of these deviations from Fresnel, which even in

diamond are exceedingly small, is to be found by giving very small

imaginary values to ,v, or to v and ,v. To suit the case of light

travelling through vacuum or through air and incident on a trans-

parent solid or liquid, we should take v = x if the incident light

travels through vacuum ; or if through air, v perhaps = oc , but

certainly very great in comparison with ,v. Hence in either case

the proper approximate value of L is given by (102).

§ 173. Looking to (59) and (67) of § 132 we see that if ,v have

a small real value (positive of course) the reflected ray, of vibrations

in the plane of incidence, will vanish for an angle of incidence

slightly less than the Brewsterian angle tan~^ /i. If we give to ,v

a complex value ,p + i,,q with ,p positive, we have the adamantine

property, and principal incidence slightly less than with ,p = 0.

Hitherto we have no very searching observations as to the perfect

exactness of tan~^/u, whether for the polarizing angle when the

extinction is seemingly perfect or for the principal incidence in

cases of perceptible adamantine property. For the present there-

fore we have no reason to attribute any real part to ,v; and we
may take

,v-=-q^; ,v = iq (104),

where q denotes a real velocity. Using this in the last formula of

§ 128 and eliminating sin ,j/,v by (48) and cos ,j/,v and ,c by (49)

and (50) we find for the displacement in the refracted conden-

sational-rarefactional wave

,Hf[t-ax-L^/{l+aY)ylq] (105).

Looking now to (63) and (102) we see that in /H/G there is an

imaginary part which is exceedingly small in comparison with the
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real part, because, by (102), Z/,v is real and not small, while L is Molar.

imaginary and exceedingly small. For our present approximate

estimates we suppose G to be real and therefore ,H to be real.

Taking now f{t) = e"-^ in (105) and taking the half-sum of the

two imaginary expressions as given with + l, we find for the real

refracted condensational-rarefactional displacement the following

expression ; with approximate modification due to qa being a very

small fraction

;

D = ,H cos CO (t- a^) e<-v/(i+«V)2//3 == ^J{ cos co{t- ax) e'-'^i. . .(106).

Hence q is positive. (See footnote on § 158".) The direction of

this real displacement is exceedingly nearly OF' of § 117, that is

to say the direction of Y negative, because the imaginary angle ,j

differs by an exceedingly small imaginary quantity from 90°. It

would be exactly 90° if ,v were exactly zero; and it would be
less than 90° by an exceedingly small real quantity if ,v were an

exceedingly small real velocity.

§ 174. The motion represented by (106) is not a wave
travelling into the denser medium : it is a clinging wave travelling

along the interface with velocity a-\ The direction of the displace-

ment is approximately perpendicular to the interface. Its magni-

tude decreases inwards from the interface according to the law of

proportion represented' by the real exponential factor; distance

inwards from the interface being — y. The period of the wave is

27r/&) ; and the space travelled in this time with velocity q is lirqloj.

Hence the displacement at a distance from the interface equal to

this space, is 1/e-" or 1/535 of the displacement at the interface.

§ 175. Consideration of the largeness of any such distance as

2 .
10~^ cm. (§ 80 above) between centres of neighbouring atoms,

and of the smallness of i) if real, will probably give good dynamical

reason for the assumption of ,v a pure imaginary. It is a very

important assumption, inasmuch as it implies that there is no

inward travelling condensational-rarefactional wave carrying away

energy from tlie equivoluminal reflected and refracted rays.

§ 176. Let us now find the value of qju, the adamantinism

(§ 158); to give any observed amount of the adamantine property,

as represented by the tangent of the Principal Azimuth, which is

Jamin's k. In (59) of § 132 take for L the value given by (102),

andput ilP—Pl^N; ,v=iq; ^ = o" (107),

T. L. ' 27
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Molar, thus we find

LECTURE XIX.

— G'_u (ipb — p,b) — iNcr Bm^ i _ P-cQ
G u i,ph + p ,b) + iNa sin- i u- {,ph + p,by+(Na- sin^* iy

(108)*

where P = u' [( ,pby - (p,6)^] - {Na sin^ ^>|

Q=2ii,pbN'a-smH i

Hence taking in § 128,/(^) = e""^; and realising by taking half-sum

of solutions for + t, we find displacement

in incident wave G cos (o it —

in reflected wave = — G \/{T~ \- E-) cos

_ ^ /w^ ( ,pb-p^y-^{N(jBmHy

V ti'itpb + p,bf + {No- sin" if
cos

„(*- )-0

0){t-

where

= tan'

= tan ^ -^ = tan"^ ^

2/^,2 (^2 _ 1) o- cos i sin-

1

/x^ cos^ i — sin^ i — (/^^ — 1 )^ cr^ sin'* z

...(110),

...(111),

...(lll')t,

...(112).

The developed form of QIP here given is found by putting

,p/p = fx^; 2ib = cos i; ii ^b = fi cos ,i ; cos^,i = l ^-.,.(113),

and by dividing numerator and denominator by (pr— l)//x-.

According to the notation of § 94' we have QIP= EIT, and

P
T^ and E--

u"^ {,pb + p,by- + (N sin- i qlu)'^ u' (,pb + p,hf+ {N sin* i qju)'^
'

+ This alternative form (111') comes from (111) by resolving P''+ Q^ into two

factors according to the algebraic identity

(a2 - 62 - c2)2 + 4rtV- = [{a + hf + c-] [(a-hf + c"-].

But it is found directly by treating (108) as we treated a similar formula in (75),

following Green, on a plan which is simpler in respect to the resultant magnitude,

but less simple in respect to the phase, than the plan of (111).
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§ 177. By (111) and the notation of § 94', we have

\,pb + p,bj |_tan (i + ,i)_

4;p,ph,h {No- sin^ if

Molar.

( ,pb + p,b)- [u' (,pb + p,bf + (No- sin^ if]

or approximately

T' + E--
tan {i — ,i)' ' _ ^PiP^i^ {^^ sin- iy

u-{,pb + p,by

.(114),

.(115).
tan {i + ,i)

In (114) and (115) T- + E- denotes the whole intensity of the

reflected light, due to incident light of unit intensity vibrating

in the plane of incidence, and the smallness of the right-hand

members of these equations shows how little this exceeds that

calculated according to Fresnel's formula

tan (i — ,i)l ^

_tan {i + ,t)J

Compare §§ 103—105 above.

Fig. 10.

§ 178. In (110) and (111), s denotes a length AEF (fig. 10)

in the line of the incident ray produced through E the point of

incidence, or AEF' an equal length in the path of the incident

and the reflected ray. Thus we see that the reflection causes

a phasal set-back ^ which increases from 0° through 90° to 180°

when the angle of incidence is increased from 0° to 90°, as shown by

(112); because (112) shows that tan (^ increases through positive

values from to -H cc when i increases from to a value slightly

less than tan"~^ p. : and, when i increases farther up to 90°, tan ^
increases through negative values from — oo to 0. These variations

are illustrated by the accompanying diagrams (figs. 11, 12) drawn

according to the following Table of values of tan ^ and (/> calculated

27-2
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from (112) with a-
= '00293 as for diamond according to § 181 Molar.

below. Note how very slowly tan
(f>

and
(f>

increase for increasing

Diamond fi =z2-i3i <»•= -00293

[ n.c id p n c c

Fig. 12.

i tan^ •^ i tan<^ <P

0° •0 I ±00 90°

1° •000008798 0° -03' 67°-7 -14-87770 93° 51'

10° •0008890 0°3' 67°-75 -6-95857 98° 11'

20° •003678 0°13' 67°-8 -4-53967 102° 25'

30° 008835 0°30' 67°-9 -2-67607 110° 29'

40' •01772 1°1' 68°-0 -1-89599 117° 49'

50° •03469 1° 59" 68°-l -1-46724 124° 17'

60° •08784 5°1" 68°-2 -1 19615 129° 54'

65° •25164 14° 7' 68°-3 -1-00921 134° 44'

67° 1^00386 45° 7' 68°-4 - -872514 138° 54'

67°-l 1-18360 49° 48' 70° - -27083 164° 51'

67° -2 1-44216 55° 16' 75° - -07694 175° 36'

67° -3 1-85085 61° 37' 80° - -01640 179° 4'

67° -4 2-56306 68° 41' 89° - -00299 179° 50'

67°-5 4-20197 76° 37' 90° •00000 180° 0'

67° -55 618014 80° 49'

67° -6 11-70150 85° 7'

tan~V -0°-00883 = / 90° 0'
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Molar, incidences, except those very slightly less than, and very slightly

greater than, the Principal Incidence, 67"'65. Note also how very

suddenly tan </> rises from a small positive value to + oo and from

— GO to a very small negative value when the incidence increases

through the Principal Incidence. Note also how suddenly there-

fore
(f),

the phasal retardation, increases from a small positive

quantity up to 90° when the incidence reaches 67°"65
; and, when

the incidence increases to slightly above this value, how suddenly

the phasal retardation rises to very nearly 180°. But carefully

bear this in mind that tan is essentially zero for i = 0, and for

i = 90°, as shown by (112).

§ 179. The sign minus before G in (111) signifies a phasal

advance or back-set of 180°. For incidence and reflection of rays

having vibrations perpendicular to the plane of incidence, we have

also essentially the sign minus before C in (116) below, taken

from (20) and (23) of § 117 and (39) of § 123 as corresponding

to (110) and (111). Thus for amplitudes we have

5\
incident wave C cos co \t i

u

.(116).

reflected wave — G '^ ^ cos
,b + b

Here there is neither retardation nor acceleration corresponding to

the
(f)

of (111). We infer that if plane polarized light falls on the

reflecting surface with its vibrational plane inclined at any angle a

to the plane of incidence, and if we resolve it ideally into two

components having their vibrational planes in and perpendicular

to that plane, the component of the reflected light due to the

former will be phasally behind that due to the latter by the

retardation <^ given by (112). Hence for every incidence the

reflected light will be elliptically polarized ; or circularly in case of

phasal difference 90", and equal amplitudes, of the two reflected

components. The values of i and of a which make the reflected

light circularly polarized, are called the " Principal Incidence

"

and " Principal Azimuth " (see § 97 above).

I 180. The Principal Incidence, I, is the value of i which

annuls the denominator of E/T as seen in (112). It is therefore

given by the equation

tan'-/ =/x'- —{/J,-— 1)^0-- tan-/ sin"/ (117).
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Notwithstanding the greatness of (y^-— l)" for substance of high Molar.

refractivity (Example 126'7 for Sulphuret of Arsenic) the second

term of the second member of (117) is very small relatively to the

first because of the smallness of (q/uY for all transparent substances

for which we have the observational data from Jamin. (See § 182

below.) Hence in that second term we may take /j,^ for tan- /

and fi^K/jL- + 1) for sin^/. Thus instead of (117) to determine the

Principal Incidence / we have

tan / .(118).

§ 181. To find the Principal Azimuth a; let D be the vibra-

tional amplitude of plane polarized incident light ; and D cos oc,

D sin a the vibrational amplitudes of the components in and

perpendicular to the plane of incidence. Thus with the notation

of §§ 176, 179 we may take

G=D coHa, C'-i) sin a (119).

These must be such as to make the two components of the reflected

light equal when the angle of incidence is that given by (117)

(the Principal Incidence); tliat is to say, the value of i which

makes P= ; or approximately according to (109), ,pb = p,b. This

makes the amplitude of (111) approximately equal to — GE, or

-G-r-^.„, or -Gj'^f^l^.a- (120).
4^{ii,pby' 2V(/^' + l)

^

Equating this to the second line of (116) and using (119), we see

that the condition for circular polarization is

(/M'-iy . ,b-b . ,

cos a - , . ,

—-- cr = sma , , (1"1)-

Now the angle of incidence is approximately tan~^ /j, ; for which

Ave have

^f = 4^- (122),
,b + b fjP + 1 ^ ^'

.

and therefore for a, the principal azimuth, we have

tana=HM'-l)\/(/i' + l)- (123).
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Molar.
I 182. The Table of § 105 above gives Jamin's values of tan a

(his "^•") for eight substances, and the result of a very rigorous

examination by Kayleigh for water with specially purified surface

to be substituted for Jamin's which was probably vitiated by

natural impurity on the water surface. Omitting fluorine because

of its exceptional negative value for tan a, which if genuine must

be explained (see § 158 above) otherwise than by my assumption

of fV = iq and v = qo , and omitting water because of the practical

nullity of the Adamantine Property for it proved by Rayleigh,

we have positive values of tan a for six substances, from which,

for these substances, the following Table of values of q/u ; and

of tan~^ 1^ — I, the differences of the Principal Incidence from the

Brewsterian angle; has been calculated according to (123) and

(118). The smallness of these last mentioned differences is very

remarkable.

Substance <T~ qlu

"Sulfure d'arsenic trans-

parent " (Kealgar)

" Blende transparente "

( Zinc sulphide)

Diamond

Flint Glass

" Verre "

Absolute Alcohol

•01277

•00706

•00293

•00936

•00553

•00284

tan~^ /JL-

1

tau-i
fji

0°-08873 67° -83

0°^04289 67°-13

0°-00883 67°^67

0°-00593 59°-89

©^•000496 56°-08

0°-0000465 53°^13

§ 183. Another great fundamental province of Optics, luminous

waves travelling through transparent crystals, was successfully

explored by Fresnel more than eighty years ago. This he did

with utterly imperfect dynamical leadings ; but nevertheless he

discovered what we now know to be, in every detail except his

equivoluminal condition, the true laws of light-waves in a crystal.

§ 184. One notable detail of Fresnel's, which I described in

my introductory lecture (Oct. 1st, 1884), was that he made the

propagational velocity of light in a crystal depend on the direction

of the vibration, and not on the axis of the shearing rotational
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strain as the elastic solid theory has seemed to require. See Molar.

Lecture I, pages 17, 18, particularly the words "If the effect

" depends upon the return force in an elastic solid." In the same

lecture (page 19) I told of an explanation of this difficulty

suggested first by Rankine and afterwards by Stokes and by

Rayleigh, to the effect that the different propagational velocities

of light in different directions through a crystal are due, not to

seolotropy of elastic action, but to seolotropy of effective inertia.

But I had also to say that Stokes working on this idea, which

had occurred to himself independently of Rankine's suggestion,

had been compelled to abandon it for the reasons stated in the

following reproduction of a short paper of twenty-one lines which

appeared in the Philosophical Magazine for October, 1872 ; and

which is all that he published on the subject :

—

" It is now some years since I carried out, in the case of Iceland

" spar, the method of examination of the law of refraction which

" I described in my report on Double Refraction, published in the

" Report of the British Association for the year 1862, p. 272.

"A prism, approximately right-angled isosceles, was cut in such

" a direction as to admit of scrutiny, across the two acute angles,

" in directions of the wave-normal within the crystal comprising

" respectively inclinations of 90° and 45° to the axis. The directions

" of the cut faces were referred by reflection to the cleavage-

" planes, and thereby to the axis. The light observed was the

" bright D of a soda-flame.

" The result obtained was, that Huyghens' construction gives

" the true law of double refraction within the limits of errors of

" observation. The error, if any, could hardly exceed a unit in

" the fourth place of decimals of the index or reciprocal of the

" wave-velocity, the velocity in air being taken as unity. This

" result is sufficient absolutely to disprove the law resulting from

" the theory which makes double refraction depend on a diflerence

" of inertia in different directions.

" I intend to present to the Royal Society a detailed account

" of the observations ; but in the meantime the publication of

" this preliminary notice of the result obtained may possibly be
" useful to those engaged in the theory of double refraction."

It is well that the essence of the result of this very important

experimental investigation was published : it is sad that we have
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Molar, not the Author's intended communication to the Royal Society

describing his work.

The corresponding experimental test for a Biaxal Crystal,

resulting also in a minutely accurate verification of Fresnel's

wave-surface, was carried out a few years later by Glazebrook*.

Must we therefore give up all idea of explaining the ditferent

velocities of light in different directions through a crystal by

seolotropic inertia ? Yes, certainly, if, as assumed by Green and

Stokes, ether in a crystal is incompressible.

§ 185. But Glazebrook has pointed out as a consequence of

my suggestion of approximately zero velocity of condensational-

rarefactional waves in a transparent solid or liquid, that with this

assumption seolotropic inertia gives precisely Fresnel's shape of

wave-surface and Fresnel's dependence of velocity on direction

of vibration, irrespectively of the direction of the strain-axis.

Thus after all we have a dynamical explanation of Fresnel's laws

of light in a crystal which we may accept as in all probability

absolutely true. To prove this let us first investigate the con-

ditions for a plane wave in an isotropic clastic solid with any

given values for its two moduluses of elasticity; k bulk-modulus

and n rigidity-modulus ; and with a^olotropic inertia in respect to

the motion of any small part of its substance. This seolotropy of

effective inertia of ether through the substance of a transparent

crystal follows naturally, we may almost say inevitably, from

the Molecular Theory of §§ 162—168. In Lecture XX. details

on which we need not at present enter will be carefully con-

sidered.

§ 186. Meantime we may simply assume that Bp^, Bpy, Bp^

are the virtual masses, or inertia-equivalents, relatively to motions

parallel to x, y, z, of ether within a very small volume B containing

a large number of the ponderable atoms concerned : so that

^^•f- ^"^t- ^"'f (124)

are the forces which must act upon the ether to produce com-

ponent accelerations d^/dt, etc. Hence the equations of molar

* "An expeiimeutal determination of the Values of the Velocities of Normal

Propagation of Plane Waves in different directions in a Biaxal Ciystal, and a Com-
parison of the Results with theory." By R. T. Glazebrook, Communicated by

J. Clerk Maxwell. Phil Trajis. Boy. Soc, 1870, Vol. 170.
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motions of the ether will be (8) of § 113, modified by substituting Molar,

for p in their first members p^, py, Pz respectively.

§ 187. To express a regular train of plane waves, take

v-mt-"^^^^"'}, }

f = ^/('(_'^tW
+ w

.(125),

where X, /n, v denote the direction cosines of a perpendicular to the

wave-planes ; and a, /3, 7 the direction cosines of the lines of

vibration. These, used in (7) of § 113, give

8 =
— cos ^ d

/(-
\x-\- fiy + vz'

wher(

u dt " \ u

cos ^ = aX + /3/Lt + ^v.

.(126),

.(127).

Thus ^ is the inclination of the direction of the displacement, to

the wave-normal.

Using (124), (125), (126) in the equations of motion, and

removing from each side of each the factor

/^ \x + fLy-^vz

we find

df

,, 1.x cos ^ a
p^a = {k -}- \n) —^^ + n ~

;

^ ,
, ,

, ii cos ^ B

^ , , . V cos ^ 7
n ry = {k + hi) 1- U —

.(128),

.(129).

I
187'. From these equations we determine the direction-

cosines (a, 13, 7) of the vibration ; and the propagational velocity, 11,

of the plane wave (X, fi, v) ;
thus : First solving for a, /3, 7, and

putting

p^=nla\ py = n/b-, pr^n/c- (129'),
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Molar, we find

^=

whence by

sec^ ^ =
k + inV

LECTURE XIX.

k + ^n \a^ cos ^
11 u^ — a-

'

k + ^n fib' cos ^
n 11^ — 6^

k + ^n vc^ cos ^
n u"^ — c^

a^ + /32 + 7- = l,

.(130),

i/C
.(131).

Multiplying the first of (130) by \, the second by /i, the third by

V and adding ; and removing the common factor cos ^ ; we find

_ ^ + i^^ / X'g' /a'6'

+
VX''

.(132).
M^ — a- u^ — h^ u^ — c^

This is a cubic for determining u^, the square of the propagational

velocity. The three roots are all obviously real ; one greater than

the greatest of a-, If, c-, and the other two between the values of

these quantities. For each value of iC- the corresponding direction

of vibration is given by (130).

§ 187". Calling Ui", u.' two of the three roots of (132) we find,

by writing down the equation for each of these and subtracting

one equation from the other, the following

k + ^n \-a"
+

fi'b'

(ui- — a-) {u„' — a-) {Ui^ — If) {ui — hr')

+
V^C"^

iii^-u^ (132').
{u^ — C-) {ui — c^)_

And taking the corresponding notation in (130) we find

ttitto + /3i/3, + 7i7, = ^ \"a'
+ fj?¥

{ii^^ - a-) {ui - a?) (z<i^ - h") (u^ - b-)

+
v^c*

(«i- — c^) {ui — C-)
cos ^1 COS ^, (132").

Comparing these two equations, we see that otiOa + A^a + 7i7i

cannot generall}' be zero : that is to say the vibrational lines

corresponding to parallel wave-planes travelling with different

velocities cannot generally be perpendicular to one another. This
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result for the new theory, in which dififerences of velocity are due Molar,

to inertial feolotropy, presents an interesting contrast to the

theorem of Lecture XII., page 136, that the vibrational lines in

any two of the three waves are mutually perpendicular; when there

is no inertial aeolotropy, and the differences of velocity are due to

seolotropy of elasticity.

§ 188. In each of the two extreme cases of A; = co and k = — |n

the cubic sinks to a quadratic, as we most readily* see by (in

virtue of X^ + fji- + v"^ = V) writing (132) thus

X'w' fihi^ v'v? _ k + |7i / a'\^ ?>>' c^v'^ \

ii^-a'^ n'-h''^ u^-c"' n W -a' ^r- - b- v?-cV
(133).

§ 189. From this we see that if k^-^n is very great, one root

of the cubic for iC^ is very great, being given approximately by

«- = k-\-^n

n
{X'a^ -V ix'jf- + v^c") (134);

while the other two roots are approximately the roots of the

quadratic,

J*!^4.iV +_^!^ = (135).
u"^ — a? i\? — b- u- — c

This agrees with the propagational velocities for a given wave-

plane (A,, /!., v), found by Stokes and by Rayleigh from Rankine's

hypothesis of seolotropic inertia, and Green's assumption of a

virtually infinite resistance against compression. It implies a

wave-surface proved observationally by Stokes for Iceland spar

(uniaxal), and by Glazebrook for arragonite (biaxal), to differ from

the truth by far greater differences than could be accounted for

by errors of observation.

§ 190. But ifk + fw is very small, one of the three values of u"

given by (133) is very small positive, being given approximately

(^:-^S)--^ (^^«>^

* Another way of managing this detail will be found in the investigation of

chiral waves in § 200 of Lee. XX.
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Molar, while the other two are approximately the roots of the quadratic

""'
•

''' +.-/^=0 (137).
v?-(i^ 'le - h'' v:' - &

This is Fresnel's equation [see (94) of Lecture XV.] for the

two jDropagational velocities for a given direction of wave-plane

(X, fi, v). It implies precisely Fresnel's celebrated wave-surface

^2 _ ^2
"

^,2 ^2
"*"

y.2 p2
~

VJ-'J<-A

or 7-- {a-x^ -f 6-1/- + cV) — a^ (¥ + c-) ar — ¥ (c- + a-) 2/^ — c" (a- + h") z"

-l-a-6V- = 0...(138').

This equation is got, not now " after a very troublesome algebraic

process," as said by Airy* in 1831, but b}' a very short and easy

symmetrical method given by Archibald Smith in 1835 f; the

problem being to find the envelope of all the planes given by the

equation

\x + fjiy + vz = ii\

with X'' + ,j? + v" = \^r (138").

and (137) for u )

§ 191. The theorems of Glazebrook and Basset, stated in

§ 195 below, are readily proved by using (139) in connection with

Archibald Smith's now well-known investigation of Fresnel's wave-

surface. But the theory on which it is founded implies essen-

tially condensation and rarefaction and therefore a direction of

vibration not in the wave-plane ; and not agreeing with Fresnel's

which is exactly in the ivave-plane (corresponding as it does to

strictly equivoluminal waves). For our present case of A: -f ^n = 0,

the vibrational direction (a, /3, 7) as given by (130) is

a-Xcos^ ^ h'-acos^ o-Vcos^ /,r.r.\
a = - , — , I3 = - \ ;„ , 7 = T. i-

(139);
ur — a- n- — 0- u- — c^

and (131) for ^, the angle between the vibrational direction and

the wave-normal, becomes

sec^a = (-#:MV (4> y +
f
/-^y (uo).

\u- — a-/ V" — t> / V'" —0/

* Aire's Mathematical TractHy p. 3.53.

t Trans. Cambridge Phil. Soc. Vol. vi. p. 85; also Phil. May. Vol. xii. 1838 (1st

half-year), p.' 335.
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§ 192. For an example, take arragonite with, as in Lee. XV. Molar,

§ 37, (and n = l for simplicity)

1/a = 1-5301
; a = -65355

; a' = -42713"!

1/6 = 1-6816; i = -59467; 6' = -353631 ... (141);

1/0=1-6859; c = -59315 ; c'
=

-35183]

and let us find the two propagational velocities (iii, U2) and the

inclinations (^1, ^2) of the vibrational lines to the wave-normal, for

the case in which the wave-normal is equally inclined to the three

principal axes (X = /ii= v = l/J'S). By the solution of the quadratic

(137) and by using the roots in (139) we find

Mi2
= -40234; «r' = 1-576.58

; ^^ = 81° 37'-68
)

L.(142).
w/ = -35272; wr' = 1-68377; ^o = 89°49''24

)

Remarking that Uj~^ and v.r^ are the indices of refraction for the

two waves of which the normals are each equally inclined to the

three principal axes (x, y, z) it is interesting to notice how nearly

the greater of them is equal to ^(1-6816-1-1-6859), the mean of the

two greater of the three principal refractive indices. This, and the

nearness of ^2 to 90°, are due to the smallness of the difference

between the two greater principal indices : that is to say, the

smallness of the difference between arragonite and a uniaxal

crystal. In fact u^-, the second of our solutions of the quadratic,

corresponds to what would be the ordinary ray if the two greater

principal indices were equal.

§ 193. To help in thoroughly understanding the condensations

and rarefactions which the theory gives us in any j'jZa^^e wave

througli a hiaxal crystal, take as wave-plane any plane parallel to

one of three principal axes, OY for instance. It is clear without

algebra that the directions of vibration in the two waves for

every such direction of wave-plane are respectively parallel and

perpendicular to OY. The former corresponds to the ordinary

ray: its vibrational direction is parallel to OY : it has propa-

gational velocity \/{nlpy), or h, according to (129'). It is a strictly

equivoluminal wave. All this we verify readily in our algebra by

putting /u.= 0; which gives for one root of the quadratic (185)

1/^= h'-, and gives by (139) sec^^ = (X> and therefore ^ = 90°.
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Molar. ^ 194. For the other root of the quadratic (135) we have

.(143).

u^ — a^ u^ — c

whence u- = c^X,- + a-v'^
;

^2 _ f^2 = (g2 _ ^2^ ^2

u^ — c^ = (a^ - C-) V-

Using these in (139) we find

^„=S (1^*)-

Putting now y = 0\n (138'), the equation of Fresnel's wave-

surface, we find for its intersection with the plane XOZ
(r' - b') (aV + cV - aY) = (145).

This expresses, for the ordinary ray, a circle r = b; and for the

extraordinary ray an ellipse,

^'+-'=1 (146).
c^ or

The wave-plane touches this ellipse at the point {x, z); hence

-=^ (147).
V cz

Taking this for \/v in (144) we see that the vibrational line is

perpendicular to the ray-direction, which is the radius vector of

the ellipse through the point (x, z). This is only a particular case

of the general theorem given by Glazebrook, Phil. Mag. Dec. 1888

page 528, that the direction of vibration is perpendicular to the

ray in the new theory of double refraction founded on seolotropic

inertia.

§ 195. Moreover in this theory* Basset has given a most

interesting theorem f to the effect that the direction of the vibration

is a line drawn perpendicular to the radius vector from the foot

of the perpendicular to any plane touching the wave-surface (the

perpendicular to the radius vector being drawn from the centre of

* Basset's Physical Optics (Cambridge, 1892), § 265.

t Given also for a very different dynamical theory involving zero velocity of con-

densational-rarefactional wave, by Sarrau in his Second Paper on the Propagation

and the Polarization of Light in Crystals ; Liouville^s Journal, Vol. xiii. 1868, p. 86.
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the wave-surface to the tangent-plane and to its point of contact). Molar.

This includes Glazebrook's theorem and appends to it a simpler

completion of the problem of drawing the vibrational line than

that given by Glazebrook in pages 529, 530 of the volume of the

Philosophical Magazine already referred to. The construction is

illustrated in figure 13, drawn exactly to scale for the principal

section through greatest and least principal diameters of wave-

surface for arragonite. P is the point of contact of the tangent-

plane KM. OP is the radius vector (optically the ray). F is the

foot of the perpendicular from the centre of the wave-surface.

FN, perpendicular to OP, not shown in the diagram, is the direc-

tion of the vibration. It would be interesting to construct on

a tenfold scale a portion of figure 13 around ^P; but it is perhaps

more instructive to calculate the angle NFP (which is equal to

FOP) and the radius of curvature, at P, of the ellipse. Figure 13

illustrates the construction for any wave-plane whatever touching

the wave-surface in the point P ; though it is drawn exactly to

scale only for the extraordinary ray in the principal section of

arragonite, through the greatest and least principal diameters.

FiK. 13.

T. L. 28
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Molar.
^ iQQ Going back now to § 194 we see that the intersections

of Fresnel's wave-surface with the three planes YOZ, ZOX, XOY,
are expressed respectively by the following equations

(r* - d") (by + c'^' - b^c") = ^

(?» - b') (cV + a'x' - c'a') = ol (148),

(r^ - c") (aV + 6y - ^a"") = J

which prove that each intersection consists of an ellipse and a

circle ; the ellipse corresponding to the extraordinary ray, and the

circle to the ordinary.

§ 197. Lastly consider wave-planes perpendicular to one or

other of OX, OY, OZ. Take for example OX; we see that the

two propagational velocities are b and c, with vibrational lines

respectively parallel to OF and OZ. The physical explanation

is much more easily understood than anything which we thought

of in Lecture I. pages 17 to 20, when we were believing that

differences of velocity were due to seolotropy of elasticity. We
• now see that the two waves travelling a;-wards have different

velocities because of greater or less effective inertias of the moving

ether in its vibrations parallel respectively to F and OZ.

§ 198. The fundamental view given by Fresnel for the

determination of his wave-surface by considering an infinite

number of wave-planes in all directions through one point, and

waves starting from them all at the same instant, is most im-

portant and interesting ; truly an admirable work of genius I

It leaves something very definite to be desired in respect to the

geometry and the dynamics of a real source of light travelling

in all directions from a small portion of space in which the source

does its work. It therefore naturally occurs to consider what may
be the very simplest ideal element of a source of light.

§ 199. Preparation was made for this in the "molar" divisions

of Lectures III....VI. and VIII....XIV. and particularly in pages

190 to 219 of the addition to Lecture XIV. What we now want
is an investigation of the motion of ether in a crystal due to an

ideal molecular vibrator moving to and fro in a straight line in

any direction. The problem is simplified by supposing the direc-

tion to be one of the three lines OX, Y, OZ, of minimum, and of

minimax, and of maximum effective inertia of ether in the crystal.
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It seeins to me that this should be found to be a practicable Molar,

problem. Towards its solution we have Fresnel's wave-surface

as the isophasal surface of the outward travelling disturbance or

wave-motion : and we have the direction of the vibration in each

part of the surface by the theorems of Glazebrook and Basset

(§ 195 above). What remains to be found in our present problem

is the amplitude of the vibration at any point of the wave-surface.

One thing we see without calculation is, that at distances from

the origin great in comparison with the greatest diameter of the

source, the vibrational amplitude is zero at the four points in

which the wave-surface is cut by the vibrational line produced

in both directions from the source ; when this line coincides with

one of the three axes of symmetry OX, OY, OZ. The general

solution of the problem is to be had by mere superposition

of motions from the solutions for vibrations of the source in the

three principal directions. For the present I must regretfully

leave the problem hoping to be able to return to it later.

28—2



LECTUEE XX.

Friday, October 17, 5 p.m., 1884. Written afresh, 1903.

Molecular. § 200. CONSIDERING how well Rankine's old idea of seolotropic

inertia has served us for the theory of double refraction, it natur-

ally occurs to try if we can found on it also a thorough dynamical

explanation of the rotation of the plane of polarization of light in

a transparent liquid, or crystal, possessing the chiral property.

I prepared the way for working out this idea in a short paper

communicated to the Royal Society of Edinburgh in Session

1870—71 under the title "On the Motion of Free Solids through

a Liquid " which was re-published in the Philosophical Magazine

for November 1871 as part of an article entitled " Hydrokinetic

Solutions and Observations," and which constitutes the greater

part of Appendix G of the present volume. The extreme diffi-

culty of seeing how atoms or molecules embedded in (ether), an

elastic solid could experience resistance to change of motion

practically analogous to the quasi-inertia conferred on a solid

moving through an incompressible liquid has, until a few weeks

ago, prevented me from attempting to explain chiral polarization

of light by aeolotropic inertia. Now, the explanation is rendered

easj^and natural by the hypothesis explained in §§162—164 above

and in §§ 204, 205 below and in Appendix A.

§ 201. To explain seolotropic inertia, whether chiral or not, of

molecules in ether, from the rudimentary statements in Appendix A,

take first the very simplest case; a diatomic molecule {A-^, A^ con-

sisting of two equal and similar atoms held together by powerful

attraction ; so as, with a single electrion in each, to constitute a

rigid system when, as we shall at first suppose, the forces and

motions with which we are concerned are so small that the



ELECTRO-ETHERIAL EXPLANATION OF ^OLOTROPIC INERTIA. 487

electrions have only negligible motion relatively to the atoms. Molecular.

This supposition will be definitely modified when we come, in

§§ 232—242, to explain chromatic dispersion on the new theory.

§ 202. In fig. 14 the circles represent the bounding spherical

surfjices of the two atoms. According to the details suggested for

the sake of definiteness in Appendix A and illustrated by its

diagram of stream-lines (fig. 5), the two atoms must overlap as

indicated in our present diagram fig. 14, if the stream-lines of

ether through each atom are disturbed by the presence of the

other. Without attempting any definite solution of the extremely

difficult problem of determining stream-lines of ether through our

double atom we may be at present contented to know that the

quasi-inertias of the disturbed motion of ether within the molecule,

in the two cases in which the motion of the ether outside is parallel

to A^A„, and is perpendicular to AiAo, must be different. It seems

Fig. 14.

to me probable that the former must be less than the latter: I shall

only assume however that they are different, which is certainly

true : and I denote the former by a and the latter by /8. This

means that if the molecule is at rest, and the ether outside it is

moving uniformly according to velocity-components (f, ^) respec-

tively parallel to A1A.2, and perpendicular to it in the plane of

the diagram, the kinetic energy of the whole etherial motion will

be greater by | (a^- -t- /3^^) than if the ether had the uniform

motion (^, tj) everywhere. Thus if B denote any volume of space
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Molecular, completely surrounding one molecule but not including another,

and if p be the undisturbed density of ether, the kinetic energy of

etherial motion within B is

h[Bp(t + v') + <=^t + ^v'] ...(149).

Throughout §§ 202—20.5 we are supposing the different constituent

molecules of the assemblage to occupy separate spaces. In § 225

we shall find ourselves obliged to assume overlapping complex

molecules of silica in a quartz crystal.

§ 203. This gives a clear and definite explanation of the

seolotropy of inertia (§ 184 above) suggested by Rankine for

explaining double refraction. First for a uniaxal crystal, consider

any homogeneous assemblage (Appendix H, §§ 3, 6, 15, 16, 17, 18,

19) of our diatomic molecules and let B be the volume of space

allotted to each of them. The homogeneousness of the assemblage

implies that the lines A^Ao in all the molecules are parallel. Take

this direction for OX; and for OY, OZ any two lines perpendicular

to it and to one another. In respect to double refraction it is of

no consequence what the character of the homogeneous assemblage

may be : though it may be expected to be symmetrical relatively

to the direction of A-^A^ because the equilibrium of the assemblage,

and the forces of elasticity called into play by deformation, depend

on mutual forces between the molecules not directly concerned

with the elasticity and motions of the ether called into play in

luminous waves. In short, the essence of our assumption is that

the molecules are unmoved, while the ether is moved, by waves of

light. Write (149) as follows

B

where

^ (p + D r +
i
(p + 1) '^^ -B.\ (p.r

+

pyii^). .
.
(150),

This shows clearly the meaning, and the physical explanation,

of the px, py, pz assumed in § 186 as virtual densities of ether

relatively to motions in the three rectangular directions. With

diatomic molecules having their axes parallel to OZ, we have

essentially py = p^- This gives the optical propez'ties of a uniaxal

crystal, which essentially present no difference between different

directions perpendicular to the axis ; though the homogeneous
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assemblage of molecules, constituting the crystal, presents es- Molecular

sentially the differences in different directions corresponding to

tactics of square order, or of equilateral-triangle order.

§ 204. When instead of the mere diatomic molecule of § 201 we

have in each molecule a molecular structure which is isotropically

symmetrical (square order or equilateral- triangle order) in planes

perpendicular to one line OZ, we still have py = p^, giving the

axially isotropic optical properties of a uniaxal crystal : and this

quite independently of any symmetry of the homogeneous assem-

blage of molecules constituting the crystal, if the virtual inertia

contributed to the ether by each molecule is independent of its

neighbours. If the structure of each molecule has no chirality

(Appendix H, § 22, footnote) the homogeneous assemblage has no

chirality. And if each molecule is geometrically and dynamically

symmetrical with reference to three rectangular axes {OX, OY, OZ),

but not isotropic in respect to these axes, we have generally three

different values for p^, p,/, pz', and (§§ 187, 190 above) exactly

Fresnel's wave-surface. This is quite independent of any sym-

metry of the homogeneous assemblage constituting the crystal : it

is merely because the axes of symmetry of all the molecules are

parallel in virtue of the assemblage being homogeneous. For

brevity I now call a molecule which has chirality, a chiroid.

§ 205. When each molecule is a chiroid it may (Appendix G,

Part 1) contribute a chiral property to the inertia of ether oscil-

lating to and fro in the space occupied by the assemblage. To

understand this chiral inertia, consider a volume B of ether, very

small in all its diameters in comparison with a Avave-length of

light, and exactly equal in volume to the volume of space allotted

(§201) to each molecule. Let (^, r,, ^) and (^, ^, ^) be the components

of displacements and velocity of ether within B but not within

the part or parts of B occupied by the atoms of the molecule.

The components round x, y, z, of rotational velocity (commonly,

but perhaps less conveniently, called angular velocity) of ether in

space in the neighbourhood of B and not within any atom, are

i/4_^v v^_^v v^_^^ /n2^
2U2/ dzj' "Adz dxj' Adx dy)

^' ^'

Let ')(^y., %)/, %z be coefficients which we may call the inertial

chiral ities of the molecule relative to x, y, z respectively. The
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Molecular, chiral inertia with which we are concerned may be defined by

asserting that acceleration of any one of the three components

(152) of angular velocity of the ether, implies a mutual force

between the molecule and the ether, in the direction of the axis

of the rotational acceleration, which may be expressed by the

following equations*

^""dtAdij dzj' ^~ ^"dt'Kdz dx)' '^'dAdx'dy

(153);

where P, Q, R, denote components of force per unit of volume,

exerted by the molecules on the moving ether. Hence the

X, y, 2;-components of the elastic force on ether per unit of its

volume acting against inertial reaction are equal to

P^ J-^' Pv-d-Q^ p^-A-R (i-^4)-
dt"

The equations of motion of ether occupying the same space as

our homogeneous assemblage of molecules will be found by substi-

tuting (154) for the first members of (8) in § 113. Thus with (153)

we find

d^^ d" idK dr)\ .. , . d fd^ dn d^\ -..j,

(155),

and the symmetricals in relation to y and z ; three equations to

determine the three unknowns |, t], ^.

§ 206. The method of treatment by an arbitrary function, as

in §§ 115, 120, 121, 127, 180, would be interesting; but because of

the triple differentiations in the chiral terms it is not convenient.

All that it can give is in reality, in virtue of Fourier's theorems,

* The negative sign is prefixed to x i^^ these equations in order to make %
positive for a medium in which right-handed circularly polarized light travels faster

than left-handed (see § 215 below). Such a medium is by all writers on the subject

called a right-handed medium, because the vibrational line of plane polarized light

travelling through it turns clockwise as seen by a person testing it with a Nicol's

prism next his eye. The molecule which, according to our inertial theory, produces

this result is analogous to a left-handed screw-propeller in water and is therefore

properly to be called left-handed. Thus left-handed molecules produce an optically

right-handed medium.
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included in the more convenient method of periodic functions; of Molar,

which the most convenient form for our present problem is given

by the use of imaginaries with the assumption ^, 77, ^ equal to

constants multiplied into

e'^^ « ^ (156),

where \, /.i, v denote the direction-cosines of a perpendicular to

the wave-plane, and u the propagational velocity. This gives

d _ io)\ d iwfjb d _ Lwv ^, ay^ d"

dx u ' drj tc ' dz u '

u"' dt^

(157),
which reduces (loo) and its symmetricals to

^x«'| + tXx ^ (^'? - ^^0 = Q- + i'O^ (^1 + l^V + v^) + n
^^ ^

Pyfo-T) + iXy^ {H- v^) = (^- + i'O^ (^^ +M + ^^) + fi'^,V^

Pz<^-^ + ^Xz ~ (^? - ^'?) = (^' + i'O^ (^^+M + vt) + n ^, ^

(158)*

Multiplying each member of these equations by U'w~' and arrang-

ing in order of ^, t], ^, we find

(A — //A,") ^ 4- (iXxUf^v — k'X/ji) 7} + (— iXxUco/j. — k'vX) ^ = \

{— tXvUcov — k'\/jb) ^ + (B — k'fjir) 7} + (+ LXyUoiX—h'iJbv) ^= ok. .(159),

(+ iXz^w/i — k'vX) ^ + (— iXzUwX — k'fiv) T]+{C— k'v^) f= j

where

A = p^ti^ — n: B = p,jU- — n; C = p^u^ — n ; k' = {k + ^n). . .(160).

Forming the determinant for elimination of the ratios ^, 7), f; and

simplifying as much as possible, with reductions involving

\'' + fM' + v'=l (161);
and putting

^ = (%.-%./)^+(%.-%.)^ + (X-/-%.)C

= u' [(Xz - Xy) Px + (Xx - Xz) Pu + iXv - Xx) pz]

= U' IXx (py - Pz) + Xy (Pz - Px) + Xz (Px - py)] • • ..(162),

* These formulas, implying as they do that the chirality expressed by them is

due, not to chirality of elasticity but to chirality of virtual inertia, are given by

Boussinesq on p. 456 of Vol. 11. (1903) of his Theorie Analytiqiic de la Chaleur.
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Molar, we find

ABC

LECTURE XX.

-.(A'^B'^G

+ mk'Eco\fMv=0 (163).

In (163) we have an equation of the sixth degree for the

determination of u, the propagational velocity of waves whose

wave-normal has X, fi, v for its direction-cosines.

This equation is greatly simplified by our assumption of

practically zero propagational velocity of condensational-rare-

factional waves; which makes k' = — n, and therefore by (160),

and (129')

-X-.
u- — a- w — a-

This, with corresponding formulas for ijrjB and v-fC, gives

1 ^''(^+^V"
X-

B ' G

^y k' = — n, we also have

A — k' = pxU' ; B — k'

Thus (163) is reduced to

u- — a-
:.

+

H-'

-b-
+

PyU- G-k'-

ir — c

/3z«'

^ 2 „2

PxPypz (W - or) (a"- - ¥) (w^ - c^)
(
^^^—^^ + ^j--^^ +

- «'"' (XvXzP^c'^' + XzXxPyP'- + XxXvPz'-''')
— mnEcoXfiv = ... (163').

§ 207. The imaginary term in (163), unless it vanishes, makes

every one of the six values of u imaginary. The realisation of the

corresponding result according to the principles of §§ 150, 151,

above will be very interesting. It essentially demands an ex-

tension of the dynamical theory to include the conversion of the

energy of wave-motion into thermal energy,—energy of irregular

interraolecular motions ; that is to say the dynamics of the

absorption of luminous waves travelling through an assemblage

of atoms or of groups of atoms.

§ 208. Remark first that when E does not vanish, the

imaginary term in (163) vanishes if, and only if, one of the three
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direction-cosines \, /a, v, vanishes ; that is to say if the wave-plane Molar,

is parallel to one of the three principal axes. It is certainly a

curious result that plane waves can be propagated without

absorption if their plane is parallel to any one of the principal

axes ; while there is absorption for all waves not fulfilling this

condition : in other words that the crystal should be perfectly

transparent for all rays perpendicular to a principal axis, and

somewhat absorptive for all rays not perpendicular to a principal

axis. No such crystal is known in Nature or in chemical art.

Time forbids us to go farther at present into this most interesting

subject.

§ 209. Considering now cases in which E vanishes and there-

fore (103) has all its terms real, we see that in all such cases it

becomes a cubic in u^. A first and simplest case of this condition

is indicated by the third member of (162), which shows that E
vanishes w^hen px = Py = pz. For this case (163) becomes

(pa-- n - //) [{pit' - nf - u^co'ixyXz^^-^ XzXxH'''+ XxXy^')] = ^] .....

where p = p^ = p^ = p^ j^

The three roots of this cubic are given, one of them by equating

the first factor to zero, and the two others by the quadratic in u^

obtained by equating the second factor to zero. No crystals are

known to present the optical properties thus indicated for unequal

values of ^x, %>/. %z- But it is conceivable that these properties

may be found in some crystals of the cubic class, which might

conceivably, while isotropic in respect to ordinary refraction, give

different degrees of rotation of the plane of polarization of polarized

rays travelling in different directions relatively to the three rect-

angular lines of geometrical symmetry.

§ 210. For the case of x.v = Xy — Xz ^^^ quadratic of (lOi)

becomes {pit- — lif = orx'U" whence

pu- — n = ± (o-)(,ii (165).

In all known cases, I think we may safely say in all conceivable

cases, whether of chiral crystals, or of chiral liquids, (oxk is very

small in comparison with n; in other words (§213 below) the

difference between the propagational velocities of right-handed

and left-handed circularly polarized light is exceedingly small

in comparison with the mean of the two velocities. Hence we
lose practically nothing of accuracy by taking a = '^{njp) in the
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Molar, second member of (165). Thus if we denote by v^, u^ the two

positive values of u given by (165) and by u a mean of the two,

we find by (165)

"h'^J^ = 2^^; and '"^^^^ =^^ =^ (166).
a- n u n pu

And, in accordance with (182), putting

"^ = 9 .(166'X

we have
u,-u„ = g (166").

§ 211. To interpret this result go back to (158) simplified by

making p^ = py = p^ and ^^ = ^^ = p^^. The medium being isotropic

in respect to all directions of the wave-plane, we lose nothing of

generality by putting A, = 1, /x = 0, v = 0. With these simplifi-

cations, the first of the three equations (158) gives f = and the

second and third multiplied by u'^/o)" become

{pu^ — 7i)r} = — i-^o)ut,\ {pu" — n) ^= LX^^^V (167).

Equating the product of the first members to the product of the

second members of these equations we find (pu" — n)- = x'^^^u",

which verifies the determinantal quadratic as given at the

beginning of | 210.

Using (165) to eliminate (pu'^ — n) from (167) Ave find

^=±tv (168).

Hence as an imaginary solution according to (156) of § 206 we
have for ^, 77, ^ respectively

0; Cr ('"«); ±.Ce""('"'^) (169).

Changing the sign of c gives another imaginary solution ; and

taking the half-sum of the two imaginary solutions, we find as

a real solution

1 = 0; v = CcoHay(t-^]; ^= + Csino} (t-^....(llO);

§ 212. The interpretation of this is, sinusoidal vibrations of

equal amplitudes, parallel respectively to F and OZ ; the former
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being a quarter of a period behind or before the latter, according Mola

as we choose the upper or the lower of the two signs in each

formula. The resultant {y, z) motion of the ether*, in the case

Fig. 15.

* This (y, z) component is irrotational. The [x, y) component of the etherial

motion is rotational having OZ as axis; and the (x, z) component is rotational havin"

or as axis. We are not concerned with this view at present. But we meet it

necessarily when we think out the geometry of § 205 (152) ; and it brings to us a

very simple synthetic investigation of the velocity of circularly polarized light in a

chiral liquid or in an isotropic chiral solid.
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Molar, represented by the lower signs, is in circular orbits in the direction

shown as anti-clockwise in the annexed diagram (fig. 15). This

motion is the same in phase for all points of the ether in every

plane perpendicular to OX, that is to say every wave-plane ; and

it varies from wave-plane to wave-plane so as to constitute a wave

of circularly polarized light travelling ic-wise with velocity m. The
motion corresponding to the upper signs is another circularly

polarized wave with opposite orbital motion, that is to say clock-

wise direction. The radius of the orbit is the same, C, in the two

cases. If* when looking to fig. 15, we take the positive OX as

towards the eye, a line of particles of the ether which is parallel to

OX when undisturbed, becomes, in the wave of clockwise orbits,

a right-handed spiral ; and in the wave of anti-clockwise orbits a

left-handed sjm'al. Thus the two waves are of opposite chiralities

:

the former are called right-handed, the latter left-handed. The
steps of the two spirals (screws) are slightly different, being the

spaces travelled by the two waves in their common period ; that

is to say the wave-lengths of the two waves. To understand this

look at fig. 16 showing a right-handed spiral RRR of step 6 cm.

and a left-handed spiral LLL of step 5 cm.; having a common
axis OX, and both wound on a cylinder of radius 1^ cm. repre-

senting G of (170). If the radius of this cylinder were reduced to

a thousandth -or a millionth of the step of either screw, and if the

step were reduced to about 4. 10~^ cm., either spiral might represent

the line in which particles of ether lying in OX when undisturbed

are displaced by homogeneous yellow or yellow-green circularly

polarized light, travelling in the direction of OX positive, through

a transparent liquid or solid of refractive index of about I'o. With

this understanding as to the scale of the diagram consider the

resultant of the two equal coexisting displacements of wave-planes

represented at any instant by the two spirals. At points of inter-

* This is a convention which I have uniformly followed for sixty years in

respect to the positive and negative directions in three mutually perpendicular lines

OX, OY, OZ. It makes the positive direction for angular velocities be from OX to

or, from or to OZ, and from OZ to OX. This agrees with the ordinary conven-

tions of English as well as foreign books on trigonometry, and geometry of two

dimensions, which make anti-clockwise rotation be positive. It is convenient for

inhabitants of the Northern Hemisphere as it makes positive the anti-clockwise

orbital and rotational motions of the sun and planets as viewed from space above

our North Pole, which we may call the north side of the mean plane of the

planetary motions.
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section of the two spirals, for example D, D', D", the resultant Molar.

displacement of each of the corresponding wave-planes is 2C, the

sum of the two equal components. The resultant displacement

of the wave-plane through AB is twice the distance from OX of

the middle point of AB, that is to say 2 >J{C- — IAB-).

§ 213. Suppose now the two spirals to rotate in opposite

directions, with equal angular velocity co, round the axis OX;
the right-handed spiral clockwise and the left-handed anti-clock-

wise when viewed from X towards 0. This may be realised in an

instructive model having one spiral wound on a brass or wooden

cylinder, and the other on a glass tube fitting easily around it.

The two moving spirals will represent the motions of the ether in

two circularly polarized waves travelling .-?;- wards with velocities

"=2^' "==2^' ("2)-

Xi, \o denoting the steps of the two screws. The motion of the

ether in any fixed plane perpendicular to OX, the plane through

AB for instance in the diagram, will be found by the geometrical

construction of § 212. Thus we see that a very short time after

the time of the configuration shown in the diagram, the point D
will come to the plane through AB, and the points A, B will

come together at D: immediately after this they will separate,

A leftwards in the diagram, B rightwards. Considering the whole

movement we see that in any one fixed plane through OX, a

wave-plane of the ether moves to and fro in a fixed straight line.

The point D will travel a?-wards with a velocity equal to

"/^" - ^ (173),

1-4.1] l(^ 1
2 V^i xj 2 Ui

"^
Uo

being the harmonic mean of the velocities of the two compounded
circular waves ; and will revolve slowly clockwise round the

cylinder of radius (7 at a rate, in radians per unit of distance

travelled a;-wise, equal to

Compare with (179) and (180) below.
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Molar. § 214. The short algebraic expression and proof of all this is

found by taking the two solutions represented by (170), (171) and

writing down their sum with modification as follows :

—

,= cosei) it 1 + cos CO {

t

,

-£)

/, X 0) \ (lilX x\ ,-,^.\= 2 cos ft) U -
^,

^r- cos ^ (17o)

;

-^ = — sin CO \t ) + sin ft) (

<

)

{ X, X\ . (O (

X

X\ /-,y,n\= -2cosft>^-^-„ - sm^ (176).

For magnitude and direction of the resultant of these we find

V(T+n = 2Ccos»(«-^^-2^3 (177),

and

? = -tan^f-^-^) (178).

These equations express rectilinear vibration through a total

range 46' in period — , in the line whose azimuth is

(H ( X X
., ,

(179).

This shows that the vibrational line in plane polarized light

revolves clockwise in the wave-plane at a rate r, in turns per unit

of space travelled, expressed by

_ ft) / 1 \\ _ (a u-i—iu_ _ .u-^ — xii /, Qn.s^

47r V'2 '^^1/ ^iTT ^1^2 ^ Ta-

in the last member t denotes the period of the vibrations, and a

denotes Vwjt^a, or the "geometric mean" of the propagational

velocities, of the two waves.

§ 215. Returning now to figure 16 we see that, as virtually

said in §§212, 218;

I. The orbital motions in right-handed circularly polarized

light coming towards the eye are clockwise, and in left-handed

anti- clockwise.
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II. The vibrational line of plane polarized light traversing Molar.

a chiral medium towards the eye, turns clockwise when the

velocity of right-handed circularly polarized light is greater, and

anti-clockwise when it is less, than that of left-handed circularly

polarized light.

III. A chiral medium is called optically right-handed or

left-handed according as the propagational velocity of right-handed

or of left-handed circularly polarized light travelling through it

is the greater.

All this (§§ 212—215) is Fresnel, pure and simple. It is his

kinematics of the optical right-handed and left-handed chirality

discovered by Arago and Biot in quartz, and by Biot in turpentine

and in a vast number of other liquids.

§ 216. For the dynamical explanation take the third member
of (180); and look back to (152) and (153) which show that,

according to our notation, twice the acceleration of angular velocity

of moving ether multiplied by ;^ is, when
;;^

is negative, a force

per unit bulk of the ether in the positive direction in the axis of

the angular velocity, exerted on the ether by the fixed chiral

molecules. If % is positive, the chiral molecule is, as said in the

footnote on § 205, analogous to a left-handed screw and its chirality

is properly to be called left-handed : because (| 205 above) if the

ether concerned is viewed in the direction of the axis of the

angular velocity, the force of left-handed molecule on ether is

toward the eye (or positive) when the acceleration of the angular

velocity of the ether is clockwise (or negative according to my
convention regarding direction of rotation, stated in the footnote

on § 212). With this statement the simple synthetic investigation

of the velocity of circularly polarized light in a chiral medium,

indicated in the first footnote of § 212, is almost completed; and

by completing it we easily arrive, by a short cut, at the solution

expressed in the third member of (180), for an isotropic medium
;

without the more comprehensive analytical investigation of §§ 205

to 214.

By (166) we saw that the left-handed molecule (x positive)

gives the greater propagational velocity (w,) for right-handed

circularly polarized light, and therefore (§ 215, III.) the medium
is optically right-handed. Thus our conventions necessarily result

in left-handed molecules making a right-handed medium and

right-handed molecules a left-handed medium.

T. L. 29



450 LECTURE XX.

Molar. § 217. Going back now to §§ 206, 207, 208, for light traversing

a chiral medium with three rectangular axes of symmetry cor-

responding to maximum, minimax and minimum wave velocities,

let us work out the solution for wave-plane perpendicular to one

of the principal axes, OZ for example. This makes X = 0, yu, = 0,

v=l; and, with (160), reduces the determinantal equation (162)

to

(C - k') [{p^ii^ - n) (pyu- - n) - u'co'XccXy] = ... (181).

Hence, removing the first factor (which, when k' = - n, gives u = 0,

for the condensational-rarefactional wave) and putting

^ = a- ^ = 6- "^XM^g. (182),
Px py Pxpy

we find

{u^-a^){u''-h'') = g'-u' (183);

a quadratic of which the two roots are the squares of the velocities

of the ^•-ward waves. The third of equations (158) makes z =
for each of these waves ; and therefore they are both exactly

equivoluminal. When x^Xv '^^ positive the two roots of the quad-

ratic are both positive ; one of them > a^, the other < 6^ if a^ > h~.

§ 218. In these formulas a and h denote the velocities of

light having its vibrational lines parallel to OX and OY respec-

tively; and ^ is a comparatively very small velocity measuring

the chiral quality of the crystal. Judging by all that has been

hitherto discovered from observation of chiro-optic properties of

gases, liquids and solids, we may feel sure that g is in every case

exceedingly small in comparison with either a or 6 : it is about

one twenty-thousandth in quartz : and in cinnabar, which has the

greatest optic chirality hitherto recorded for any liquid or solid so

far as I know, g seems to be about fifteen times as great as in

quartz. Suppose now that g'^ is very small in comparison with

the difference between a- and Tf, we see, by the form of (183), that

the two values of u^ given by the quadratic must be to a first

approximation equal to a^ and Jf respectively: hence to a second

approximation we have (taking forms convenient for the case of

a" > h%

<-'-„-^,; ^'-»=-a-S» (!«*>

§ 219. To find the character of the two Avaves corresponding

to the two roots of (183), put X = 0, /a = 0, i^ = 1 in the first and
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second of (158), each multiplied by u-a)~^; which, with (182), Molar.

reduces them to

(u- — a-) ^= — 7/ ;
{u^ — b-)r] = -^^— f ...(185).

px py

Equating the product of the fii\st members to product of the

second members of these equations we verify the determinantal

quadi-atic (183). With either value of u^ given by (183), either

one or other of equations (185) may be used to complete the

solution. The first of (185), however, is the more convenient for

the root approximately equal to b' ; and the second for the root

approximately equal to a". Taking them accordingly and realising

in the usual manner, we find as follows for two completed in-

dependent solutions with arbitrary constants C^, G.,:

sm 0) [t
Ml

u,>a: ^ = C, cos 0) it ; r, = - G^ ^^ '[J^

V Ml/ ^1 — 0^

n,<b; ^=-C,'-^^?^?-^sina)f^--'); rj = G.cos (o (t

-

z

it,/

;

(186)

§ 220. The exceeding smallness of gja* has rendered fruitless

all attempts hitherto made, so far as I know, to discover optic

chirality in a "biaxal crystal," that is to say a crystal having

three principal axes at right angles to one another of minimum,

minimax and maximum wave-velocities. If it were discoverable

at all, it certainly would be perceptible in light travelling along

one of these three principal axes.

[Dec. 19, 1903. I have only to-day seen in Phil. Mag., Oct.

1901 that Dr H. C. Pocklington has found rotations, per cm,,

22° anti-clockwise, and 64° clockwise, of the vibrational line in

polarized light travelling through crystallized sugar along two

" axes," of which the first is nearly perpendicular to the cleavage

plane : a most interesting and important discovery.]

I 221. For light travelling along the axis, OZ, of a uniaxal

crystal, take a = 6 in (183)—(186), in this case, and we have

by (183)
ii2_a2= ±gu (187).

* For sodium-light in quartz it is -4605 . 10-* ; and it may be expected to be

correspondingly small in biaxal crystals.

29—2
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Molar. And, taking py= p^, and Xy = %«> we have, by (182),

</ = ™f"
(188).

Px

With this notation and with (187), (186) becomes

Ui>a; ^ = Ci cos oo U ) ; 7) = - C^sm co (t ]

^ ^'^^ ^ "'^ I ...(188').

UoK a; f = — C2 sin co (t );''?= C'o cos colt )

Thus we see that for light travelling along the axis of a uniaxal

crystal the velocities of right-handed and of left-handed circularly

polarized light, and the rotation of the vibrational line of plane

polarized light, are in every detail the same as we found in §§ 211,

212 for a medium wholly isotropic. But we shall see presently

(§ 226 below) that two or three degrees of deviation from the axis

produces a great change from the phenomena of a chiral isotropic

medium ; and that for rays inclined 30° or more up to 90°, the

chirality is almost wholly swamped by the asolotropy, even when

the a^olotropy is as small as it is for quartz (§ 223 below). As

remarked in § 220, there is no direction of light in a crystal,

having three unequal values for a, b, c, in which the chiro-optic

effect is not masked by the seolotropy ; and therefore it is not

so interesting to work out for a biaxal crj^stal the realised

details of the solution (159), (162), (163). But it is exceedingly

interesting to work them out for a uniaxal crystal, because of the

great exaltation of the chiral phenomena when the ray is nearly in

the direction of the axis, and because of the beautiful phenomena of

Airy's spirals due to this exaltation ; and because of the admirable

experimental investigation of the wave-surface in quartz crystal

by McConnel referred to in | 228 below.

§ 222. For waves transmitted in any direction through a

uniaxal crystal; choose OZ as the axis, and therefore let px = Py,

and Xcc = Xy> in (158)—(163) of § 206. This reduces (163) to

E = and therefore makes the waves in all directions real : that is

to say transmissible with no change of motional con liguration.

Corresponding to (182) we may now put

— =— =a2; - = c-; ^^ = g; -^ = h (189).
px Py Pz Px Pz
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Without loss of. generality, we may simplify (158)—(162) by Molar.

taking

^^=0; \-=sin2^; i^- = cos-^ (190);

with these, (163') of § 206 gives

(u^ - a-) [ii' - a" + (a- - c^) sin'^ 0]=g[g-(g- h) sin^ 6] u\ . .(191).

This is a quadratic equation for the determination of the

squares of the velocities of the two plane waves whose wave-

normals are inclined at the same angle 6 to OZ. For 6 = 90° we

fall back on the case of §§ 217, 218, 219, but with c instead of b;

and for ^ = 0° we fall back directly on § 221, The exceedingly

interesting transition from the subject of § 221 to our present

subject is fully represented by the solution of the quadratic

equation for u- : and is best explained by tables of values of the

two roots from ^ = 0° to 6= 90° for some particular case or cases
;

or graphic representation by curves as in figs. 17, 18, 19.

I have chosen the case of quartz crystal traversed by sodium-

light ; for which observation shows the rotation of the vibrational

line to be 217° per centimetre of space travelled along the axis.

This makes g= 4'60o .
10~^ a; as we find by putting in the first

member of (180), r = 217/360 : and in the last member Ui — U2 = g;

and a = -647593, the reciprocal of 1-54418, the smallest refractive

index of quartz at 18°, according to Rudberg; and r = -58932, the

period in decimal of a michron, of the mean of sodium-lights

DiD^; the michron being the unit of time which makes the

velocity of light unity when the unit of space is the michron (or

millionth of a metre), (See footnote on p. 150 above.)

As two sub-cases I have chosen h = and h = — g ; because .

for all that our theory tells us, (§ 223), h/g might be negative ; or

might be zero or might have any positive value less than, or equal

to, or greater than, unity. McConnel's experimental investigation

seems (§ 228 below) to make it certain that h/g for quartz is less

than unity and probable that it is negative, and as small as — 1,

or perhaps smaller. As for g\ (189) shows that its value is

inversely proportional to the square of the period of the light,

if Xx is the same for light of all periods; g is positive or negative

according as the crystal is optically right-handed or left-handed.

§ 223. c/a is the ratio of the smallest to the greatest refrac-

tive index of quartz; that is 1-54418/1-55328, according to the
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Molar, figures used by McConnel ; being (as I see in Landolt and

Bornstein's Tables) Rudberg's results for temperature 18° and

sodium-light. From this we have {claf = "98832 and (191)

becomes

.(192),
a- J \a? J a-

or ^ - (1 + w^ + ^) ^ = - w^

where 1 -^2= -01168 sin2^= ^^^^ (1 -cos 26*) ...(193),

and q = a~^g[g — (g — h) sin" 6] (194).

If Ui^, u.^ denote the greater and less roots of (191), we have

a-2 (wi^ + ui) = 1 + w^ + g (195)

;

a-2 (mi=^ - ui) = V[(l - w^) + 2 (1 + wO g + ?'].. . (196).

Remark that when 6* = 90°, 1 - w^ = -001168, q = a-^gk. Hence

~a~^gh might be positive, and as great as ^ . 10~^(1"168)-, or a

little greater, without making the radical imaginary.

§ 224. In fig. 17, Curves 1 and 2 represent, from ^ = 0° to

^ = 30°, ^ [a~" {ui^ — u^^) — (1 — w^)] for the sub-cases h=g, and

h=: — g ; and Curve 3 represents | (1 — iv^) on the same scale from

^ = 0° to 6 = 5°-3. In fig. 18, Curves 1 and 2 represent, from

^ = 30° to 6> = 90°, ^[a-^{ui^-u^'')-(l-w')] for the sub-cases

h= g and A = — ^, on a scale of ordinates ten times, and abscissas

half, that of fig. 17.

Throughout the whole range of figs. 17 and 18, Curves 1 and

2 represent chiral differences from the squares of the seolotropic

wave-velocities calculated according to the non-chiral constituent

of the seolotropy of quartz crystal; Curve 3 of fig. 17, and

equations (193)—(196), show that through the range from ^ = 0°

to ^= 5°-3, the values of a~^Ui, a~M/2, and q differ from unity by

less than 5-1 . 10~®. Hence, through this range, we have, very

approximately,

1 [a-'« - u,') - (1 - w')] = "^1:1^ -{l-w) ... (197).
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§ 225, Fig. 19 illustrates the critical features of the crystal- Molar,

line influence, and of the combined crystalline and chiral influence,

of quartz-crystal on light traversing it with wave-normal inclined

to the axis at any angle up to 14°. The crystalline influence

alone is represented in Curve 8 by downward ordinates equal to

the excess of the velocity of the ordinary ray above the velocity

-£> 2° 4° 6° eJ° 1 0° 12° 14
5.10

Cl ^ve 1 —
.

"

5..

—
<^>'0
'^^>^

^
10" X̂
15"

20"

25"
\

30"
\
\

rtS"
\

6° Q"

Fig. 19.

10' 12' 14°

of the extraordinary ray, divided by the former ; in an ideal crystal,

corresponding to the mean of a right-handed and a left-handed

quartz-crystal. Curve 1 represents the excess of the greater of

the two wave-velocities in a real quartz-crystal above the velocity

of the ordinary ray in the ideal mean crystal, divided by the

latter. Curve 2 represents the excess (negative) of the less of

the two wave-velocities in a real quartz-crystal above the velocity

of the extraordinary ray in the ideal mean crystal, divided by the

latter. According to our notation of § 223, the ordinates of Curves

8, 1, 2 are equal respectively to

^ 111 ^2w — 1; 1 ; —
a a

.(198).
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Molar. § 226. From (198) we see that Curve 3 continued through the

whole range from ^ = 0° to 6 ^ 90°, represents the distance between

a tangent plane on a prolate ellipsoid of revolution of unit axial

semi-diameter, and the parallel tangent plane on the circumscribed

spherical surface of unit radius (the ellipsoid and the sphere

constituting the wave-surface for the ideal uniaxal crystal cor-

responding to the mean of right-handed and left-handed quartz).

Curves 1 and 2 represent similarly the projections, outward from

the sphere and inwards from the ellipsoid, of the two sheets of

the wave-surface in a real quartz-crystal whether right-handed or

left-handed. In each case 6 is the inclination to the equatorial

plane, of the two tangent planes whose distance is represented by

ordinates in the diagram. It is interesting to see and judge by

Curve 1 how closely at ^ = 14°, and thence up to ^ = 90\ one of

the sheets of the wave-surface in quartz agrees with the spherical

surface: and to see by Curves 2 and 3 how nearly, at and above 14°,

the other sheet agrees with the inscribed ellipsoid. On the other

hand, it is interesting to see by the three curves how prepon-

derating is chirality over seolotropy, from ^ = 0° to ^ = 2° ; and

to see how the preponderance gradually changes from chirality

to geolotropy when 6 increases from 2° to 14°.

§ 227. The characters of the two plane waves, whose wave-

normals are inclined at angle 6 to the axis of a quartz crystal, are

to be discovered by commencing as in § 222 ; and, for the case

there defined, working out a realised solution from (159) of § 206.

We thus find that, for ^ = each wave is circularly polarized

;

and, for all values of 6 between 0° and 90°, each wave is

elliptically polarized ; the axes of the elliptic orbit being, one of

them perpendicular to, and the other in, the plane through the

wave-normal and the axis of the crystal. The former is the

greater of the two axes for the wave which has the greater

velocity («i) ; the latter is the greater for the wave having the

less velocity {11.2). For all values of 9 greater than six or seven

degrees the less axis of the elliptic orbit is very small in com-

parison with the greater : that is to say each wave consists of very

nearly rectilinear vibrations, or is very nearly " plane polarized "

;

and one of the two waves approximates closely to the " ordinary ray,"

the other to the "extraordinary ray "in the ideal non-chiral crystal

corresponding to the mean of right-handed and left-handed quartz.
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§ 228. Looking at the two sub-cases represented by Curve 1 Molar,

and Curve 2 of figures 17 and 18, we see that the difference

between them is very small, probably quite imperceptible to the

most delicate observation practicable, when 6 <Q°. At 6 = 10°

the difference of the ordinates for the two curves is about 1/17

of the ordinates for either ; and might be perceptible to observa-

tion, though it represents an exceedingly small proportion, about

1/500, of the whole difference of velocities between the two rays.

This difference, as shown in figure 19, is itself very small, being

only about 18.10~^ of a, the mean velocity of the right-handed and

left-handed axial rays. How exceedingly searching McConnel's

experimental investigation was may be judged by the fact shown

in his figure 3, page 321*, that from 6> = 14° to ^ = 30° he found

definite systematic differences between " MacCallagh's Theory

"

and '' Sarrau's Theory." The results of MacCullagh's Theory are

expressed by our Curve 1 ; and our Curve 2 shows results differing

from MacCullagh's in the same direction as Sarrau's but some-

what more. Thus McConnel's investigation was more than amply

sensitive to distinguish between our two sub-cases represented by

Curves 1 and 2 of figures 17 and 18. Looking at McConnel's

figure 3, and remarking that "003794 is the value of a — 6 (our

a — c), which he took as correct according to his statement of

Rudberg's results, we see that what he takes as Sarrau's Theory

under-corrects the error of MacCullagh's : and our sub-case 2,

which I chose on this account, must make the correction very

nearly perfect. But I see on looking to Sarrau's paperf that

his theory was not, as supposed by McConnel, confined to rela-

tively small deviations from q = ~ cos'* 6 (McConnel's notation of

his page 314 translated into ours of § 226); and that proper

values of his constants (without the restriction of
f-^

and g^

relatively small, stated by McConnel), may be found to give a

perfect agreement with McConnel's observations. The same may
be said of Voigt's theory as pointed out by McConnel (p. 314).

Thus we may take it that Sarrau's and Voigt's theories lead

to results perfectly consistent with McConnel's observations.

Theories of MacCullagh, Clebsch, Lang, and Boussinesq, are re-

ferred to by McConnel as giving a constant for what we have

* Phil. Trans. Roy. Soc, Part I., 1886.

+ Sarrau, Liouville, s6v. 2, tome xiii. (1868), p. 101.
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Molar, denoted by q, and as giving a fairly good approximation to the

results of his observations; but decidedly less good than Sarrau

and Voigt, who allowed q to vary with 6. All these theories agree

in taking the mutual forces between different parts of the vibrating

medium as the origin of the chiral property, and differ essentially

from my theory which (§§ 162—166, 200—205) finds it in virtual

inertia of the ether as disturbed by chiral groups of atoms.

§ 229. The following Table shows, in degrees per centimetre,

the rotation of the vibrational line of polarized light travelling

through various substances ; crj^stalline solid, and liquid ; taken

from Landolt and Bornstein's Tables, Edition 1894.

Substance
Quality
of Light

Direction

of

Eotation *

Eotation of

vibrational

line in

degrees per

centimetre

Observer

Solid crystals

:

Cinnabar Eed

f
^i

\ D (mean)

D
D

D

D
D
D
D

D
D

E.

L.

2700 to 3000

217-27 )

217-05
\

216-84 j

55-31

83-85

19-3

21-7

31-04

31-6

2330

1-4147 x(Zt

16-155 xdf

Descloizeaux

Soret&Sarasin

Pape

Pape

H. Traube

H. Traube

Guye

Sohncke

Groth

Landolt

Landolt

Quartz

Lead Hyposulpbate + 4 aq

Potash Hyposulpbate . .

.

Potassium Sulphate— \

Lithium Chromate
K2S04 + Li2Cr04

j

Sodium Bromate

Sodium Chlorate

Sodium Periodate + 3 aq

Liquids

:

Turpentine Cir,H,c

Nicotine CjoHj^N,,

* Clockwise as seen by the observer is called right-handed (E.), anti-clockwise,

left-banded (L.).

t Where d denotes the specific gravity of the fluid. See p. 450 of Landolt and

Bornstein. I do not see any good reason for the necessity of introducing d in the

manner indicated in my table in the text, and rendered necessary by the notation

adopted in the tables of Landolt and Bornstein. Some other embarrassing peculiari-

ties in their notation have prevented me from venturing to quote any one of the

numerous examples of the rotatory effect of "active" substances dissolved in

" non-active" liquids given in pp. 450—458 of these tables.
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§ 230. Important and interesting information regarding chiro- Molar,

optic properties of liquids and solids is to be found in Mascart's

Traite d'Optique, Volume ii., Edition 1891, pages 247 to 369 ; and

regarding Faraday's magneto-optic rotation of the vibrational line

in pages 870 to 392. The first section of Appendix I in the

present volume contains an important statement, given to me by

the late Sir George Stokes, regarding chirality in crystals, and

in crystalline molecules. Appendix H (Molecular Tactics of a

Crystal, § 22 footnote, §§ 47—52) contains statements of funda-

mental principles in the pure geometry of chirality. Appendix G
contains a complete mathematical theory of the quasi-inertia of

a solid of any shape moving through a perfect liquid, with special

remarks on chirality of this quasi-inertia.

§ 231. Lecture XX. as originally given, and fully reported in

the papyrograph edition, and an appendix to it entitled "Improved

Gyrostatic Molecule," contained unsatisfactory dynamical efforts to

illustrate or explain Faraday's magneto-optic rotation. These are

not reproduced in the present volume : but instead, an old paper

of date 1856 entitled " Dynamical Illustration of the Magnetic

and the Heli^oidal Rotatory Effects of Transparent Bodies on

Polarized Light " is reproduced as Appendix F. This paper con-

tains a statement of dynamical principles concerned in the two

kinds of rotation of the vibrational line of plane polarized light

travelling through transparent solids or fluids, which I believe

may even now be accepted as fundamentally correct. When we

have a true physical theory of the disturbance produced by a

magnet in pure ether, and in ether in the space occupied by

ponderable matter, fluid or solid, there will probably be no

difficulty in giving as thoroughly satisfactory explanation of the

magneto-optic rotation as we now have of the chiro-optic.

I
232. In conclusion, let us consider what modification of the

original Maxwell-Sell meier dynamics of ordinary and anomalous

dispersion must be made when we adopt the atomic hypothesis of

Appendices A and E and of Lee. XIX., §§ 162—168.

In App. A it is temporarily assumed, for the sake of a definite

illustration, that the enormous variation of the etherial density

within an atom is due to a purely Boscovichian force acting on

the ether, in lines through the centre of the atom and varying
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Molecular, as a function of the distance. This makes no provision for

vibrator or vibrators within an atom ; and, for the explanation of

molecular vibrators, it only grants such molecular groups of atoms,

as we have had for fifty years in the kinetic theory of gases,

according to Clausius' impregnable doctrine of specific heats with

regard to the partition of energy between translational and other

than translational movements of the molecules. Now, in App. E,

and in applications of it suggested in §§ 162—168 of Lee. XIX.,

we have foundation for something towards a complete electro-

etherial theory, of the Stokes- Kirchhoff vibrators* in the dynamics

of spectrum-analysis, and of the Maxwell-Sellmeier explanation of

dispersion.

§ 233. In our new theory, every single electrion within a

mono-electrionic atom, and every group of two, three, or m,ore,

electrions, within a poly-electrionic atom, is a vibrator which, in

a source of light, takes energy from its collision with other atoms,

and radiates out energy in waves travelling through the sur-

rounding ether. But at present we are not concerned with the

source ; and in bringing this last of our twenty lectures to an

end, I must limit myself to finding the effect of the presence of

electrionic vibrators in ether, on the velocity of light traversing it.

§ 234. The "fundamental modes" of which, in Lee. X., p. 120,

we have denoted the periods by k, k,, k„, ... are now modes of

vibration of the electrions within a fixed atom, when the ether

around it and within it has no other motion than what is produced

by vibrations of the electrions. It is to be remarked however that

a steady motion of the atom through space occupied by the ether,

will not affect the vibrations of the electrions within it, relatively

to the atom.

§ 235. To illustrate, consider first the simple case of a mono-

electrionic atom having a single electrion within it. There is just

one mode of vibration, and its period is

K=27r .h = ^-'^ ^1^' (199),

where a denotes the radius of the atom, e the quantity of resinous

electricity in an electrion, and m its virtual mass ; and c denotes

* See Lee. IX. pp. 101, 102, 103.
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e"a~^. This we see because the atom, being mono-electrionic, has Molecular,

the same quantity of vitreous electricity as an electrion has of

resinous ; and therefore (App. E, § 4) the force towards the centre,

experienced by an electrion held at a distance x from the centre,

is e-or'-^x ; which is denoted in § 240 by ex.

§ 236. Consider next a group of i electrions in equilibrium,

or disturbed from equilibrium, within an i-electrionic atom. The

force exerted by the atom on any one of the electrions is ie^a~^D,

towards the centre, if D is its distance from the centre. Let now

the group be held in equilibrium with its constituents displaced

through equal parallel distances, x, from their positions of equi-

librium. Parallel forces each equal to ie^or^x, applied to the

electrions, will hold them in equilibrium* ; and if let go, they will

vibrate to and fro in parallel lines, all in the same period

4-.— Vma^ (200).
i\Ji e

This therefore is one of the fundamental modes of vibration of

the group ; and it is clearly the mode of longest period. Thus

we see that the periods of the gravest vibrational modes of different

electrionic vibrators are directly as the square roots of the cubes

of the radii of the atoms and inversely as the square roots of the

numbers of the electrions
;
provided that in each case the atom

is electrically neutralised by an integral number of electrions.

Compare App. E, § 6.

I 237. I now propose an assumption which, while greatly

simplifying the theory of the quasi inertia-loading of ether when

it moves through space occupied by ponderable matter as set forth

in App. A, perfectly explains the practical equality of the rigidity

of ether through all space, whether occupied also by, or void of,

ponderable matter. My proposal is that the radius of an electrion

is so extremely small that the quantity of ether luithin its sphere of

condensation (Lee. XIX., § 166) is exceedingly small in comparison

with the quantity of undisturbed ether in a volume equal to the

volume of the smallest atom.

This assumption, in connection with §§ 164, 166 of Lee. XIX.,

makes the density of the ether exceedingly nearly constant through

* Compare App. E, § 23.
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Molecular, all space outside the spheres of condensation of electrions. This

is true of space whether void of atoms, or occupied by closely

packed, or even overlapping, atoms ; and the spheres of con-

densation occupy but a very small proportion of the whole space

even where most densely crowded with poly-electrionic atoms.

The highlj' condensed ether within the sphere of condensation

close around each electrion might have either greater or less

rigidity than ether of normal density, without perceptibly marring

the agreement between the normal rigidity of undisturbed ether,

and the working rigidity of the ether within the atom. This

seems to me in all probability the true explanation of what

everyone must have felt to be one of the greatest difficulties in

the dynamical theory of light;—the equality of the rigidity of

ether inside and outside a transparent body.

§ 238. The smallness of the rarefaction of the ether within an

atom and outside the sphere or spheres of condensation around its

electrions, implies exceedingly small contribution to virtual inertia

of vibrating ether, by that rarefaction ; so small that I propose to

neglect it altogether. Thus if an atom is temporarily deprived of

its electrion or electrions (rendering it vitreousl}^ electrified to the

highest degree possible), ether vibrating to and fro through it will

experience the same inertial resistance as if undisturbed by the

atom. Its presence will not be felt in any way by the ether

existing in the same place. Thus the actual inertia-loading of

ether to which the refraction of light is due, is produced prac-

tically by the electrions, and but little if at all perceptibly by

the atoms, of the transparent body.

I 239. For the present I assume an electrion to be massless,

that is to say devoid of intrinsic inertia, and to possess virtual

inertia only on account of the kinetic energy which accompanies

its steady motion through still ether. This is in reality an energy

of relative motion ; and does not exist when electrion and ether

are moving at the same speed. See App. A passim, and equation

(202) § 240 below.

§ 240. Come now to the wave- velocity problem and begin

with the simplest possible case,—only one electrion in each atom.

Consider waves of a;-vibration travelling y-wards according to the

formula (203) below. Take a sample atom in the wave-plane at

distance y from XOZ. The atom is unmoved by the ether-waves

;
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while the electrion is set vibrating to and fro through its Molecular,

centre.

At time t, let x be the displacement of the electrion, from the

centre of the atom (or its absolute displacement because at present

we assume the atom to be absolutely fixed)

:

f the displacement of the ether around the atom :

p the mean density of the ether within and around the atom,

being, according to our assumptions, exactly the same as the

normal density of undisturbed ether

:

n the rigidity of the ether within and around the atoms, being,

according to our assumptions, very approximately the same at

every point as the rigidity of undisturbed ether

:

iV^ the number of atoms per unit of volume :

ex the electric attraction towards the centre of its atom,

experienced by the electrion in virtue of its displacement, x :

m the virtual mass of an electrion :

E a cube of ether equal to 1/N of the unit of volume, having

the centre of one, and only one, atom within it.

The equation of motion of E, multiplied by N, is

''J = "lf-^^^ <201);

and the equation of motion of the electrion within it, is

m^^^|^ = -c^ (^^2>-

§ 241. The solution of these two equations for the regular

regime of wave-motion is of the form

f = C sin ft) (« - ^)
; X = C sin (oft-

^) (203),

where o) is given. Our present object is to find the two un-

knowns GjC (or ^/x), and v. By (203) we see that

d' „ d'= -ft)2
ft)-

dt^ ' dy^ v^

This reduces (201) and (202) to

.(204).

T. L. 30
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Molecular, from which we find

| =-i^=^, (200).

and - = - + !-?=- +
> 2 C^^^)-

V- n n \ ^J n n t- — k^

The last member is introduced with the notation

-'^' '=^V? ''''''

where t denotes the period of the waves, and k the period of an

electrion displaced from the centre of its atom, and left vibrating

inside, while the surrounding ether is all at rest except for the

outward travelling waves, by which its energy is carried away at

some very small proportionate rate per period
;
perhaps not more

than 10~^. It is clear that the greater the wave-length of the

outgoing waves, in comparison with the radius of the sphere of

condensation of the vibrating electrion, the smaller is the pro-

portionate loss of energy per period. (Compare with the more

complex problem, in which there are outgoing waves of two

different velocities, worked out in the Addition to Lee. XIV.,

pp. 190—219. See particularly the examples in pp. 217, 218,

219.)

§ 242. Look back now to the diagram of Lee. XII., p. 145,

representing our complex molecular vibrator of Lee. I., pp. 12, 13,

reduced to a single free mass, 7n ; connected by springs with the

rigid sheath, the lining of an ideal spherical cavity in ether. In

respect to that old diagram, let cc now denote what was denoted

on p. 14.5 by ^ — cc; that is to say the displacement of the ether,

relatively to m. Thus in the old illustrative ideal mechanism,

ex denotes a resultant force of springs acting on m : in the new

suggestion of an electro-etherial reality ex denotes simply the

electric attraction of the atom on its electrion m, when displaced

to a distance x from its centre. In the old mechanism it is the

pulls on ether by the springs, equal and opposite to their forces

on m, by which m acts on the ether (always admittedly an unreal

kind of agency, invoked only by way of dynamical illustration).

In the new electric design, m acts directly on the ether, in simple

proportion to acceleration of relative motion. It does so because,

in virtue of the ether's inertia when m is being relatively accelerated
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the ether is less dense before than behind m, and therefore the Molecular,

resultant of m's attraction on it is backwards.

It is interesting to see that every one of the formulas of

§§ 240, 241 (with the new notation of w, in the old dynamical

problem), are applicable to both the old and the new subjects :

and to know that the solution of the problem in terms of periods

is the same in the two cases, notwithstanding the vast difference

between the artificial and unreal details of the mechanism thought

of and illustrated by models in 1884, and the probably real details

of ether, electricity and ponderable matter, suggested in 1900

—

1903.

§ 243. The interesting question of energy referred to in

Lee. X., 11. 18—21 of p. Ill becomes more and more interesting

now when we seem to understand its real quadruple character in

(I) kinetic energy of pure ether,

(II) potential energy of elasticity of ether,

(III) electric potential energy of mutual repulsions of elec-

trions and of attractions between electrions and atoms,

(IV) potential energy of attraction of electrions on ether.

It is slightly and imperfectly treated in App. C. It must, when
fully worked out, include a dynamical theory of phosphorescence.

For the present I must leave it with much regret, to allow this

Volume to be prepared for publication.

80—2



APPENDIX A.

ON THE MOTION PRODUCED IN AN INFINITE ELASTIC SOLID

BY THE MOTION THROUGH THE SPACE OCCUPIED BY IT

OF A BODY ACTING ON IT ONLY BY ATTRACTION OR
REPULSION*

§ 1, The title of the present communication describes a

pure problem of abstract mathematical dynamics, without in-

dication of any idea of a physical application. For a merely

mathematical journal it might be suitable, because the dynamical

subject is certainly interesting both in itself and in its relation

to waves and vibrations. My reason for occupying myself with

it, and for offering it to the Royal Society of Edinburgh, is that

it suggests a conceivable explanation of the greatest difficulty

hitherto presented by the undulatory theory of light ;—the

motion of ponderable bodies through infinite space occupied by

an elastic solid
-f-.

§ 2. In consideration of the confessed object, and for brevity,

I shall use the word atom to denote an ideal substance occupying

a given portion of solid space, and acting on the ether within it

and around it, according to the old-fashioned eighteenth century

idea of attraction and repulsion. That is to say, every infinitesimal

volume A of the atom acts on every infinitesimal volume JB of the

ether with a force in the line PQ joining the centres of these two

volumes, equal to

Af{P,PQ)pB (1),

* Communicated to the Phil. Blag, by the author, having been read before the

Boyal Society of Edinburgh, July 16th, 1900; and before the "Congr^s" of the

Paris Exhibition in August 1900.

t The so-called "electro-magnetic theory of light" does not cut away this

foundation from the old undulatory theory of light. It adds to that primary theory

an enormous province of transcendent interest and importance ; it demands of us

not merely an explanation of all the phenomena of light and radiant heat by

transverse vibrations of an elastic solid called ether, but also the inclusion of

electric currents, of the permanent magnetism of steel and lodestone, of magnetic

force, and of electrostatic force, in a comprehensive etherial dynamics.
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where p denotes the density of the ether at Q, and /(P, PQ)
denotes a quantity depending on the position of P and on the

distance PQ. The whole force exerted by the atom on the

portion pB of the ether at Q, is the resultant of all the forces

calculated according to (1), for all the infinitesimal portions A
into which we imagine the whole volume of the atom to be

divided.

§ 3. According to the doctrine of the potential in the well-

known mathematical theory of attraction, we find rectangular

components of this resultant as follows :

—

d d \

^ = p^:rA^^'y'^)

•(2),

dz

where x, y, z denote coordinates of Q referred to lines fixed with

reference to the atom, and </> denotes a function (which we call

the potential at Q due to the atom) found by summation as

follows :

—

where ///J. denotes integration throughout the volume of the

atom.

§ 4. The notation of (1) has been introduced to signify that

no limitation as to admissible law of force is essential ; but no

generality, that seems to me at present practically desirable, is

lost if we assume, henceforth, that it is the Newtonian law of the

inverse square of the distance. This makes

f{P,PQ)=^, (4),

r* a
and therefore drf{P,r)=^y^ (5),

J PQ ^H
where a is a coefficient specifying for the point, P, of the atom,

the intensity of its attractive quality for ether. Using (5) in (3)

we find

^-\\\^n (•')

and the components of the resultant force are still expressed

by (2). We may suppose a to be either positive or negative
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(positive for attraction and negative for repulsion) ; and in fact

in our first and simplest illustration of the problem we suppose

it to be positive in some parts and negative in other parts of the

atom, in such quantities as to fulfil the condition

//M« = (7).

§ 5. As a first and very simple illustration, suppose the a^om

to be spherical, of radius unity, with concentric interior spherical

surfaces of equal density. This gives, for the direction of the

resultant force on any particle of the ether, whether inside or

outside the spherical boundary of the atom, a line through the

centre of the atom. We may now take A = 4<7rr^dr. The further

assumption of (7) may thus be expressed by

drr'-a^O (8);
Jo

and this, as we are now supposing the forces between every

particle of the atom and every particle of the ether to be subject

to the Newtonian law, implies, that the resultant of its attractions

and repulsions is zero for every particle of ether outside the

boundary of the atom. To simplify the case to the utmost, we

shall further suppose the distribution of positive and negative

density of the atom, and the law of compressibility of the ether,

to be such, that the average density of the ether within the atom

is equal to the undisturbed density of the ether outside. Thus

the attractions and repulsions of the atom in lines through its

centre produce, at different distances from its centre, condensa-

tions and rarefactions of the ether, with no change of the total

quantity of it within the boundary of the atom; and therefore

produce no disturbance of the ether outside. To fix the ideas,

and to illustrate the application of the suggested hypothesis to

explain the refractivity of ordinary isotropic transparent bodies

such as water or glass, I have chosen a definite particular case in

which the distribution of the ether when at rest within the atom

is expressed by the following formula, and partially shown in

the accompanying diagram (fig. 1), and tables of calculated

numbers :

—

^''^
1+^(1-/)^ ^^^•

Here, r' denotes the undisturbed distance from the centre of the

atom, of a particle of the ether which is at distance 7' when at
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rest under the influence of the attractive and repulsive forces.

4f7r
According to this notation ^- S (r^) is the disturbed volume of a

o

spherical shell of ether whose undisturbed radius is ?'' and thick-

Hence, if we denote the disturbed
47r

ness Si'' and volume — B (r'^).

o

and undisturbed densities of the ether by p and unity respectively,

we have

p8{r') = 8{r'') (10);

whence, by (9),

P = 8 + A'(3-r')(l-r')'
.(11).

This gives \ + K for the density of the ether at the centre

of the atom. In order that the disturbance may suffice for

refractivities such as those of air, or other gases, or water, or

glass, or other transparent liquids or isotropic solids, according

to the dynamical theory explained in | 16 below, I find that K
may for some cases be about equal to 100, and for others must

be considerably greater. I have therefore taken K = 100, and

calculated and drawn the accompanying tables and diagram

accordingly.

Table I.

Col. 1 Col. 2 Col. 3 Col. 3' Col. 4 Col. 5

r'

/3
r r'-r P {p-l)r^

0-00 101 •o 0-000 0-000 101^0 0-000

•05 91^25 •Oil •039 88-1 •Oil

•10 . 82^0 •023 •077 75-3 •039

•20 65-0 •049 •151 55-8 •132

•30 50-0 •082 •218 39-1 •256

•40 37^0 •120 •280 25-8 •357

•50 26^0 •169 •331 15^8 •423

•60 17-0 •233 •367 8^76 •423

•70 10 •325 •375 4^17 338
•80 50 •468 •332 1^60 •131

•85 3-25 •578 272 0^90 -0-033
•90 2^00 •715 •185 0-50 - -256

•95 1^25 •865 •085 •35 - -486

•96 1^16 •897 •063 •36 • - -515

•97 1-09 •928 •042 •39 - -525

•98 1^04 •957 •023 •46 - -495

•99 1^01 •982 •008 •61 - ^376

1^00 1-00 1^000 •000 1-00 - •ooo
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Table II.

Col. 1 Col. 2 Col. 3 Col. 4

9

Col. 5

r r' r - r' (/,- 1)7-2

000 0-000 0-000 101-00 0-000
02 •091 •071 78-5 •030
•04 •169 •129 64-4 •191
•06 •235 •175 49-6 •175
•08 •297 •217 39-5 •246
•10 •351 •251 31-8 •308
•20 •551 •351 11-8 •432
•30 •677 •377 5-00 -360
•40 •758 •358 2-46 •234

•50 •816 •316 1-34 •085
•60 •858 •258 0-82 -0-065
•70 •895 •195 0-53 - ^231
•80 •929 •129 0-38 - ^397
•90 •961 •061 0-36 - ^518

100 1^000 •000 1^00 •000

§ 6. The diagram (fig. 1) helps us to understand the dis-

placement of ether and the resulting distribution of density,

within the atom. The circular arc marked 100 indicates a

spherical portion of the boundary of the atom ; the shorter of

the circular arcs marked 95, "90, 20, '10 indicate spherical

surfaces of undisturbed ether of radii equal to these numbers.

The positions of the spherical surfaces of the same portions of

ether under the influence of the atom, are indicated by the arc

marked 1"00, and the longer of the arcs marked "95, "90, ... '50,

and the complete circles marked "40, 'SO, "20, 'lO. It may be

remarked that the average density of the ether within any one

of the disturbed spherical surfaces, is equal to the cube of the

ratio of the undisturbed radius to the disturbed radius, and is

shown numerically in column 2 of Table I. Thus, for example,

looking at the table and diagram, we see that the cube of the

radius of the short arc marked "50 is 26 times the cube of the

radius of the long arc marked 'bO, and therefore the average

density of the ether within the spherical surface corresponding to

the latter is 26 times the density (unity) of the undisturbed ether

within the spherical surface corresponding to the former. The

densities shown in column 4 of each table are the densities of the

ether at (not the average density of the ether within) the con-

centric spherical surfaces of radius r in the atom. Column 5 in
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each table shows l/47re of the excess (positive or negative) of the

quantity of ether in a shell of radius r and infinitely small

thickness e as disturbed by the atom above the quantity in a

•00

1-00

•95

•90

•80

•70

•60

•50

•95

'90

•80

•70.

•60

•50

•40

Fig. 1.

1-00

•95

•50

•80

•70

60

•50
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shell of the same dimensions of undisturbed ether. The formula

of col. 2 makes ?• = 1 when r' — 1, that is to say the total quantity

of the disturbed ether within the radius of the atom is the same

as that of undisturbed ether in a sphere of the same radius.

Hence the sum of the quantities of ether calculated from col. 5

for consecutive values of r, with infinitely small differences from

r = to r = 1, must be zero. Without calculating for smaller

differences of r than those shown in either of the tables, we find

a close verification of this result by drawing, as in fig. 2, a curve

to represent (p — l)r^ through the points for which its value is

given in one or other of the tables, and measuring the areas on

the positive and negative sides of the line of abscissas. By
drawing on paper (four times the scale of the annexed diagram),

showing engraved squares of "5 inch and "1 inch, and counting

the smallest squares and parts of squares in the two areas, I have

verified that they are equal within less than 1 per cent, of either

sum, which is as close as can be expected from the numerical

approximations shown in the tables, and from the accuracy

attained in the drawinsr.

/^^
/ \

/ \
\

\

\

1 \
J \,

1 N
1 ; i 4 5

\;
6 7 B »

\,

\

\, -
\

\
\ I

\

\ /
\ /^

.J

Fig. 2.

§ 7. In Table I. (argument r') all the quantities are shown

for chosen values of r', and in Table II. for chosen values of r.
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The calculations for Table I. are purely algebraic, involving

merely cube roots beyond elementary arithmetic. To calculate

in terms of given values of r the results shown in Table II.

involves the solution of a cubic equation. They have been

actually found by aid of a curve drawn from the numbers of

col. 3 Table I., showing r in terms of r'. The numbers in col. 2

of Table II. showing, for chosen values of r, the corresponding

values of r, have been taken from the curve ; and we may verify-

that they are approximately equal to the roots of the equation

shown at the head of col. 2 of Table I., regarded as a cubic for r'

with any given values of r and K.

Thus, for example, taking r = "929 we calculate r = "Sll,

„ r' = -816 „ r = -498,

„ 7'' = -677 „ r = -301,

„ r' = -091 „ r = -0208,

where we should have r = "8, '5, '3, and "02 respectively. These

approximations are good enough for our present purpose.

§ 8. The diagram of fig. 2 is interesting, as showing how,

with densities of ether varying through the wide range of from

•35 to 101, the whole mass within the atom is distributed among

the concentric spherical surfaces of equal density. We see by it,

interpreted in conjunction with col. 4 of the tables, that from the

centre to '56 of the radius the density falls from 101 to 1. For

radii from "56 to 1, the values of (p — !)?•- decrease to a negative

minimum of "525 at r = "93, and rise to zero at r = 1. The place

of minimum density is of course inside the radius at which

(p — 1) r- is a minimum ; by cols. 4 and 8 of Table I., and cols. 4

and 1 of Table II., we see that the minimum density is about '35,

and at distance approximately '87 from the centre.

§ 9. Let us suppose now our atom to be set in motion through

space occupied by ether, and kept in motion with a uniform

velocity v, which we shall first suppose to be infinitely small in

comparison with the propagational velocity of equivoluminal*

waves through pure ether undisturbed by any other substance

than that of the atom. The velocity of the earth in its orbit

* That is to say, waves of transverse vibration, being the only kind of wave in

an isotropic solid in which every part of the solid keeps its volume unchanged

during the motion. See Phil. Mag., May, August, and October, 1899.
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round the sun being about 1/10,000 of the velocity of light, is

small enough to give results, kinematic and dynamic, in respect

to the relative motion of ether and the atoms constituting the

earth closely in agreement with this supposition. According to

it, the position of every particle of the ether at any instant is the

same as if the atom were at rest ; and to find the motion produced

in the ether by the motion of the atom, we have a purely

kinematic problem of which an easy graphic solution is found

by marking on a diagram the successive positions thus determined

for any particle of the ether, according to the positiims of the

atom at successive times with short enough intervals between

them, to show clearly the path and the varying velocity of the

particle.

§ 10, Look, for example, at fig. 3, in which a semi-circum-

ference of the atom at the middle instant of the time we are

going to consider, is indicated by a semicircle Cgo^Co, with

diameter CoC^2o equal to two units of length. Suppose the centre

of the atom to move from right to left in the straight line GqC^^

with velocity '1, taking for unit of time the time of travelling 1/10

of the radius. Thus, reckoning from the time when the centre

is at Co, the times when it is at Ca, G^, Cm, Cjg, G^o are 2, 5, 10,

18, 20. Let Q' be the undisturbed position of a particle of ether

before time 2 when the atom reaches it, and after time 18 when

the atom leaves it. This implies that Q'G^ = Q'G^^ = 1, and

C2C10 = CjoCis
=

'8, and therefore CjoQ' = "6. The position of the

particle of ether, which when undisturbed is at Q', is found for

any instant t of the disturbance as follows :

—

Take GJJ = t/10; draw Q'G, and calling this r' find r' — 7' by

formula (9), or Table I. or II. : in Q'G take Q'Q = r — r. Q is

the position at time t of the particle whose undisturbed position

is Q'. The drawing shows the construction for t = 2, and t = 5,

and t= 18. The positions at times 2, 3, 4, 5, ... 15, 16, 17, 18

are indicated by the dots marked 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4,

5, 6, 7, 8 on the closed curve with a corner at Q', which has been

found by tracing a smooth curve through them. This curve,

which, for brevity, we shall call the orbit of the particle, is

clearly tangential to the lines Q'Cs and Q'G^s. By looking to the

formula (9), we see that the velocity of the particle is zero at

the instants of leaving Q' and returning to it. Fig. 4 shows the
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particular orbit of fig. 3, and nine others drawn by the same

method ; in all ten orbits of ten particles whose undisturbed

positions are in one line at right angles to the line of motion of

the centre of the atom, and at distances 0, "1, '2, ... "9 from it.

All these particles are again in one straight line at time 10, being

what we may call the time of mid-orbit of each particle. The

numbers marked on the right-hand halves of the orbits are times

from the zero of our reckoning; the numbers 1, 2, 3 ... etc. on

the left correspond to times 11, 12, 13 ... of our reckoning as

hitherto, or to times 1, 2, 3 ... after mid-orbit passages. Lines

drawn across the orbits through 1, 2, 3 ... on the left, show

simultaneous positions of the ten particles at times 1, 2, 3 after

mid- orbit. The line drawn from 4 across seven of the curved

orbits, shows for time 4 after mid-orbit, simultaneous positions

of eight particles, whose undisturbed distances are 0, "1, ... "7.

Remark that the orbit for the first of these ten particles is a

straight line.

§ 11. We have thus in | 10 solved one of the two chief

kinematic questions presented by our problem :—to find the

orbit of a particle of ether as disturbed by the moving atom,

relatively to the surrounding ether supposed fixed. The other

question, to find the path traced through the atom supposed fixed

while, through all space outside the atom, the ether is supposed

to move uniformly in parallel lines, is easily solved, as follows :

—

Going back to fig. 3, suppose now that instead of, as in § 10, the

atom moving from right to left with velocity 1 and the ether

outside it at rest, the atom is at rest and the ether outside it is

moving from left to right with velocity "1. Let '2, '3, '4, '5, '6, '7,

'8, '9, 0, '1, '2, '3, '4, '5, '6, '7, '8 be the path of a particle of ether

through the atom marked by seventeen points corresponding to

the same numbers unaccented showing the orbit of the same

particle of ether on the former supposition. On both suppositions,

the position of the particle of ether at time 10 from our original

era, (§ 10), is marked 0. For times 11, 12, 13, etc., the positions

of the particle on the former supposition are marked 1, 2, 3, 4, 5,

6, 7, 8 on the left half of the orbit. The positions of the same

particle on the present supposition are found by drawing from the

points 1, 2, 3, ... 7, 8 parallel lines to the right, 1 '1, 2 '2, 3 '3, ...

7 '7, 8 '8, equal respectively to 1, -2, -3, ... -7, "8 of the radius of
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the atom, being our unit of length. Thus we have the latter half

of the passage of the particle through the atom ; the first half is

equal and similar on the left-hand side of the atom. Applying

the same process to every one of the ten orbits shown in

fig. 4, and to the nine orbits of particles whose undisturbed

distances from the central line on the other side are "1, "2, ... '9,

we find the set of stream-lines shown in fig. 5 (p. 480). The

dots on these lines show the positions of the particles at times
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0, 1, 2, ... 19, 20 of our original reckoning (§ 10). The numbers

on the stream-line of the particle whose undisturbed distance

from the central line is -6 are marked for comparison with fig. 3.

Fig. 6.

The lines drawn across the stream-lines on the left-hand side of

fig. 5 show simultaneous positions of rows of particles of ether

which, when undisturbed, are in straight lines perpendicular to
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the direction of motion. The quadrilaterals thus formed within

the left-hand semicircle show the figures to which the squares

of ether, seen entering from the left-hand end of the diagram,

become altered in passing through the atom. Thus we have

completed the solution of our second chief kinematic question.

§ 12. The first dynamic question that occurs to us, returning

to the supposition of moving atom and of ether outside it at rest,

is :—What is the total kinetic energy (k) of the portion of the

ether which at any instant is within the atom ? To answer it,

think of an infinite circular cylinder of the ether in the space

traversed by the atom. The time-integral from any era ^ = of

the total kinetic energy of the ether in this cylinder is tK] because

the ether outside the cylinder is undisturbed by the motion of the

atom according to our present assumptions. Consider any circular

disk of this cylinder of infinitely small thickness e. After the

atom has passed it, it has contributed to Ik, an amount equal to

the time-integral of the kinetic energies of all the orbits of small

parts into which we may suppose it divided, and it contributes

no more in subsequent time. Imagine the disk divided into

concentric rings of rectangular cross-section edr'. The mass of

one of these rings is ^irr'dr'e because its density is unity; and

all its parts move in equal and similar orbits. Thus we find that

the total contribution of the disk amounts to

iTrei" dr'r'Us'ldt (12),

Avhere fds^/dt denotes integration over one-half the orbit of a

particle of ether whose undisturbed distance from the central

line is r'
;

(because ^ds^jdi"^ is the kinetic energy of an ideal

particle of unit mass moving in the orbit considered). Now the

time-integral Kt is wholly made up by contributions of successive

disks of the cylinder. Hence (12) shows the contribution per

time ejq, q being the velocity of the atom ; and (k being the

contribution per unit of time) we therefore have

K = 2'Trqj dr'r'lds^jdt (13).

I 13. The double integral shown in (13) has been evaluated

with amply sufficient accuracy for our present purpose by seem-

ingly rough summations ; firstly, the summations jds-jdt for the

T. L. 31
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ten orbits shown in fig. 4, and secondly, summation of these sums

each multiplied by dr'r. In the summations for each half-orbit,

ds has been taken as the lengths of the curve between the con-

secutive points from which the curve has been traced. This

implies taking dt = l throughout the three orbits corresponding

to undisturbed distances from the central line equal respectively

to 0, '6, "8 ; and throughout the other semi-orbits, except for the

portions next the corner, which correspond essentially to intervals

each < 1. The plan followed is sufficiently illustrated by the

accompanying Table III., which shows the whole process of

calculating and summing the parts for the orbit corresponding

to undisturbed distance "7.

Table IV. shows the sums for the ten orbits and the products

of each sum multiplied by the proper value of r', to prepare for

the final integration, which has been performed' by finding the

area of a representative curve drawn on conveniently squared

paper as described in | 6 above. The result thus found is •02115.

It is very satisfactory to see that, within "1 per cent., this agrees

with the simple sum of the widely different numbers shown in

col. 3 of Table IV.

Table III.

Orbit r = -7.

Table IV.

ds ds2 dt ds^jdt

•006 000036 0^14 000257
•137 •018769 1-00 •018769
•112 012544 1^00 •012544
•077 005929 1^00 •005929
•050 002500 1^00 •002500
•048 002804 100 •002304
•050 002500 1^00 •002500
•052 •002704 1-00 •002704

Sum •047507

r' jds'^ldt l.r'.jds^jdt

•0 •0818 •00000
•1 0804 •00080
•2 0781 •00156
•3 0769 •00231
•4 0722 00289
5 •0670 •00335
•6 •0567 00310
•7 •0475 •00332
•8 •0310 •00248
•9 •0114 •00102

Sum •02113

§ 14. Using in (13) the conclusion of § 13, and taking g = 1,

we find

/c = 27r. -002115 (14).

A convenient way of explaining this result is to remark that it is
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Mtj- 1 \ .

•634 of the kinetic energy f- -('l)-] of an ideal globe of rigid

matter of the same bulk as onr atom, moving with the same

velocity. Looking now at the definition of k in the beginning

of §12, we may put our conclusion in words, thus:—The dis-

tribution of etherial density within our ideal spherical atom

represented by (11) with K = 100, gives rise to kinetic energy

of the ether within it at any instant, when the atom is moving

slowly through space filled with ether, equal to "634 of the kinetic

energy of motion with the same velocity through ideal void space,

of an ideal rigid globe of the same bulk as the atom, and the

same density as the undisturbed density of the ether. Thus if

the atom, which we are supposing to be a constituent of real

ponderable matter, has an inertia of its own equal to / per unit

of its volume, the effective inertia of its motion through space

occupied by ether will be ^s^(/+"684); the diameter of the

atom being now denoted by s (instead of 2 as hitherto), and the

inertia of unit bulk of the ether being still (as hitherto) taken as

unit of inertia. In all that follows we shall suppose / to be very

great, much greater than 10"; perhaps greater than 10^1

§ 15. Consider now, as in § 11 above, our atom at rest; and

the ether moving uniformly in the space around the atom, and

through the space occupied by the atom, according to the curved

stream-lines and the var3ang velocities shown in fig. 5. The

effective inertia of any portion of the ether containing the atom

will be greater than the simple inertia of an equal volume of the

ether by the amount w s^ x '634. This follows from the well-known

dynamical theorem that the total kinetic energy of any moving
body or system of bodies is equal to the kinetic energy due to the

motion of its centre of inertia, plus the sum of the kinetic energies

of the motions of all its parts relative to the centre of inertia.

§ 16. Suppose now a transparent body— solid, liquid, or

gaseous—to consist of an assemblage of atoms all of the same
magnitude and quality as our ideal atom defined in § 2, and

with / enormously great as described in § 14. The atoms may
be all motionless as in an absolutely cold solid, or they may have

the thermal motions of the molecules of a solid, liquid, or gas at

31—2
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any temperature not so high but that the thermal velocities are

everywhere small in comparison with the velocity of light. The

effective inertia of the ether per unit volume of the assemblage

will be exceedingly nearly the same as if the atoms were all

absolutely fixed, and will therefore, by § 15, be equal to

l+iV^Js^-634 (15),
o

where N denotes the number of atoms per cubic centimetre of the

assemblage, one centimetre being now our unit of length. Hence,

if we denote by V the velocity of light in undisturbed ether, its

velocity through the space occupied by the supposed assemblage

of atoms will be

V /(l+N'^s'-QS^y (16).

§ 17. For example, let us take iV= 4 x 10^°*
; and, as I find

suits the cases of oxygen and argon, s = 1*42 x 10~®, which gives

iV'^s^ = "60 X 10~l The assemblage thus defined would, if con-
6

densed one-thousand-fold, have "6 of its whole volume occupied by

the atoms and '4 by undisturbed ether ; which is somewhat denser

than the cubic arrangement of globes

[space unoccupied = 1 — ^ = '4764
j

,

and less dense than the densest possible arrangement

( space unoccupied = 1 — ^—j^ = "2590
j

.

Taking now iV^ s' = '60 x 10~^ in (16), we find for the refractive

index of our assemblage 1'00019, which is somewhat smaller than

the refractive index of oxygen (1 000273). By taking for K a larger

value than 100 in (11), we could readily fit the formula to give, in

* I am forced to take this very large number instead of Maxwell's 19 x 10^*,

as I have found it otherwise impossible to reconcile the known viscosities and the

known condensations of hydrogen, oxygen, and nitrogen with Maxwell's theoretical

formulas. [In § 50 of Lect. XVII. of the present volume we saw that the smaller

value 10-" is admissible and probably may be not far from the truth.] It must be

remembered that Avogadro's law makes N the same for all gases.
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an assemblage in which "6 x 10~" of the whole space is occupied

by the atom, exactly the refractive index of oxygen, nitrogen, or

argon, or any other gas. It is remarkable that according to the

particular assumptions specified in § 5, a density of ether in the

centre of the atom considerably greater than 100 times the

density of undisturbed ether is required to make the refractivity

as great as that of oxygen. There is, however, no difficulty in

admitting so great a condensation of ether by the atom, if we

are to regard our present problem as the basis of a physical

hypothesis worthy of consideration,

§ 18. There is, however, one serious, perhaps insuperable,

difficulty to which I must refer in conclusion : the reconciliation

of our hypothesis with the result that ether in the earth's

atmosphere is motionless relatively to the earth, seemingly proved

by an admirable experiment designed by Michelson, and carried

out with most searching care to secure a trustworthy result, by

himself and Morley*. I cannot see any flaw either in the idea

or in the execution of this experiment. But a possibility of

escaping from the conclusion which it seemed to prove may be

found in a brilliant suggestion made independently by Fitzgerald f,

and by Lorentz;;: of Leyden, to the effect that the motion of ether

through matter may slightly alter its linear dimensions ; according

to which if the stone slab constituting the sole plate of Michelson

and Morley's apparatus has, in virtue of its motion through space

occupied by ether, its lineal dimensions shortened one one-hundred-

millionth § in the direction of motion, the result of the experiment

would not disprove the free motion of ether through space occupied

by the earth.

* Phil. Mag., December, 1887.

t Public Lectures in Trinity College, Dublin.

J Versuch einer Theorie der electrischen und optischen Erscheinungen in bewegten

Korperri. Leiden, 1895.

§ This being the square of the ratio of the earth's velocity round the sun

(30 kilometres per sec.) to the velocity of light (300,000 kilometres per sec).
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NINETEENTH CENTURY CLOUDS OVER THE DYNAMICAL
THEORY OF HEAT AND LIGHT*.

(Friday evening Lecture, Royal Institution, April 27, 1900.)

[In the present article the substance of the lecture is repro-

duced—with large additions, in which work commenced at the

beginning of last year and continued after the lecture, during

thirteen months up to the present time, is described—with results

confirming the conclusions and largely extending the illustrations

which were given in the lecture. I desire to take this opportunity

of expressing my obligations to Mr William Anderson, my secretary

and assistant, for the mathematical tact and skill, the accuracy of

geometrical drawing, and the unfailingly faithful perseverance in

the long-continued and varied series of drawings and algebraic

and arithmetical calculations, explained in the following pages.

The whole of this work, involving the determination of results

due to more than five thousand individual impacts, has been

performed by Mr Anderson.—K., Feb. 2, 1901.]

§ 1. The beauty and clearness of the dynamical theory, which

asserts heat and light to be modes of motion, is at present ob-

scured by two clouds. I. The first came into existence with the

undulatory theory of light, and was dealt with by Fresnel and

Dr Thomas Young; it involved the question. How could the earth

move through an elastic solid, such as essentially is the lumini-

ferous ether ? II. The second is the Maxwell-Boltzmann doctrine

regarding the partition of energy.

§ 2. Cloud I.

—

Relative Motion of Ether and Ponder-
able Bodies; such as movable bodies at the earth's surface,

stones, metals, liquids, gases ; the atmosphere surrounduig the

earth; the earth itself as a whole; meteorites, the moon, the sun,

* Journal of the Eoijal Institution. Also Phil. Maij. July, 1901.
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and other celestial bodies. We might imagine the question satis-

factorily answered, by supposing ether to have practically perfect

elasticity for the exceedingly rapid vibrations, with exceedingly

small extent of distortion, which constitute light; while it behaves

almost like a fluid of very small viscosity, and yields with ex-

ceedingly small resistance, practically no resistance, to bodies

moving through it as slowly as even the most rapid of the

heavenly bodies. There are, however, many very serious objections

to this supposition; among them one which has been most noticed,

though perhaps not really the most serious, that it seems in-

compatible with the known phenomena of the aberration of light.

Referring to it, Fresnel, in his celebrated letter* to Arago, wrote

as follows:

" Mais il parait impossible d'expliquer I'aberration des etoiles

"dans cette hypothese; je n'ai pu jusqu'a present du moins con-

"cevoir nettement ce phenomene qu'en supposant que I'ether

" passe librement au travers du globe, et que la vitesse communi-
" quee a ce fluide subtil n'est qu'une petite partie de celle de la

"terre; n'en excede pas le centieine, par exemple.

"Quelque extraordinaire que paraisse cette hypothese au premier

" abord, elle n'est point en contradiction, ce me semble, avec I'idee

" que les plus grands physiciens se sont faite de I'extreme porosite

" des corps."

The same hypothesis was given by Thomas Young, in his

celebrated statement that ether passes through among the mole-

cules or atoms of material bodies like wind blowing through a

grove of trees. It is clear that neither Fresnel nor Young had

the idea that the ether of their undulatory theory of light, with

its transverse vibrations, is essentially an elastic solid, that is to

say, matter which resists change of shape with permanent or

sub-permanent force. If they had grasped this idea they must

have noticed the enormous difficulty presented by the laceration

which the ether must experience if it moves through pores or

interstices among the atoms of matter.

§ 3. It has occurred to me that, without contravening any-

thing we know from observation of nature, we may simply deny

the scholastic axiom that two portions of matter cannot jointly

* Annales de Chimie, 1818
;
quoted in full by Larmor in his recent book, yEther

and Matter, pp. 320—322.
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occupy the same space, and may assert, as an admissible hypo-

thesis, that ether does occupy the same space as ponderable

matter, and that ether is not displaced by ponderable bodies

moving through space occupied by ether. But how then could

matter act on ether, and ether act on matter, to produce the

known phenomena of light (or radiant heat), generated by the

action of ponderable bodies on ether, and acting on ponderable

bodies to produce its visual, chemical, phosphorescent, thermal,

and photographic effects ? There is no difficulty in answering

this question if, as it probably is, ether is a compressible and

dilatable* solid. We have only to suppose that the atom exerts

force on the ether, by which condensation or rarefaction is pro-

duced within the space occupied by the atom. At present
-f-

I

confine myself, for the sake of simplicity, to the suggestion of a

spherical atom producing condensation and rarefaction, with con-

centric spherical surfaces of equal density, but the same total

quantity of ether within its boundary as the quantity in an

equal volume of free undisturbed ether.

§ 4. Consider now such an atom given at rest anywhere in

space occupied by ether. Let force be applied to it to cause it to

move in any direction, first with gradually increasing speed, and

after that with uniform speed. If this speed is anything less

than the velocity of light, the force may be mathematically proved

to become zero at some short time after the instant when the

velocity of the atom becomes uniform, and to remain zero for

ever thereafter. What takes place is this :

§ 0. During all the time in which the velocity of the atom is

being augmented from zero, two sets of non-periodic waves, one

of them equi-voluminal, the other irrotational (which is therefore

condensational-rarefactional), are being sent out in all directions

through the surrounding ether. The rears of the last of these

waves leave the atom, at some time after its acceleration ceases.

This time, if the motion of the ether outside the atom, close

* To deny this property is to attribute to ether indefinitely great resistance

against forces tending to condense it or to dilate it—which seems, in truth, an

infinitely difficult assumption.

t Further developments of the suggested idea have been contributed to the

Royal Society of Edinburgh, and to the Congr^s International de Physique held in

Paris in August. {Froc. R.S.E. July 1900 ; Vol. of reports, in French, of the Cong.

Inter.] and Phil. Mag., Aug., Sept., 1900.)
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beside it, is infinitesimal, is equal to the time taken by the slower

wave (which is the equi-voluminal) to travel the diameter of the

atom, and is the short time referred to in §4. When the rears

of both waves have got clear of the atom, the ether within it and

in the space around it, left clear by both rears, has come to a

steady state of motion relatively to the atom. This steady motion

approximates more and more nearly to uniform motion in parallel

lines, at greater and greater distances from the atom. At a

distance of twenty diameters it differs exceedingly little from

uniformity.

§6. But it is only when the velocity of the atom is very

small in comparison with the velocity of light, that the dis-

turbance of the ether in the space close round the atom is

infinitesimal. The propositions asserted in § 4 and the first sen-

tence of §5 are true, however little the final velocity of the atom

falls short of the velocity of light. If this uniform final velocity

of the atom exceeds the velocity of light, by ever so little, a

non-periodic conical wave of equi-voluminal motion is produced,

according to the same principle as that illustrated for sound by

Mach's beautiful photographs of illumination by electric spark,

showing, by changed refractivity, the condensational- rarefactional

disturbance produced in air by the motion through it of a rifle

bullet. The semi-vertical angle of the cone, whether in air or

ether, is equal to the angle whose sine is the ratio of the wave

velocity to the velocity of the moving body*.

* On the same principle we see that a body moving steadily (and, with little

error, we may say also that a fish or water-fowl propelling itself by fins or web-feet)

through calm water, either fioating on the surface or wholly submerged at some

moderate distance below the surface, produces no wave disturbance if its velocity is

less than the minimum wave velocity due to gravity and surface tension (being about

23 cms. per second, or -44 of a nautical mile per hour, whether for sea water or fresh

water); and if its velocity exceeds the minimum wave velocity, it produces a wave

disturbance bounded by two lines inclined on each side of its wake at angles each

equal to the angle whose sine is the minimum wave velocity divided by the velocity

of the moving body. It is easy for anyone to observe this by dipping vertically a

pencil or a walking-stick into still water in a pond (or even in a good-sized hand-

basin), and moving it horizontally, first with exceeding small speed, and afterwards

faster and faster. I first noticed it nineteen years ago, and described observations

for an experimental determination of the minimum velocity of waves, in a letter to

William Froude, published in Nature for Oct., in Phil. Mag. for Nov. 1871, and

in App. G below, from which the following is extracted. "[Recently, in the

" schooner yacht Lalla Rookh], being becalmed in the Sound of Mull, I had an

" excellent opportunity, with the assistance of Professor Helmholtz, and my brother
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§ 7. If, for a moment, we imagine the steady motion of the

atom to be at a higher speed than the wave velocity of the

eondensational-rarefactional wave, two conical waves, of angles

corresponding to the two wave velocities, -will be steadily pro-

duced ; but we need not occupy ourselves at present with this

case because the velocity of the eondensational-rarefactional wave

in ether is, we are compelled to believe, enormously great in

comparison with the velocity of light.

§ 8. Let now a periodic force be applied to the atom so as to

cause it to move to and fro continually, with simple harmonic

motion. By the first sentence of § 5 we see that two sets of

periodic waves, one equi-voluminal, the other irrotational, are

continually produced. Without mathematical investigation we

see that if, as in ether, the eondensational-rarefactional wave

velocity is very great in comparison with the equi-voluminal wave

velocity, the energy taken by the eondensational-rarefactional

wave is exceedingly small in comparison with that taken by the

equi-voluminal wave ; how small we can find easily enough by

regular mathematical investigation. Thus we see how it is that

the hypothesis of § 3 suffices for the answer suggested in that

section to the question, How could matter act on ether so as to

produce light ?

§ 9. But this, though of primary importance, is only a small

part of the very general question pointed out in § 3 as needing

answer. Another part, fundamental in the undulatory theory of

" from Belfast [the late Professor James Thomson], of determining by observation

" the minimum wave-velocity with some ai^proach to accuracy. The fishing-line

" was hung at a distance of two or three feet from the vessel's side, so as to cut the

"water at a point not sensibly disturbed by the motion of the vessel. The speed

"was determined by throwing into the sea pieces, of pajier previously wetted, and
" observing their times of transit across parallel planes, at a distance of 912 centi-

" metres asunder, fixed relatively to the vessel by marks on the deck and gunwale.

"By watching carefully the pattern of ripples and waves which connected the

" ripples in front with the waves in rear, I had seen that it included a set of

" parallel waves slanting off obliquely on each side and presenting appeai'ances

" which proved them to be waves of the critical length and corresponding minimum
" speed of propagation." When the speed of the yacht fell to but little above the

critical velocity, the front of the ripples was very nearly perpendicular to the line

of motion, and when it just fell below the critical velocity the ripples disappeared

altogether, and there was no perceptible disturbance on the surface of the water.

The sea was "glassy"; though there was wind enough to propel the schooner at

speed varying between ^ mile and 1 mile per hour.
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optics, is, How is it that the velocity of light is smaller in trans-

parent ponderable matter than in pure ether? Attention was
called to this particular question in ray address, to the Royal

Institution, of last April ; and a slight explanation of my pro-

posal for answering it was given, and illustrated by a diagram.

The validity of this proposal is confirmed [in App. A] by a some-

what elaborate discussion and mathematical investigation of the

subject worked out since that time and communicated under the

title, " On the Motion produced in an Infinite Elastic Solid by the

Motion through the Space occupied by it of a Body acting on it

only by Attraction or Repulsion," to the Royal Society of Edin-

burgh on July 17, and to the Congres International de Physique

for its meeting at Paris in the beginning of August.

§ 10. The other phenomena referred to in § 3 come naturally

under the general dynamics of the undulatory theory of light,

and the full explanation of them all is brought much nearer if

we have a satisfactory fundamental relation between ether and

matter, instead of the old intractable idea that atoms of matter

displace ether from the space before them, when they are in

motion relatively to the ether around them. May we then sup-

pose that the hypothesis which I have suggested clears away the

first of our two clouds ? It certainly would explain the " aber-

ration of light" connected with the earth's motion through

ether in a thoroughly satisfactory manner. It would allow the

earth to move with perfect freedom through space occupied by
ether without displacing it. In passing through the earth the

ether, an elastic solid, would not be lacerated as it would be

according to Fresnel's idea of porosity and ether moving through

the pores as if it were a fluid. Ether would move relatively to

ponderables with the j)erfect freedom wanted for what we know
of aberration, instead of the imperfect freedom of air moving
through a grove of trees suggested by Thomas Young. According

to it, and for simplicity neglecting the comparatively very small

component due to the earth's rotation (only "46 of a kilometre per

second at the equator where it is a maximum), and neglecting

the imperfectly known motion of the solar system through space

towards the constellation Hercules, discovered by Herschel*, there

* The splendid spectroscopic method originated by Huggins thirty-three years

ago, for measuring the component in the line of vision of the relative motion of the
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would be at all points of the earth's surface a flow of ether at the

rate of 30 kilometres per second in lines all parallel to the tangent

to the earth's orbit round the sun. There is nothing inconsistent

with this in all we know of the ordinary phenomena of terrestrial

optics; but, alas! there is inconsistency with a conclusion that

ether in the earth's atmosphere is motionless relatively to the

earth, seemingly proved by an admirable experiment designed by

Michelson, and carried out, with most searching care to secure a

trustworthy result, by himself and Morley*. I cannot see any

flaw either in the idea or in the execution of this experiment.

But a possibility of escaping from the conclusion which it seemed

to prove may be found in a brilliant suggestion made indepen-

dently by Fitzgeraldf and by LorentzJ of Leyden, to the effect

that the motion of ether through matter may slightly alter its

linear dimensions, according to which if the stone slab constituting

the sole plate of Michelson and Morley's apparatus has, in virtue

of its motion through space occupied by ether, its lineal dimensions

shortened one one-hundred-millionth § in the direction of motion,

the result of the experiment would not disprove the free motion

of ether through space occupied by the earth.

§ 11. I am afraid we must still regard Cloud No. I. as very

dense.

earth, and any visible star, has been carried on since that time with admirable

perseverance and skill by other observers, who have from their results made
estimates of the velocity and direction of the motion through space of the centre

of inertia of the solar system. My Glasgow colleague, Professor Becker, has kindly

given me the following information on the subject of these researches :

" The early (1888) Potsdam photographs of the spectra of 51 stars brighter than
" '2i magnitude have been employed for the determination of the apex and velocity

" of the solar system. Kempf [Astronomische Nachrichteii, Vol. 132) finds for the
" apex : right ascension, 206° ± 12"; dechnation, 46° =t 90°; velocity, 19 kilometres

" per second ; and Risteen (Astronomical Journal, 1^93) finds practically the same
" quantities. The proper motions of the fixed stars assign to the apex a position

" which may be anywhere in a narrow zone parallel to the Milky-way, and extending
" 20° on both sides of a point of Eight Ascension 275° and Declination + 80°. The
"authentic mean of 13 values determined by the methods of Argelander or Airy

"gives 274° and +35° (Andr^, Traite d'Astronomie Stellaire)."

* Phil. Mag., December 1887.

t Public Lectures in Trinity College, DubUn.

X Versuch einer Theorie der electrischen und optischen Erscheiniingen in bewegten
Korpern. Leiden, 1895.

§ This being the square of the ratio of the earth's velocity round the sun
(30 kilometres per sec.) to the velocity of light (300,000 kilometres per sec).
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§ 12. Cloud II. Waterston (in a communication to the Royal

Society, now famous, which, after lying forty-five years buried

and almost forgotten in the archives, was rescued from oblivion

by Lord Rayleigh and published, with an introductory notice of

great interest and importance, in the Transactions of the Royal

Society for 1892), enunciated the following proposition :
" In mixed

"media the mean square molecular velocity is inversely propor-

" tional to the specific Aveight of the molecule. This is the law

" of the equilibrium of vis viva." Of this proposition Lord

Rayleigh in a footnote* says, "This is the first statement of a

"very important theorem (see also Brit. Assoc. Rep., 1851). The

"demonstration, however, of §10 can hardly be defended. It

"bears some resemblance to an argument indicated and exposed

" by Professor Tait {Edinburgh Trans., Vol. 33, p. 79, 1886). There

"is reason to think that this law is intimately connected with

"the Maxwellian distribution of velocities of which Waterston

" had no knowledge."

§13. In Waterston's statement the "specific weight of a

molecule" means what we now call simply the mass of a mole-

cule ; and " molecular velocity " means the translational velocity

of a molecule. Writing on the theory of sound in the Phil. Mag.

for 1858, and referring to the theory developed in his buried

paper f, Waterston said, "The theory ... assumes ... that if the

" impacts produce rotatory motion the vis viva thus invested bears

"a constant ratio to the rectilineal vis viva." This agrees with

the very important principle or truism given independently about

the same time by Clausius to the effect that the mean energy,

kinetic and potential, due to the relative motion of all the parts

of any molecule of a gas, bears a constant ratio to the mean

energy of the motion of its centre of inertia when the density and

pressure are constant.

1 14. Without any knowledge of what was to be found in

Waterston's buried paper. Maxwell, at the meeting of the British

Association at Aberdeen, in 1859 1, gave the following proposition

* Phil. Trans. A, 1892, p. 16.

t " On the Physics of Media that are Composed of Free and Perfectly Elastic

Molecules in a State of Motion." Phil. Trans. A, 1892, p. 13.

X "Illustrations of the Dynamical Theory of Gases," Phil. Mag., .January and

July 1860, and Collected Papers, Vol. i. p. 378.
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regarding the motion and collisions of perfectly elastic spheres

:

" Two systems of particles move in the same vessel ; to prove

" that the mean vis viva of each particle will become the same

"in the two systems." This is precisely Waterston's proposition

regarding the law of partition of energy, quoted in § 12 above
;

but Maxwell's 1860 proof was certainly not more successful than

Waterston's. Maxwell's 1860 proof has always seemed to me
quite inconclusive, and many times I urged my colleague, Pro-

fessor Tait, to enter on the subject. This he did, and in 1886

he communicated to the Royal Society of Edinburgh a paper*

on the foundations of the kinetic theory of gases, which contained

a critical examination of Maxwell's 1860 paper, highly appreciative

of the great originality and splendid value, for the kinetic theory

of gases, of the ideas and principles set forth in it ; but showing

that the demonstration of the theorem of the partition of energy

in a mixed assemblage of particles of different masses was

inconclusive, and successfully substituting for it a conclusive

demonstration.

§ 15. Waterston, Maxwell, and Tait, all assume that the

particles of the two systems are thoroughly mixed (Tait, § 18),

and their theorem is of fundamental importance in respect to

the specific heats of mixed gases. But they do not, in any of

the papers already referred to, give any indication of a proof of

the corresponding theorem, regarding the pa,rtition of energy

between two sets of equal particles separated by a membrane

impermeable to the molecules, while permitting forces to act

across it between the molecules on its two sidesf, which is the

simplest illustration of the molecular dynamics of Avogadro's

law. It seems to me, however, that Tait's demonstration of the

Waterston-Maxwell law may possibly be shown to virtually include,

not only this vitally important subject, but also the very interest-

ing, though comparativel}' unimportant, case of an assemblage of

particles of equal masses Avith a single particle of different mass

moving about among them.

* Phil. Trans. B.S.E., "On the Foundations of the Kinetic Theory of Gases,"

May 14 and December 6, 1886, and January 7, 1887.

+ A very interesting statement is given by Maxwell regarding this subject in his

latest paper regarding the Boltzmann-Maxwell doctrine. " On Boltzmann's Theorem
on the Average Distribution of Energy in a System of Material Points," Camb. Phil.

Trans., May 6, 1878; Collected Papers, Vol. n. pp. 713—741.
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§ 16. In §§ 12, 14, 15, " particle " has been taken to mean what

is commonly, not correctly, called an elastic sphere, but what is in

reality a Boscovich atom acting on other atoms in lines exactly

through its centre of inertia (so that no rotation is in any case

produced by collisions), with, as law of action between two atoms,

no force at distance greater than the sum of their radii, infinite

force at exactly this distance. None of the demonstrations, unsuc-

cessful or successful, to which I have referred would be essentially

altered if, instead of this last condition, we substitute a repulsion

increasing with diminishing distance, according to any law for

distances less than the sum of the radii, subject only to the

condition that it would be infinite before the distance became

zero. In fact the impact, oblique or direct, between two Boscovich

atoms thus defined, has the same result after the collision is

completed (that is to say, when their spheres of action get outside

one another) as collision between two conventional elastic spheres,

imagined to have radii dependent on the lines and velocities of

approach before collision (the greater the relative velocity the

smaller the effective radii); and the only assumption essentially

involved in those demonstrations is, that the radius of each

sphere is very small in comparison with the average length of

fi'ee path.

§17. But if the particles are Boscovich atoms, having centre

of inertia not coinciding with centre of force; or quasi-Boscovich

atoms, of non-spherical figure ; or (a more acceptable supposition)

if each particle is a ckister of two or more Boscovich atoms

;

rotations and changes of rotation would result from collisions.

Waterston's and Clausius' leading principle, quoted in § 13 above,

must now be taken into account, and Tait's demonstration is no

longer applicable. Waterston and Clausius, in respect to rotation,

both wisely abstained from saying more than that the average

kinetic energy of rotation bears a constant ratio to the average

kinetic energy of translation. With magnificent boldness Boltz-

mann and Maxwell declared that the ratio is equality ; Boltzmann

having found what seemed to him a demonstration of this re-

markable proposition, and Maxwell having accepted the supposed

demonstration as valid.

§ 18. Boltzmann went further*, and extended the theorem

* " Studien liber das Gleichgewicbt der lebendigen Kraft zwiscben bewegten

materielle" PnnVtpn." f^itzh K. Aknd Wipn Oo±ohpr « I8fi«
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of equality of mean kinetic energies to any system of a finite

number of material points (Boscovich atoms) acting on one

another, according to any law of force, and moving freely among

one another ; and finally, Maxwell * gave a demonstration extend-

ing it to the generalised Lagrangian coordinates of any system

whatever, with a finite or infinitely great number of degrees of

freedom. The words in which he enunciated his supposed theorem

are as follows

:

" The only assumption which is necessary for the direct proof

" is that the system, if left to itself in its actual state of motion,

" will, sooner or later, pass [infinitely nearly}-] through every phase

"which is consistent with the equation of energy" (p. 714), and

again (p. 716) :

" It appears from the theorem, that in the ultimate state of

"the system the average;]: kinetic energy of two portions of the

" system must be in the ratio of the number of degrees of freedom
" of those portions.

" This, therefore, must be the condition of the equality of

" temperature of the two portions of the system."

I have never seen validity in the demonstration § on which

Maxwell founds this statement, and it has always seemed to me
exceedingly improbable that it can be true. If true, it would

be very wonderful, and most interesting in pure mathematical

dynamics. Having been published by Boltzmann and Maxwell

it would be worthy of most serious attention, even without con-

* " On Boltzmann's Theorem on the Average Distribution of Energy in a

System of Material Points," Maxwell's Collected Papers, Vol. ii. pp. 713—741, and
Camh. Phil. Trans., May 6, 1878.

t I have inserted these two words as certainly belonging to Maxwell's meaning.

—K.

J The average here meant is a time-average through a sufficiently long time.

§ The mode of proof followed by Maxwell, and its connection with antecedent

considerations of his own and of Boltzmann, imply, as included in the general

theorem, that the average kinetic energy of any one of three rectangular com-
ponents of the motion of the centre of inertia of an isolated system, acted upon
only by mutual forces between its parts is equal to the average kinetic energy of

each generalised component of motion relatively to the centre of inertia. Consider,

for example, as "parts of the system" two particles of masses m and m' free to move
only in a fixed straight line, and connected to one another by a massless spring.

The Boltzmann-Maxwell doctrine asserts that the average kinetic energy of the

motion of the inertial centre is equal to the average kinetic energy of the motion
relative to the inertial centre. This is included in the wording of Maxwell's state-

ment in the text if, but not unless, m= m'. See footnote in § 7 of my paper, "On
some Test-Cases for the Boltzmanij-Maxwell Doctrine regarding Distribution of

Energy." Proc. Roy. Soc, June ll.'xlSM.
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sicleration of its bearing on thermo-dynamics. But, when we

consider its bearing on thermo-dynamics, and in its first and

most obvious application we find it destructive of the kinetic

theory of gases, of which Maxwell was one of the chief founders,

we cannot see it otherwise than as a cloud on the dynamical

theory of heat and light.

§ 19. For the kinetic theory of gases, let each molecule be

a cluster of Boscovich atoms. This includes every possibility

(" dynamical," or " electrical," or " physical," or " chemical") re-

garding the nature and qualities of a molecule and of all its

parts. The mutual forces between the constituent atoms must

be such that the cluster is in stable equilibrium if given at rest

;

which means, that if started from equilibrium with its consti-

tuents in any state of relative motion, no atom will fly away

from it, provided the total kinetic energy of the given initial

motion does not exceed some definite limit. A gas is a vast

assemblage of molecules thus defined, each moving freely through

space, except when in collision with another cluster, and each

retaining all its own constituents unaltered, or only altered by

interchange of similar atoms between two clusters in collision.

§ 20. For simplicity we may suppose that each atom. A, has

a definite radius of activity, a, and that atoms of different kinds,

A, A', have different radii of activity, <x, a ; such that A exercises

no force on any other atom, A', A", when the distance between

their centres is greater than a + a or a + a". We need not per-

plex our minds with the inconceivable idea of " virtue," whether

for force or for inertia, residing in a mathematical point* the

centre of the atom ; and without mental strain we can distinctly

believe that the substance (the " substratum " of qualities) resides

not in a point, nor vaguely through all space, but definitely in

the spherical volume of space bounded by the spherical surface

whose radius is the radius of activity of the atom, and whose

centre is the centre of the atom. In our intermolecular forces

thus defined we have no violation of the old scholastic law,

"Matter cannot act where it is not," but we explicitly ' violate

the other scholastic law, "Two portions of matter cannot simul-

" taneously occupy the same space." We leave to gravitation,

* See Math, and Phys. Papers, Vol, iii. Art. xcvii. " Molecular Constitution of

Matter," § 14.

T. L. 32
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and possibly to electricity (probably not to magnetism), the at

present very unpopular idea of action at a distance.

§ 21. We need not now (as in § 16, when we wished to keep

as near as we could to the old idea of colliding elastic globes)

suppose the mutual force to become infinite repulsion before the

centres of two atoms, approaching one another, meet. Following

Boscovich, we may assume the force to vary according to any

law of alternate attraction and repulsion, but without supposing

any infinitely great force, whether of repulsion or attraction, at

any particular distance ; but we must assume the force to be zero

when the centres are coincident. We may even admit the idea

of the centres being absolutely coincident, in at all events some

cases of a chemical combination of two or more atoms ; although

we might consider it more probable that in most cases the

chemical combination is a cluster, in which the volumes of the

constituent atoms overlap without any two centres absolutely

coinciding.

§22. The word "collision" used without definition in §19

may now, in virtue of §§20, 21, be unambiguously defined thus:

Two atoms are said to be in collision during all the time their

volumes overlap after coming into contact. They necessarily in

virtue of inertia separate again, unless some third body intervenes

with actioii which causes them to remain overlapping; that is to

say, causes combination to result from collision. Two clusters of

atoms are said to be in collision when, after being separate, some

atom or atoms of one cluster come to overlap some atom or atoms

of the other. In virtue of inertia the collision must be followed

either by the two clusters separating, as described in the last

sentence of § 19, or by some atom or atoms of one or both systems

being sent flying away. This last supposition is a matter-of-fact

statement belonging to the magnificent theory of dissociation,

discovered and worked out by Sainte-Clair Deville without any

guidance from the kinetic theory of gases. In gases approxi-

mately fulfilling the gaseous laws (Boyle's and Charles'), two

clusters must in general fly asunder after collision. Two clusters

could not possibly remain permanently in combination without at

least one atom being sent flying away after collision between two

clusters with no third body intervening*.

* See Kelvin's Math, and Phys. Papers, Vol. in. Art. xcvii. § 33. In this

reference, for "scarcely" substitute "not."
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§ 23. Now for the application of the Boltzmann-Maxwell

doctrine to the kinetic theory of gases : consider first a homo-

geneous single gas, that is, a vast assemblage of similar clusters

of atoms moving and colliding as described in the last sentence of

§ 19 ; the assemblage being so sparse that the time during which

each cluster is in collision is very short in comparison with the

time during which it is unacted on by other clusters, and its centre

of inertia, therefore, moves uniformly in a straight line. If there

are i atoms in each cluster, it has Si freedoms to move, that is to

say, freedoms in three rectangular directions for each atom. The

Boltzmann-Maxwell doctrine asserts that the mean kinetic energies

of these 'M motions are all equal, whatever be the mutual forces

between the atoms. From this, when the durations of the col-

lisions are not included in the time-averages, it is easy to prove

algebraically (with exceptions noted below) that the time-average

of the kinetic energy of the component translational velocity of

the inertial centre*, in any direction, is equal to any one of the

Si mean kinetic energies asserted to be equal to one another in

the preceding statement. There are exceptions to the algebraic

proof corresponding to the particular exception referred to in

the last footnote to §18 above; but, nevertheless, the general

Boltzmann-Maxwell doctrine includes the proposition, even in

those cases in which it is not deducible algebraically from the

equality of the Si energies. Thus, without exception, the average

kinetic energy of any component of the motion of the inertial

centre is, according to the Boltzmann-Maxwell doctrine, equal to

. of the whole average kinetic energy of the system. This makes

the total average energy, potential and kinetic, of the whole

motion of the system, translational and relative, to be 3*(1 +^)
times the mean kinetic energy of one component of the motion

of the inertial centre, where P denotes the ratio of the mean

potential energy of the relative displacements of the parts to

the mean kinetic energy of the whole system. Now, according

to Clausius' splendid and easily proved theorem regarding the

partition of energy in the kinetic theory of gases, the ratio of

the difference of the two thermal capacities to the constant-

volume thermal capacity is equal to the ratio of twice a single

* This expression I use for brevity to signify the kinetic energy of the whole

mass ideally collected at the centre of inertia.

32—2
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component of the translational energy to the total energy. Hence,

if according to our usual notation we denote the ratio of the

thermal capacity pressure-constant to the thermal capacity volume-

constant by k, we have,

'" ^~3i(l+P)'

§ 24. Example 1. For first and simplest example, consider a

monatomic gas. We have i=\, and according to our supposition

(the supposition generally, perhaps universally, made) regarding

atoms, we have P = 0. Hence, k — l=^.
This is merely a fundamental theorem in the kinetic theory of

gases for the case of no rotational or vibrational energy of the

molecule ; in which there is no scope either for Clausius' theorem

or for the Boltzmann-Maxwell doctrine. It is beautifully illus-

trated by mercury vapour, a monatomic gas according to chemists,

for which many years ago Kundt, in an admirably designed ex-

periment, found k — 1 to be very approximately f: and by the

newly discovered gases argon, helium, and krypton, for which also

k — \ has been found to have approximately the same value, by

Rayleigh and Ramsay. But each of these four gases has a large

number of spectrum lines, and therefore a large number of vibra-

tional freedoms, and therefore, if the Boltzmann-Maxwell doctrine

were true, k—1 would have some exceedingly small value, such

as that shown in the ideal example of § 26 below. On the other

hand, Clausius' theorem presents no difficulty; it merely asserts

that A; — 1 is necessarily less than f in each of these four cases,

as in every case in which there is any rotational or vibrational

energy whatever; and proves, from the values found experi-

mentally for k — \ in the four gases, that in each case the total

of rotational and vibrational energy is exceedingly small in

comparison with the translational energy. It justifies admirably

the chemical doctrine that mercury vapour is practically a mon-

atomic gas, and it proves that argon, helium, and krypton, are

also practically monatojnic, though none of these gases has hitherto

shown any chemical affinity or action of any kind from which

chemists could draw any such conclusion.

But Clausius' theorem, taken in connection with Stokes' and

Kirchhoff's dynamics of spectrum analysis, throws a new light on

what we are now calling a " practically monatomic gas." It shows
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that, unless we admit that the atoms can be set into rotation or

vibration by mutual collisions (a most unacceptable hypothesis),

each atom must have satellites connected with it (or ether con-

densed into it or around it) and kept, by the collisions, in motion

relatively to it with total energy exceedingly small in comparison

with the translational energy of the whole system of atom and

satellites. The satellites must in all probability be of exceedingly

small mass in comparison with that of the chief atom. Can they

be the " ions " by which J. J. Thomson explains the electric con-

ductivity induced in air and other gases by ultra-violet light,

Rontgen rays and Becquerel rays ?

Finally, it is interesting to remark that all the values of A; — 1

found by Rayleigh and Ramsay are somewhat less than | ; argon

•64, 61 ; helium "652 ; krypton '666. If the deviation from -667

were accidental they would probably have been some in defect and

some in excess.

Example 2. As a next simplest example let i = 2, and as a

very simplest case let the two atoms be in stable equilibrium

when concentric, and be infinitely nearly concentric when the

clusters move about, constituting a homogeneous gas. This sup-

position makes P = \, because the average potential energy is

equal to the average kinetic energy in simple harmonic vibrations

;

and in our present case half the whole kinetic energy, according

to the Boltzmann-Maxwell doctrine, is vibrational, the other half

being translational. We find Z; — 1 = | = "2222.

Example 3. Let i = 2; let there be stable equilibrium, with

the centres C, C of the two atoms at a finite distance a asunder,

and let the atoms be always very nearly at this distance asunder

when the clusters are not in collision. The relative motions of the

two atoms will be according to three freedoms, one vibrational,

consisting of very small shortenings and lengthenings of the

distance CC, and two rotational, consisting of rotations round

one or other of two lines perpendicular to each other and perpen-

dicular to CG' through the inertial centre. With these conditions

and limitations, and with the supposition that half the average

kinetic energy of the rotation is comparable with the average

kinetic energy of the vibrations, or exactly equal to it as according

to the Boltzmann-Maxwell doctrine, it is easily proved that in

rotation the excess of GC above the equilibrium distance a, due

to centrifugal force, must be exceedingly small in comparison
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with the maximum value of CC -a due to the vibration. Hence

the average jDotential energy of the rotation is negligible in

comparison with the potential energy of the vibration. Hence,

of the three freedoms for relative motion there is only one con-

tributory to P, and therefore we have P = ^. Thus we find

^ - 1 = I = -2857.

The best way of experimentally determining the ratio of the

two thermal capacities for any gas is by comparison between the

observed and the Newtonian velocities of sound. It has thus

been ascertained that, at ordinary temperatures and pressures,

k-1 differs but little from '406 for common air, which is a mixture

of the two gases nitrogen and oxygen, each diatomic according

to modern chemical theory ; and the greatest value that the

Boltzmann^MaxAvell doctrine can give for a diatomic gas is the

•2857 of Ex. 3. This notable discrepance from observation suffices

to absolutely disprove the Boltzmann-Maxwell doctrine. What is

really established in respect to partition of energy is what Clausius'

V theorem tells us (§ 23 above). We find, as a result of observation

and true theory, that the average kinetic energy of translation

of the molecules of common air is '609 of the total energy,

potential and kinetic, of the relative motion of the constituents

of the molecules.

§ 25. The method of treatment of Ex. 3 above, carried out for

a cluster of any number of atoms greater than two not in one line,

j + 2 atoms, let us say, shows us that there are three translational

freedoms ; three rotational freedoms, relatively to axes through

the inertial centre ; and Sj vibrational freedoms. Hence we have

i 1P = .
"^^ , and we find /j — 1 = ^,-7^. ^, . The values of ^• — 1 thus

J + 2'
_

3(l+j)
calculated for a triatomic and tetratomic gas, and calculated as

above in Ex. 3 for a diatomic gas, are shown in the following

table, and compared with the results of observation for several

such gases.

It is interesting to see how the dynamics of Clausius' theorem

is verified by the results of observation shown in the table. The

values of k—1 for all the gases are less than f , as they must be

when there is any appreciable energy of rotation or vibration in

the molecule. They arc different for different diatomic gases

;
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ranging from "42 for oxygen to '32 for chlorine, which is quite as

might be expected, when we consider that the laws of force

between the two atoms may differ largely for the different kinds

of atoms. The values of ^— 1 are, on the whole, smaller for the

Gas

Values of A-1

According to the By
H.-M. doctrine. Observation.

Air f = -2857 •406

H„ •40
0." •41

ci; •32

CO »» n •39

NO •39

COo J= -1667 •30

N2O >i 1)
•331

NH, ^ = •1111 •311

tetratomic and triatomic than for the diatomic gases, as might be

expected from consideration of Clausius' principle. It is probable

that the differences of ^ — 1 for the different diatomic gases are

real, although there is considerable uncertainty with regard to

the observational results for all or some of the gases other than

air. It is certain that the discrepancies from the values,

calculated according to the Boltzmann-Maxwell doctrine, are

real and great ; and that in each case, diatomic, triatomic, and

tetratomic, the doctrine gives a value for ^ — 1 much smaller

than the truth.

§ 26. But, in reality, the Boltzmann-Maxwell doctrine errs

enormously more than is shown in the preceding table. Spectrum

analysis showing vast numbers of lines for each gas makes it

certain that the number of freedoms of the constituents of each

molecule is enormously greater than those which we have been

counting, and therefore that unless we attribute vibratile quality

to each individual atom, the molecule of every one of the ordinary

gases must have a vastly greater number of atoms in its consti-

tution than those hitherto reckoned in regular chemical doctrine.

Suppose, for example, there are forty-one atoms in the molecule

of any particular gas ; if the doctrine were true we should have

y = 39. Hence there are 117 vibrational freedoms, so that there

might be 117 visible lines in the spectrum of the gas; and we
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have k — 1= ^ = -0083. There is, in fact, no possibility of

reconciling the Boltzraann-Maxwell doctrine with the truth re-

garding the specific heats of gases.

§ 27. It is, however, not quite possible to rest contented with

the mathematical verdict not proven, and the experimental verdict

not true, in respect to the Boltzmann-Maxwell doctrine. I have

always felt that it should be mathematically tested by the con-

sideration of some particular case. Even if the theorem were

true, stated as it was somewhat vaguely, and in such general

terms that great difficulty has been felt as to what it is really

meant to express, it would be very desirable to see even one other

simple case, besides that original one of Waterston's, clearly stated

and tested by pure mathematics. Ten years ago* I suggested

a number of test cases, some of which have been courteously

considered by Boltzmann ; but no demonstration either of the

truth or imtruth of the doctrine as applied to any one of them has

hitherto been given. A year later, I suggested what seemed to

me a decisive test case disproving the doctrine ; but my statement

was quickly and justly criticised by Boltzmann and Poincare;

and more recently Lord Rayleighf has shown very clearly that

my simple test case was quite indecisive. This last article of

Rayleigh's has led me to resume the consideration of several

different classes of dynamical problems, which had occupied me

more or less at various times during the last twenty years, each

presenting exceedingly interesting features in connection with the

double question : Is this a case which admits of the application

of the Boltzmann-Maxwell doctrine ; and, if so, is the doctrine

true for it ?

§ 28. Premising that the mean kinetic energies with which

the Boltzmann-Maxwell doctrine is concerned are time-integrals

of energies divided by totals of the times, we may conveniently

divide the whole class of problems, with reference to which the

doctrine comes into question, into two classes.

Class I. Those in which the velocities considered are either

* "On some Test-Cases for the Maxwell-Boltzmann Doctrine regarding Distribu-

tion of Energy," Proc. Boy. Soc, June 11, 1891.

t Phil. Mag., Vol. xxxiii. 1892, p. 356, "Eemarks on Maxwell's Investigation

respecting Boltzmann's Theorem."
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constant or only vary suddenly—that is to say, in infinitely small

times—or in times so short that they may be omitted from the

time-integration. To this class belong :

(a) The original Waterston-Maxwell case and the collisions

of ideal rigid bodies of any shape, according to the assumed law

that the translatory and rotatory motions lose no energy in the

collisions.

(6) The frictionless motion of one or more particles constrained

to remain on a surface of any shape, this surface being either closed

(commonly called finite though really endless), or being a finite area

of plane or curved surface, bounded like a billiard-table, by a wall

or walls, from which impinging particles are reflected at angles

equal to the angles of incidence.

(c) A closed surface, with non-vibratory particles moving

within it freely, except during impacts of particles against one

another or against the bounding surface.

(d) Cases such as (a), (b), or (c), with impacts against

boundaries and mutual impacts between particles, softened by

the supposition of finite forces during the impacts, with only

the condition that the durations of the impacts are so short as

to be practically negligible, in comparison with the durations of

free paths.

Class 11. Cases in which the velocities of some of the particles

concerned sometimes vary gradually ; so gradually that the times

during which they vary must be included in the time-integration.

To this class belong examples such as (d) of Class I. with durations

of impacts not negligible in the time-integration.

§ 29. Consider first Class I. (b) with a finite closed surface as

the field of motion and a single particle moving on it. If a particle

is given, moving in any direction through any point / of the field,

it will go on for ever along one determinate geodetic line. The
question that first occurs is, Does the motion fulfil Maxwell's con-

dition (see § 18 above) ; that is to say, for this case, if we go along

the geodetic line long enough, shall we pass infinitely nearly to

any point Q whatever, including /, of the surface an infinitely

great number of times in all directions ? This question cannot be

answered in the affirmative without reservation. For example,

if the surface be exactly an ellipsoid it must be answered in the

negative, as is proved in the following §§ 30, 31, 32.
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§ 30. Let AA', BB', CC be the ends of the greatest, mean,

and least diameters of an ellipsoid. Let Ui, U^, Us, U^ be the

umbilics in the arcs AC, CA', A'C, G'A. A known theorem in

the geometry of the ellipsoid tells us that every geodetic through

C/i passes through U-^, and every geodetic through U. passes through

Ui. This statement regarding geodetic lines on an ellipsoid of

three unequal axes is illustrated by fig. 1, a diagram showing

for the extreme case in which the shortest axis is zero, the exact

construction of a geodetic through Ui which is a focus of the

ellipse shown in the diagram. U^, C, C/4 being infinitely near to

Ui, G, U.2 respectively are indicated by double letters at the same

Fig. 1.

points. Starting from JJi draw the geodetic UiQU^', the two parts

of Avhich U-^Q and QU^ are straight lines. It is interesting to

remark that in whatever direction we start from f/j if we continue

the geodetic through U^, and on through U^ again and so on

endlessly, as indicated in the diagram by the straight lines

UiQ, UsQ', UiQ", UsQ'", and so on, we come very quickly to lines

approaching successively more and more nearly to coincidence with

the major axis. At every point where the path strikes the ellipse

it is reflected at equal angles to the tangent. The construction is

most easily made by making the angle between the reflected path

and a line to one focus, equal to the angle between the incident

path and a line to the other focus.
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§ 31. Returning now to the ellipsoid:—From any point 1,

between U-^ and U^, draw the geodetic IQ, and produce it through

Q on the ellipsoidal surface. It must cut the arc A'C'A at some

point between U^ and 11^, and, if continued on and on, it must cut

the ellipse AGA'C'A successively between f/j and f/o, or between

f/3 and f/4; never between U.. and U^, or Ui and Ui. This, for

the extreme case of the smallest axis zero, is illustrated by the

path IQQ'Q'Q"'Q''Q' in fig. 2.

§ 32. If now, on the other hand, we commence a geodetic

through any point / between Ui and U^^, or between Un and t/3, it

will never cut the principal section containing the umbilics, either

between U^ and U^ or between f/3 and U^. This for the extreme

case of GC = is illustrated in fig. 3.

§ 33. It seems not improbable that if the figure deviates by

ever so little from being exactly ellipsoidal, Maxwell's condition

might be fulfilled. It seems indeed quite probable that Maxwell's

condition (see §§ 13, 29, above) is fulfilled by a geodetic on a

closed surface of any shape in general, and that exceptional cases.

in which the question of § 29 is to be answered in the negative,

are merely particular surfaces of definite shapes, infinitesimal

deviations from which will allow the question to be answered in

the affirmative.
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§ 34. Now with an affirmative answer to the question—is

Maxwell's condition fulfilled ?—what does the Boltzmann-Maxwell

doctrine assert in respect to a geodetic on a closed surface ? The

mere wording of Maxwell's statement, quoted in § 13 above, is

not applicable to this case, but the meaning of the doctrine as

interpreted from previous writings both of Boltzmann and Maxwell,

and subsequent writings of Boltzmann, and of Rayleigh*, the most

recent supporter of the doctrine, is that a single geodetic drawn

long enough will not only fulfil Maxwell's condition of passing

infinitely near to every point of the surface in all directions, but

will pass with equal frequencies in all directions; and as many

times within a certain infinitesimal distance + 8 of any one point

P as of any other point P' anywhere over the whole surface. This,

if true, would be an exceedingly interesting theorem.

Fig. 3.

§ 35. I have made many efforts to test it for the case in which

the closed surface is reduced to a plane with other boundaries

than an exact ellipse (for which as we have seen in §| 30, 31, 32,

the investigation fails through the non-fulfilment of Maxwell's

preliminary condition). Every such case gives, as we have seen,

straight lines drawn across the enclosed area turned on meeting

the boundary, according to the law of equal angles of incidence

and reflection, which corresponds also to the case of an ideal

* Phil. Mail., January 1900.
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perfectly smooth non-rotating billiard-ball moving in straight lines

except when it strikes the boundary of the table ; the boundary

being of any shape whatever, instead of the ordinary rectangular

boundary of an ordinary billiard-table, and being perfectly elastic.

An interesting illustration, easily seen through a large lecture-

hall, is had by taking a thin wooden board, cut to any chosen

shape, with the corner edges of the boundary smoothly rounded,

and winding a stout black cord round and round it many times,

beginning with one end fixed to any point, /, of the board. If the

pressure of the cord on the edges were perfectly frictionless the

cord would, at every turn round the border, place itself so as to

fulfil the law of equal angles of incidence and reflection, modified

in virtue of the thickness of the board. For stability it would be

necessary to fix points of the cord to the board by staples pushed

in over it at sufficiently frequent intervals, care being taken

that at no point is the cord disturbed from its proper straight

line by the staple. [Boards of a considerable variety of shape

with cords thus wound on them were shown as illustrations of

the lecture.]

§ 36. A very easy way of drawing accurately the path of a

particle moving in a plane and reflected from a bounding wall of

any shape, provided only that it is not concave externally in any

part, is furnished by a somewhat interesting kinematical method

illustrated by the accompanying diagram (fig. 4). It is easily

Fig. 4.

realised by using two equal and similar pieces of board, cut to any

desired figure, one of them being turned upside down relatively
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to the other, so that when the two are placed together with

corresponding points in contact, each is the image of the other

relative to the plane of contact regarded as a mirror. Sufficiently

close corresponding points should be accurately marked on the

boundaries of the two figures, and this allows great accuracy to

be obtained in the drawing of the free path after each reflection.

The diagram shows consecutive free paths 74"6—32'9 given, and

32*9—54-7, found by producing 74*6—32-9 through the point of

contact. The process involves the exact measurement of the

length (l)—say to three significant figures—and its inclination (6)

to a chosen line of reference XX'. The summations ^l cos 26

and XI sin 26 give, as explained below, the difference of time-

integrals of kinetic energies of component motions parallel and

perpendicular respectively to XX', and parallel and perpendicular

respectively to KK', inclined at 45° to XX'. From these differ-

ences we find (by a procedure equivalent to that of finding the

principal axes of an ellipse) two lines at right angles to one another,

such that the time-integrals of the components of velocity parallel

to them are respectively greater than and less than those of the

components parallel to any other line. [This process was illustrated

by models in the lecture.]

§ 37. Virtually the same process as this, applied in the case

of a scalene triangle ABC (in which BG= 20 centimetres and the

angles A = 97°, B = 29-5°, C= 53-5°), was worked out in the Royal

R

Fig. 5.

Institution during the fortnight after the lecture, by Mr Anderson,

with very interesting results. The length of each free path (/),

and its inclination to BC{6), reckoned acute or obtuse according

to the indications in the diagram (fig. 5), were measured to the
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nearest millimetre and the nearest integral degree. The first free

path was drawn at random, and the continuations, after 599 reflec-

tions (in all 600 paths), were drawn in a manner illustrated by

fig. 5, which shows, for example, a path PQ on one triangle

continued to QR on the other. The two when folded together

round the line AB shows a path PQ, continued on QR after

reflection. For each path I cos 26 and / sin 26 were calculated

and entered in tables with the proper algebraic signs. Thus, for

the whole 600 paths, the following summations were found :

2^ = 3298; S/cos 26* = + 128-8; S^ sin 2^ = - 201-9.

Remark, now, if the mass of the moving particle is 2, and the

velocity one centimetre per second, ^l cos 26 is the excess of the

time-integral of kinetic energy of component motion parallel to

BG above that of component motion perpendicular to BG, and

^l sin 26 is the excess of the time-integral of kinetic energy of

component motion perpendicular to KK' above that of component

motion parallel to KK' ; KK' being inclined at 45"* to BG in the

direction shown in the diagram. Hence the positive value of

'1,1 cos 26 indicates a preponderance of kinetic energy due to

component motion parallel to BG above that of component motion

perpendicular to BG ; and the negative sign of ^l sin 26 shows

preponderance of kinetic energy of component motion parallel

to KK', above that of component motion perpendicular to KK'.

Deducing a determination of two axes at right angles to each

other, corresponding respectively to maximum and minimum
kinetic energies, we find LL', being inclined to KK' in the

,. . , , ,
128-8 .

dn^ection shown, at an angle = ^ tan~^ ^_^„ , is what we may

call the axis of maximum energy, and a line perpendicular to LL'

the axis of minimum energy ; and the excess of the time-integral

of the energy of component velocity parallel to LL' exceeds that

of the component perpendicular to LL' by 239-4, being

Vl28-82-t- 201-9^.

This is 7*25 per cent, of the total of 2^ which is the time-integral

of the total energy. Thus, in our result, we find a very notable

deviation from the Boltzmann-Maxwell doctrine, which asserts for

the present case that the time-integrals of the component kinetic

energies are the same for all directions of the component. The
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percentage which we have found is not very large ; and, most

probably, summations for several successive 600 flights would

present considerable differences, both of the amount of the devia-

tion from equality and the direction of the axes of maximum and

minimum energy. Still, I think there is a strong probability that

the disproof of the Boltzmann-Maxwell doctrine is genuine, and

the discrepance is somewhat approximately of the amount and

direction indicated. I am supported in this view by scrutinising

the thirty sums for successive sets of twenty flights : thus I find

Xl cos 26 to be positive for eighteen out of thirty, and "Zlsin 26 to

be negative for nineteen out of the thirty.

§ 38. A very interesting test-case is represented in the ac-

companying diagram, fig. 6—a circular boundary of semicircular

corrugations. In this case it is obvious from the symmetry that

the time-integral of kinetic energy of component motion parallel

Fig. 6.

to any straight line must, in the long run, be equal to that parallel

to any other. But the Boltzmann-Maxwell doctrine asserts, that

the time-integrals of the kinetic energies of the two components,

radial and transversal, according to polar coordinates, would be
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equal. To test this I have taken the case of an infinite number

of the semicircular corrugations, so that in the time-integral it

is not necessary to iuclude the times between successive impacts

of the particle on auy one of the semicircles. In this case the

geometrical construction would, of course, fail to show the precise

point Q at which the free path would cut the diameter AB of the

semicircular hollow to which it is approaching; and I have evaded

the difficulty in a manner thoroughly suitable for thermodynamic

application, such as the kinetic theory of gases. I arranged to

draw lots for one out of the 199 points dividing AB into 200 equal

parts. This was done by taking 100 cards*, 0, 1...98, 99, to

represent distances from the middle point, and, by the toss of a

coin, determining on which side of the middle point it was to

be (plus or minus for head or tail, frequently changed to avoid

possibility of error by bias). The draw for one of the hundred

numbers (0...99) was taken after very thorough shuffling of the

cards in each case. The point of entry having been found, a large

scale geometrical construction was used to determine the successive

points of impact and the inclination 6 of the emergent path to the

diameter AB. The inclination of the entering path to the diameter

of the semicircular hollow struck at the end of the flight has the

same value 6. If we call the diameter of the large circle unity

the length of each flight is sin 6. Hence, if the velocity is unity

and the mass of the particle 2, the time-integral of the whole

kinetic energy is sin ; and it is easy to prove that the time-

integrals of the squares of the components of the velocity, per-

pendicular to and along the line from each point of the path

to the centre of the large circle, are respectively 6 cos and

sin ^ - ^ cos 6. By summation for 143 flights we have found

S sin 6>= 121-3; S^ cos ^ = 54-15
;

whence 2 (sin (9 - ^ cos 6>) = S^ cos + 13-0.

This is a notable deviation from the Boltzmann-Maxwell doc-

trine, which makes S (sin 6 — 6 cos 6) equal to ^6 cos 6. We have

* I had tried numbered billets (small squares of paper) drawn from a bowl, but

found this very unsatisfactory. The best mixing we could make in the bowl seemed

to be quite insufficient to secure equal chances for all the billets. Full-sized cards

like ordinary playing-cards, well shuffled, seemed to give a very fairly equal chance

to every card. Even with the full-sized cards, electric attraction sometimes inter-

venes and causes two of them to stick together. In using one's lingers to mix dry

billets of caid, or of paper, in a bowl, very considerable disturbance may be expected

from electrification.

T. L. 33
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found the former to exceed the latter by a difference

which amounts to 10"7 of the whole S sin 6.

Out of fourteen sets of ten flights I find that the

time-integral of the transverse component is less than

half the whole in twelve sets, and greater in only two.

This seems to prove beyond doubt that the deviation

from the Boltzmann-Maxwell doctrine is genuine ; and

that the ultimate time-integral of the transverse com-

ponent is certainly smaller than the time-integral of

the radial component.

§ 39. It is interesting to remark that, on Brewster's

kaleidoscopic principle of successive images, our present

result is applicable (see § 38 above) to the motion of

a particle, flying about in an enclosed space, of the

same shape as the surface of a marlin-spike (fig, 7),

with its angle any exact submultiple of 360°, (360°-^-^)*.

Symmetry shows that the axes ofmaximum or minimum
kinetic energy must be in the direction of the middle

line of the length of the figure and perpendicular to it.

Our conclusion is that the time-integral of kinetic

energy is maximum for the longitudinal component

and minimum for the transverse. In the series of

flights, corresponding to the, 143 of fig. 6 which we

have investigated, the number of flights is of course

many times 143 in fig. 7, because of the reflections

at the straight sides of the marlin-spike. It will be

understood, that we are considering merely motion in

one plane through the axis of the marlin-spike.

§ 40. The most difficult and seriously troublesome

statistical investigation in respect to the partition of

energy which I have hitherto attempted, has been to

find the proportions of translational and rotational

energies in various cases, in each of which a rotator

experiences multitudinous reflections at two fixed

parallel planes between which it moves, or at one

plane to which it is brought back by a constant force

through its centre of inertia, or by a force varjdng

directly as the distance from the plane. Two

* See my Electrostatics and Magnetism, § 208, for same principle

as to electric images.
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different rotators were considered, one of them consisting of

two equal balls, fixed at the ends of a rigid massless rod, and

each ball reflected on striking either of the planes; the other

consisting of two balls, 1 and 100, fixed at the ends of a rigid

massless rod, the smaller ball passing freely across the plane

without experiencing any force, while the greater is reflected

every time it strikes. The second rotator may be described,

in some respects more simply, as a hard massless ball having a

mass = 1 fixed anj^where eccentrically within it, and another

mass = 100 fixed at its centre. It may be called, for brevity,

a biassed ball.

§ 41. In every case of a rotator whose rotation is changed by

an impact, a transcendental problem of pure kinematics essentially

occurs to find the time and configuration of the first impact ; and

another such problem to find if there is a second impact, and, if so,

to determine it. Chattering collisions of one, two, three, four, five

or more impacts, are essentially liable to occur, even to the extreme

case of an infinite number of impacts and a collision consisting

virtually of a gradually varying finite pressure. Three is the

greatest number of impacts w^e have found in any of our calcula-

tions. The first of these transcendental problems, occurring

essentially in every case, consists in finding the smallest value

of which satisfies the equation

^_,- = ^Vl_sin^);
V

where co is the angular velocity of the rotator before collision

;

a is the length of a certain rotating arm ; i its inclination to the

reflecting plane at the instant when its centre of inertia crosses

a plane F, parallel to the reflecting plane and distant a from it

;

and V is the velocity of the centre of inertia of the rotator. This

equation is, in general, very easily solved by calculation (trial and

error), but more quickly by an obvious kinematic method, the

simplest form of which is a rolling circle carrying an arm of

adjustable length. In our earliest work we performed the solution

arithmetically, after that kinematically. If the distance between

the two parallel planes is moderate in comparison with 2a (the

effective diameter of the rotator), i for the beginning of the

collision with one plane has to be calculated from the end of

the preceding collision against the other plane by a transcendental

33—2
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equation, on the same principle as that which we have just been

considering. But I have supposed the distance between the two

planes to be very great, practically infinite, in comparison with 2a,

and we have therefore found i by lottery for each collision, using

180 cards corresponding to 180° of angle. In the case of the

biassed globe, different equally probable values of i through a

range of 360° was required, and we found them by drawing from

the pack of 180 cards and tossing a coin for plus or minus.

§ 42. Summation for 110 flights of the rotator, consisting of

two equal masses, gave as the time-integral of the whole energy

200"03, and an excess of rotatory above translatory 42'05. This

is just 21 per cent, of the whole ; a large deviation from the

Boltzmann-Maxwell doctrine, which makes the time-integrals of

translatory and rotatory energies equal.

§ 43. In the solution for the biassed ball (masses 1 and 100)

we found great irregularities due to " runs of luck " in the toss for

plus or minus, especially when there was a succession of five or six

pluses or five or six minuses. We therefore, after calculating a

sequence of 200 flights with angles each determined by lottery,

calculated a second sequence of 200 flights with the equally

probable set of angles given by the same numbers with altered

signs. The summation for the whole 400 gave 555"55 as the

time-integral of the whole energy, and an excess, 82"5, of the

time-integral of the translatory, over the time-integral of the

rotatory energy. This is nearly 15 per cent. We cannot, how-

ever, feel great confidence in this result, because the first set of

200 made the translatory energy less than the rotatory energy by

a small percentage (2'8) of the whole, while the second 200 gave

an excess of translatory over rotatory amounting to 35'9 per cent,

of the whole.

§ 44. All our examples considered in detail or worked out,

hitherto, belong to Class I. of § 28. As a first example of Class 11.

consider a case merging into the geodetic line on a closed surface S.

Instead of the point being constrained to remain on the surface,

let it be under the influence of a field of force, such that it is

attracted towards the surface with a finite force, if it is placed

anywhere very near the surface on either side of it, so that if the

particle be placed on S and projected perpendicularly to it, either
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inwards or outwards, it will be brought back before it goes farther

from the surface than a distance h, small in comparison with the

shortest radius of curvature of any part of the surface. The Boltz-

mann-Maxwell doctrine asserts that the time-integral of kinetic

energy of component motion normal to the surface would be equal

to one-third of the kinetic energy of component motion at right

angles to the normal; by normal being meant, a straight line drawn

from the actual position of the point at any time perpendicular to

the nearest part of the surface S. This, if true, would be a very

remarkable proposition. If h is infinitely small we have simply

the mathematical condition of constraint to remain on the surface,

and the path of the particle is exactly a geodetic line. If the

force towards S is zero, when the distance on either side of 8 is

+ h, we have the case of a particle placed between two guiding

surfaces with a very small distance 2h between them. If 8 and

therefore each of the guiding surfaces, is in every normal section

convex outwards, and if the particle is placed on the outer guide-

surface and projected in any direction in it with any velocity,

great or small, it will remain on that guide-surface for ever, and

travel along a geodetic line. If now it be deflected very slightly

from motion in that surface, so that it will strike against the

inner guide-surface, we may be quite ready to learn that the

energy of knocking about between the two surfaces will grow up

from something very small in the beginning till, in the long run,

its time-integral is comparable with the time-integral of twice the

energy of component motion parallel to the tangent plane of

either surface. But will its ultimate value be exactly one-third

that of the tangential energy, as the doctrine tells us it would be ?

We are, however, now back to Class I. ; we should have kept to

Class II. by making the normal force on the particle always finite,

however great.

§ 45. Very interesting cases of Class II. § 28 occur to us

readily in connection with the cases of Class I. worked out in

§§ 38, 41, 42, 43.

§ 46. Let the radius of the large circle in § 38 become in-

finitely great : we have now a plane F (floor) with semicircular

cylindric hollows, or semicircular hollows as we shall say for

brevity ; the motion being confined to one plane perpendicular

to F, and to the edges of the hollows. For definiteness we shall
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take for F the plane of the edges of the hollows. Instead iiuw of

a particle after collision flying along the chord of the circle of § 38

it would go on for ever in a straight line. To bring it back to the

plane F, let it be acted on either (a) by a force towards the plane

in simple proportion to the distance, or (/3) by a constant force.

This latter supposition (/8) presents to us the very interesting case

of an elastic ball bouncing from a corrugated floor, and describing

gravitational parabolas in its successive flights, the durations of
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the different flights being in simple proportion to the component

of velocity perpendicular to the plane F. The supposition (a)

is purely ideal ; but it is interesting because it gives a half

curve of sines for each flight, and makes the times of flight

from F after a collision and back again to F the same for all the

flights, whatever be the inclination on leaving the floor and return-

ing to it. The supposition {j3) is illustrated in fig. 8, with only

the variation that the corrugations are convex instead of concave,

and that two vertical planes are fixed to reflect back the particle

instead of allowing it to travel indefinitely, either to right or

to left.

§ 47. Let the rotator of |§ 41 to 43, instead of bouncing to

and fio between two parallel planes, impinge only on one plane F,

and let it be brought back by a force through its centre of inertia,

either (a) varying in simple proportion to the distance of the centre

of inertia from F, or (/3) constant. Here, as in § 46, the times of

flight in case (a) are all the same, and in (/3) they are in simple

proportion to the velocity of its centre of inertia when it leaves F
or returns to it.

§ 48. In the cases of §§ 46, 47 we have to consider the time-

integral for each flight of the kinetic energy of the component

velocity of the particle perpendicular to F, and of the whole

velocity of the centre of inertia of the rotator, which is itself

perpendicular to F. If q denotes the velocity perpendicular to F
of the particle, or of the centre of inertia of the rotator, at the

instants of crossing F at the beginning and end of the flight, and

if 2 denotes the mass of the particle or of the rotator so that the

kinetic energy is the same as the square of the velocity, the time-

integral is in case (a) ^q-T, and in case (/3) ^^(fT, the time of the

flight being denoted in each case by T. In both (a) and (y8), § 46,

if we call 1 the velocity of the particle, which is always the same,

we have (f = sin^ 6, and the other component of the energy is cos- 6.

In § 47 it is convenient to call the total energy 1 ; and thus l — q-

is the total rotational energy which is constant throughout the

flight. Hence, remembering that the times of flight are all the

same in case (a) and are proportional to the value of q in case (/8)

;

in case (a), whether of § 46 or § 47, the time-integrals of the kinetic

energies to be compared are as ^Xq^ to S(l — q^), and in case {^)

they are as J Sg^ to Xq (1 — q").
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InM6

§ 49. Hence with the following notation :

—

(time-integral of kinetic energy perpendicular to F, = V

I „ „ parallel to F, = U

„ translatory energy = V
„ rotatory „ = RIn § 47

we have

V-U
v+u

( X(ff/-l )

.

, ,

§ 49'. By the processes described above q was calculated for

the single particle and corrugated floor (§ 46), and for the rotator

of two equal masses each impinging on a fixed plane (§§ 41, 42),

and for the biassed ball (central and eccentric masses 100 and 1

respectively, §§ 41, 43). Taking these values of q, summing q, f
and (f for all the flights, and using the results in § 48, we find the

following six results :

Single particle bounding from corrugated floor (semicircular

hollows), 143 flights:—

Y -JJ { = ^ -197 for isochronous sinusoidal flights.

F+ ?7 [ = + "loG for gravitational parabolic „

Rotator of two equal masses, bounding from plane floor, 110

flights :—

V— R { = - -179 for isochronous sinusoidal flights.

V+ R\ = — -loO for gravitational parabolic „

Biassed ball, bounding from jDlane floor, 400 flights :

—

V — R ( = + -025 for isochronous sinusoidal flights.

V + R I
= — '014 for gravitational parabolic „

The smallness of the deviation of the last two results, from what

the Boltzmann-Maxwell doctrine makes them, is very remarkable

when we compare it with the 1.5 per cent, which we have found

(§ 43 above) for the biassed ball bounding free from force, to and

fro between two parallel planes.
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§ 50. The last case of partition of energy which we have

worked out statistically relates to an impactual problem, belong-

ing partly to Class I. § 28, and partly to Class II. It was designed

as a nearer approach to practical application in thermodynamics

than any of those hitherto described. It is, in fact, a one-dimen-

sional illustration of the kinetic theory of gases. Suppose a row

of a vast number of atoms, of equal masses, to be allowed freedom

to move only in a straight line between fixed bounding planes L
and K. Let P the atom next K be caged between it and a parallel

plane G, at a distance from it very small in comparison with the

average of the free paths of the other particles; and let Q, the

atom next to P, be perfectly free to cross the cage-front G, without

experiencing force from it. Thus, while Q gets freely into the cage

to strike P, P cannot follow it out beyond the cage-front. The

atoms being all equal, every simple impact would produce merely

an interchange of velocities between the colliding atoms, and no

new velocity could be introduced, if the atoms were perfectly hard

(§16 above), because this implies that no three can be in collision

at the same time, I do not, however, limit the present investigation

to perfectly hard atoms. But, to simplify our calculations, we shall

suppose P and Q to be infinitely hard. All the other atoms we

shall suppose to have the property defined in § 21 above. They

may pass through one another in a simple collision, and go asunder

each with its previous velocity unaltered, if the differential velocity

be sufficiently great ; they must recoil from one another with inter-

changed velocities if the initial differential velocity was not great

enough to cause them to go through one another. Fresh velocities

will generally be introduced by three atoms being in collision at

the same time, so that even if the velocities were all equal, to

begin with, inequalities would supervene in virtue of three or

more atoms being in collision at the same time ; whether the

initial differential velocities be small enough to result in two

recoils, or whether one or both the mutual approaches lead to a

passage or passages through one another. Whether the distribu-

tion of velocities, which must ultimately supervene, is or is not

according to the Maxwellian law, we need not decide in our minds

;

but, as a first example, I have supposed the whole multitude to be

given with velocities distributed among them according to that

law (which, if they were infinitely hard, they would keep for ever

after); and we shall further suppose equal average spacing in
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different parts of the row, so that we need not be troubled with

the consideration of waves, as it were of sound, running to and fro

along the row because of inequalities of density.

§ 51. For our present problem we require two lotteries to find

the influential conditions at each instant, when Q enters F'a cage

—lottery I. for the velocity (v) of Q at impact ; lottery II. for the

phase of P's motion. For lottery I. (after trying 837 small squares

of paper with velocities written on them and mixed in a bowl, and

finding the plan unsatisfactory) we took nine stiff cards, numbered

1, 2... 9, of the size of ordinary playing-cards with rounded corners,

with one hundred numbers written on each in ten lines of ten

numbers. The velocities on each card are shown on the follow-

ing table.

Table showing the Number of the Different Velocities

ON the Different Cards.

A'elocity •1 •2 •3 •4 •5 •6 •7 •8 •9 1-0 1-1 1-2 1-3 1-4 1-5 1-6 l-T 1-8 1-9 2-0 2-1 2-2

Cardl 100

„ 2 7 93

„ 3 10 90

„ 4 9 91

,, 5 1 84 15

,, 6 60 40

„ 7 26 57 17

„ 8 31 40 29

,, 9 3 26 19 15 11 9 6 4 3 2 1 1 2y

Sums of
]

1

velocities
)'

1

107 103 99 92 84 75 66 57 48 40 32 26 19 15 11 9 6 4 3 2 1 1
1

1

900

The number of times each velocity occurs was chosen to fulfil

as nearly as may be the Maxwellian law, which is Cdve ^ = the

number of velocities between v + ^dv and v — \dv. We took

k = \, which, if dv were infinitely small, would make the mean
of the squares of the velocities equal exactly to "5 ; we took

dv = '\ and Cc?'V= 108 to give, as nearly as circumstances w^ould

allow, the Maxwellian law, and to make the total number of



OAGED ATOM KEEPS LESS ENERGY TliAN FKEE ASSAILANT. 528

different velocities !)00. Tlie sum of the squares of all these 900
velocities is 468-4, which divided by 900 is -52. In the practice

of this lottery the numbered cards were well shutiBed and then

one was drawn ; the particular one of the hundred velocities on
this card to be chosen was found by drawing one card from a pack
of one hundred numbered 1, 2... 99, 100. In lottery II. a pack of

one hundred cards is used to draw one of one hundred decimal

numbers from -01 to I'OO. The decimal drawn, called a, shows
the proportion of the whole period of P from the cage-front C,

to K, and back to C, still unperformed at the instant when Q
crosses C. Now remark, that if Q overtakes P in the first half of

its period it gives its velocity v to P, and follows it inwards ; and

therefore there must be a second impact when P meets it after

reflection from K, and gives it back the velocity v which it had on

entering. If Q meets P in the second half of its period, Q will,

by the first impact, get P's original velocity, and may with this

velocity escape from the cage. But it may be overtaken by P
before it gets out of the cage, in Avhich case it will go away from

the cage with its own original velocity v unchanged. This occurs

always if, and never unless, u is less than va; P's velocity being

denoted by u, and Q's by v. This case of Q overtaken by P can

only occur if the entering velocity of Q is greater than the speed

of P before collision. Except inthis case P's speed is unchanged

by the collision. Hence we see that it is only when P's speed is

greater than Q's before collision that there can be interchange, and

this interchange leaves P with less speed than Q. If every collision

involved interchange, the average velocity of P would be equalised

by the collisions to the average velocity of Q, and the average

distribution of different velocities would be identical for Q and P.

Non-fulfilment of this equalising interchange can, as we have seen,

only occur when Q's speed is less than P's, and therefore the average

speed and the average kinetic energy of P must be less than the

average kinetic energy of Q.

§ 52. We might be satisfied with this, as directly negativing

the Boltzmann-Maxwell doctrine for this case. It is however,

interesting to know, not only that the average kinetic energy of

Q is greater than that of the caged atom, but, further, to know
how much greater it is. We have therefore worked out sum-

mations for 300 collisions between P and Q, beginning with
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II? = o (u = •*I1), being approximately the mean of v'^ as given by

the lottery. It would have made no appreciable difference in the

result if we had begun with any value of u, large or small, other

than zero. Thus, for example, if we had taken 100 as the first

value of u, this speed would have been taken by Q at the first

impact, and sent away along the practically infinite row, never to

be heard of again; and the next value of w would have been the

first value drawn by lottery for v. Immediately before each of

the subsequent impacts, the velocity of P is that which it had

from Q by the preceding impact. In our work, the speeds which

P actually had at the first sixteen times of Q's entering the cage

were 71, "5, -3, % % -1, -1, % % "5, "7, % "3, "6, I'o, -5—from

which we see how little effect the choice of '71 for the first speed

of P had on those that follow. The summations were taken in

successive groups of ten; in every one of these ^v^ exceeded Si'A

For the 300 we found tv'- = 148-53 and 2it=' = 61-62, of which the

former is 2*41 times the latter. The two ought to be equal

according to the Boltzmann-Maxwell doctrine. Dividing 2v- by

800 we find -495 ; which chances to be more nearly equal to the

intended -5 than the -52 which is on the cards (§51 above). A
still greater deviation from the B.-M. equality (2-71 instead of

2-41) was found by taking '^v^ and Sm'^w to allow for greater

probability of impact with greater than with smaller values of

V ; 11 being the velocity of P after collision with Q.

§ 53. We have seen in § 52 that l,u^ must be less than Sl^^

but it seemed interesting to find how much less it would be with

some other than the Maxwellian law of distribution of velocities.

We therefore arranged cards for a lottery, with an arbitrarily

chosen distribution, quite different from the Maxwellian. Eleven

cards, each with one of the eleven numbers 1, 3... 19, 21, to cor-

respond to the different velocities -1, -3... 1-9, 2-1, were prepared

and used instead of the nine cards in the process described in § 51

above. In all except one of the eleven tens, '^v^ was greater than

^u^, and for the whole 110 impacts we found 2?;"= 179-90, and

Xu" = 97-66; the former of these is 1-84 times the latter. In this

case we found the ratio of %v^ to ^u'^v to be 1-87.

§ 54. In conclusion, I wish to refer, in connection with Class II.

§ 28, to a very interesting and important application of the doctrine,

made by Maxwell himself, to the equilibrium of a tall column of
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gas under the influence of gravity. Take, first, our one-dimen-

sional gas of § 50, consisting of a straight row of a vast number

of equal and similar atoms. Let now the line of the row be

vertical, and let the atoms be under the influence of terrestrial

gravity, and suppose, first, the atoms to resist mutual approach,

sufficiently to prevent any one from passing through another with

the greatest relative velocity of approach that the total energy

given to the assemblage can allow. The Boltzmann-Maxwell

doctrine (§ 18 above) asserting as it does that the time-integral

of the kinetic energy is the same for all the atoms, makes the

time-average of the kinetic energy the same for the highest as

for the lowest in the row. This, if true, would be an exceedingly

interesting theorem. But now, suppose two approaching atoms

not to repel one another with infinite force at any distance

between their centres, and suppose energy to be given to the

multitude sufficient to cause frequent instances of two atoms

passing through one another. Still the doctrine can assert nothing

but that the time-integral of the kinetic energy of any one atom

is equal to that of any other atom, which is now a self-evident

proposition, because the atoms are of equal masses, and each one

of them in turn will be in every position of the column, high or

low. (If in the row there are atoms of different masses, the

Waterston-Maxwell doctrine of equal average energies would, of

course, be important and interesting.)

§ 55. But now, instead of our ideal one-dimensional gas, con-

sider a real homogeneous gas, in an infinitely hard vertical tube,

with an infinitely hard floor and roof, so that the gas is under

no influence from without, except gravity. First, let there be

only two or three atoms, each given with sufficient velocity to

fly against gravity from floor to roof. They will strike one an-

other occasionally, and they will strike the sides and floor and

roof of the tube much more frequently than one another. The

time-averages of their kinetic energies will be equal. So will

they be if there are twenty atoms, or a thousand atoms, or a

million, million, million, million, million atoms. Now each atom

will strike another atom much more frequently than the sides

or floor or roof of the tube. In the long run each atom will be

in every part of the tube as often as is every other atom. The

time-integral of the kinetic energy of any one atom will be equal
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to the time-integral of the kinetic energy, of any other atom.

This truism is simply and solely all that the Boltzmann-Maxwell

doctrine asserts for a vertical column of a homogeneous monatomic

gas. It is, I believe, a general impression that the Boltzmann-

Maxwell doctrine, asserting a law of partition of the kinetic part

of the whole energy, includes obviously a theorem that the average

kinetic energies of the atoms in the upper parts of a vertical column

of gas, are equal to those of the atoms in the lower parts of the

column. Indeed, with the wording of Maxwell's statement, § 18,

before us, we might suppose it to assert that two parts of our

vertical column of gas, if they contain the same number of atoms,

must have the same kinetic energy, though they be situated, one

of them near the bottom of the column, and the other near the

top. Maxwell himself, in his 1866 paper (-'The Dynamical Theory

of Gases")*, gave an independent synthetical demonstration of

this proposition, and did not subsequently, so far as I know, regard

it as immediately deducible from the partitional doctrine general-

ised by Boltzmann and himself several years after the date of

that paper.

§ 56. Both Boltzmann and Maxwell recognised the experi-

mental contradiction of their doctrine presented by the kinetic

theory of gases ; and felt that an explanation of this incompatibility

was imperatively called for. For instance, Maxwell, in a lecture

on the dynamical evidence of the molecular constitution of bodies,

given to the Chemical Society, Feb. 18, 1875, said: "1 have put

" before you what I consider to be the greatest difficulty yet en-

" countered by the molecular theory. Boltzmann has suggested

" that we are to look for the explanation in the mutual action

" between the molecules and the ethereal medium which surrounds

" them. I am afraid, however, that if we call in the help of this

" medium we shall only increase the calculated specific heat,

" which is already too great." Rayleigh, who has for the last

twenty years been an unwavering supporter of the Boltzmann-

Maxwell doctrine, concludes a paper " On the Law of Partition of

Energy," published a year ago in the Phil. Mag., Jan. 1900, with

the following words: "The difficulties connected with the appli-

" cation of the law of equal partition of energy to actual gases

" have long been felt. In the case of argon and helium and

* Addition, of date December 17, 1800. Collected Papers, Vol. ii. p. 76.
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"mercury vapour, the ratio of specific heats (1"67) limits the

" degrees of freedom of each molecule to the three required for

" translatory motion. The value (1-4) applicable to the principal

" diatomic gases, gives room for the three kinds of translation and

" for two kinds of rotation. Nothing is left for rotation round

" the line joining the atoms, nor for relative motion of the atoms

" in this line. Even if we regard the atoms as mere points, whose

"rotation means nothing, there must still exist energy of the

" last-mentioned kind, and its amount (accordiug to law) should

" not be inferior.

" We are here brought face to face with a fundamental difficulty,

" relating not to the theory of gases merely, but rather to general

"dynamics. In most questions of dynamics, a condition whose

" violation involves a large amount of potential energy may be

"treated as a constraint. It is on this principle that solids are

" regarded as rigid, strings as inextensible, and so on. And it is

" upon the recognition of such constraints that Lagrange's method

" is founded. But the law of equal partition disregards potential

" energy. However great may be the energy required to alter

" the distance of the two atoms in a diatomic molecule, practical

" rigidity is never secured, and the kinetic energy of the relative

" motion in the line of junction is the same as if the tie were of

" the feeblest. The two atoms, however related, remain two atoms,

" and the degrees of freedom remain six in number.

"What would appear to be wanted is some escape from the

" destructive simplicity of the general conclusion."

The simplest way of arriving at this desired result is to deny

the conclusion; and so, in the beginning of the twentieth century,

to lose sight of a cloud which has obscured the brilliance of the

molecular theory of heat and light during the last quarter of the

nineteenth century.
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ON THE DISTURBANCE PRODUCED BY TWO PARTICULAR

FORMS OF INITIAL DISPLACEMENT IN AN INFINITELY

LONG MATERIAL SYSTEM FOR WHICH THE VELOCITY

OF PERIODIC WAVES DEPENDS ON THE WAVE-LENGTH.

§ 1, One of the chosen forms of initial displacement is

ce-^"-'""- (1),

where x is distance from 0, the centre of the origin of the

disturbance ; a is a length-parameter of the initial disturbance

;

and c is a length very small (regarded in the mathematics as

infinitely small) in comparison with a.

§ 2. Let the displacement at (oc, t) in an infinite train of

periodic waves be expressed by

D cos q(a; — a — vt) (2).

Here 27r/q is the wave-length ; and v is the propagational

velocity which we may regard as a function of q ; and a is the

distance from of a point where the displacement is a positive

maximum at time, t = 0. Any number of solutions such as (2)

with different values of D, q, and a, or with —v for v, super-

imposed, give a complex solution, found by simple summation

because the displacements and their sums are infinitely small.

Hence a solution, the solution for standing vibrations of period

27rfqv, is found by taking the half-sum of (2) for ±v; being

this:—
D cos q (x — a) cos vt (3).

And a summation of (3) for our present purpose gives a solution,

r)=-\ dq I dae''^^/'^' cosq(x — a) cosvt (4).*

When t = this gives d/dt ?? = ; and, by " Fourier's theorem,"

the second member becomes ce~*"''*^ which agrees with (1). Hence

(4) expresses the solution of our problem.

* Sec Lee. X. Part i., top of p. IIG.



TRANSVERSE WAVES IN ELASTIC ROD: FINITE SOLUTION. 529

§ 3. If in (4) we expand cos q{x— a), the factor of sin qx

disappears in the summation I da ; and the factor of cos qx, being
J —00

/•OO

I dcLe~°-'^"'' cos ga, is equal to \/7rae~5-«-/^ according to an evaluation
J - 00

given by Laplace in 1810*. Thus we reduce (4) to the following

simpler form

ca f"
•»7 = -y-

I
dqe~'^'"'^''* cos qx cos qvt (5).

The verification that this becomes ce"^''*^ when ^ = 0, is most

interesting : it is done by a second application of the same evalua-

tion of Laplace's with a curiously inverted notation.

§ 4. Whatever function v may be of the wave-length, 27r/g,

we have in (5) a thoroughly convenient solution of our problem

;

calculable by highly convergent quadratures whether the definite

integral is reducible to finite terms or not. For one very interest-

ing case, an infinitely long elastic rod, taken as an example by

Fourier f, the definite integral is reducible to finite terms.

In this case the velocity of periodic waves is inversely as the

wave-length, and, by choosing our units conveniently, we may

put v = q,m (5). Thus, and by taking a= 1, and by substituting

-
I

dq for I dq, we find
2 ./ _ 00 Jo

7)= -J I
dqe'^^i* COS q^t COS qx (6).

2 xJtt j _qo

Denoting by R the half-sum for ± t, we may write this thus

;

rj = -^R r c?ge-[<i-'«?'-'3^] (7).
2 VTr J -00

Putting l — d = h-, we reduce the index of the exponential to

- (hq - cxj2hy - {xjVif ; and putting hq - ix/2h = z, we find for

the definite integral.

h- [ c^ze-^^e-<^'27l)^ = '^^g-W2A)=
(8).

* Memoires de Vlnstitut, 1810. See Gregory's Examples, p. 480.

t Chaleur, Chap. xix. Article 406.

T. L. 34
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Hence (7) becomes
^ '

-a:^(l+4(0

n = ^cRh''€-^''''''^'=^cRh-'€ ^+'^''
(9).

Now 1/h = (yV + t')"' (cos i(/) + i sin i(/)),

if </) = tan-i4« (10).

Hence, if we put fTTrTa ^ ^ (^^)'

— .r2

we find by (9), 7; = c(l + 16^=)"* eT+^*^cos(|<^ - ^) (12).

§ 5. This is a very interesting solution in " finite terms."

To illustrate it let first ^ = ; we have, ^ = 0, and

r} = c{l + I6t')-i cos hA = a/^^ ' where t = V(l + 16f-). . .(13).

Hence the middle point of the originally displaced part of the

rod subsides to its undisturbed position not vihrationally, but

continuously, and ultimately in proportion to t~^ when t is very

great. And when t is very great we may neglect ^ in (12), and

we have 6 = xjr ; so that we find

r) = CT"^ e~^^l''^ cos — (14).
T

This shows that, in going from the origin we first find a zero

of displacement at a; = \/{7rr/2) ; and beyond this there is an

infinite number of zeros, and vibratory subsidence to repose.

Interesting graphic illustrations will require but little labour,

§ 6. As another even more interesting case, take the two-

dimensional case of the old deep-water wave problem of Poisson

and Cauchy. In it the velocity of periodic waves is proportional

to \/\ and we may therefore conveniently take v = q'^. This in

(5), with a = l, gives

r)=-,
I

dqe~'i'^'^ cos qx cos \/qt (15),
VTT Jo

an irreducible definite integral which expresses the displacement

of the water at time t and distance x from the origin of the

disturbance ; by a convergent formula thoroughly convenient for

calculation by quadratures for all values large or small of the

two variables. Analytical expedients may no doubt be found to

diminish the labour : but it is satisfactory to know that the

method of quadratures, with moderate labour, gives very interest-

ing illustrations ; though great labour would be needed for full

graphical illustrations by time-curves and space-curves.
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§ 7. My assistant Mr Witherington has evaluated 77 by (15)

with cj/^TT = 2 ; for four cases as follows :

Case 1. ^' = 0, ^=0; 77= 1-763; V^r = 1-77245,

„ 2. x = 0, t=l; 77= -911

„ 3. x = 0, t = 2; 7) = - -451

„ 4. x=2, t = 2; 7]= -559.

Case 1 was worked as a test for accuracy in a first trial of

quadrature. The result is about 2/3 per cent, too small ; the

correct result being ^/ir. The accuracy of the quadratures is

sufficient for merely illustrative purposes.

§ 8. Interesting as is the solution by quadratures for water-

waves resulting from the initial disturbance (1), it is less important

than the following solution in finite terms for anotlier form of

initial dishirbance, which was given in my short paper " On the

Front and Rear of a Procession of free Waves in Deep Water"*:

—

(16).

Here (^, ij) denote the displacement of the particle of water

whose equilibrium-position is (w, y) ; r denotes {x^ -f y"^)^
; and

g, gravity. According to a beautiful discovery of Cauchy and

Poisson, for waves in infinitely deep water, the pressure is con-

stant at all the particles {x + ^q^ y + Vo) for any constant value, y^,

of y ; and therefore the water above every such surface may be

removed without disturbing the motion of the water below it.

Hence 770 is the vertical displacement of any point in a free surface

of particles whose undisturbed position is 3/ = yo- The value of 770

for t = 0, from (16), is

c (ro^ - ro2/o - 22/o")/?V (r, + ?/o)^ (17).

This, with any value we please to assign to y^, is the initiating

free-surface for (16) ; ro denotes (x"^ -f yo^)-.

I hope to reproduce, with extensions, for early publication,

curves of the wave-motion expressed by (16), shown in Section A
of the British Association, Sep. 1886, and in the Royal Society of

Edinburgh, Dec. 20, 1886.

* Proc. R.S.E. Jan. 7, 1887; Phil. Mag. Feb. 1887.

34—2
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ON THE CLUSTERING OF GRAVITATIONAL MATTER IN ANY
PART OF THE UNIVERSE*.

Gravitational matter, according to our ideas of universal

gravitation, would be all matter. Now is there any matter which

is not subject to the law of gravitation ? I think I may say with

absolute decision that there is. We are all convinced, with our

President, that ether is matter, but we are forced to say that we

must not expect to find in ether the ordinary properties of molar

matter which are generally known to us by action resulting

from force between atoms and matter, ether and ether, and

atoms of matter and ether. Here I am illogical when I say

between matter and ether, as if ether were not matter. It is

to avoid an illogical phraseology that I use the title " gravi-

tational matter." Many years ago I gave strong reason to feel

certain that ether was outside the law of gravitation. We
need not absolutely exclude, as an idea, the possibility of there

being a portion of space occupied by ether beyond which there

is absolute vacuum—no ether and no matter. We admit that

that is something that one could think of; but I do not believe

any living scientific man considers it in the slightest degree

probable that there is a boundary around our universe beyond

which there is no ether and no matter. Well, if ether extends

through all space, then it is certain that ether cannot be subject

to the law of mutual gravitation between its parts, because if

it were subject to mutual attraction between its parts its equi-

librium would be unstable, unless it were infinitely incom-

pressible. But here, again, I am reminded of the critical

character of the ground on which we stand in speaking of pro-

perties of matter beyond what we see or feel by experiment. I

am afraid I must here express a view different from that which

* Communicated by the Author to the Phil. Mag., having been read before the

British Association at the Glasgow meeting.
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Professor Rlicker announced in his Address, when he said that

continuity of matter implied absolute resistance to condensation.

We have no right to bar condensation as a property of ether.

While admitting ether not to have any atomic structure, it is

postulated as a material which performs functions of which we

know something, and which may have properties allowing it to

perform other functions of which we are not yet cognisant. If

we consider ether to be matter, we postulate that it has rigidity

enough for the vibrations of light, but we have no right to say

that it is absolutely incompressible. We must admit that suf-

ficiently great pressure all round could condense the ether in a

given space, allowing the ether in surrounding space to come in

towards the ideal shrinking surface. When I say that ether

must be outside the law of gravitation, I assume that it is not

infinitely incompressible. I admit that if it were infinitely in-

compressible, it might be subject to the law of mutual gravitation

between its parts ; but to my mind it seems infinitely improbable

that ether is infinitely incompressible, and it appears more con-

sistent with the analogies of the known properties of molar

matter, which should be our guides, to suppose that ether has

not the quality of exerting an infinitely great force against

compressing action of gravitation. Hence, if we assume that it

extends through all space, ether must be outside the law of

gravitation—that is to say, truly imponderable. I remember the

contempt and self-complacent compassion with which sixty years

ago I myself—I am afraid—and most of the teachers of that

time looked upon the ideas of the elderly people who went before

us, and who spoke of " the imponderables." I fear that in this, as

in a great many other things in science, we have to hark back to

the dark ages of fifty, sixty, or a hundred years ago, and that we

must admit there is something which we cannot refuse to call

matter, but which is not subject to the Newtonian law of gravitation.

That the sun, stars, planets, and meteoric stones are all of them

ponderable matter is true, but the title of my paper implies that

there is something else. Ether is not any part of the subject of

this paper ; what we are concerned with is gravitational matter,

ponderable matter. Ether we relegate, not to a limbo of impon-

derables, but to distinct species of matter which have inertia,

rigidity, elasticity, compressibility, but not heaviness. In a paper

I have already published I gave strong reasons for limiting to a
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definite amount the quantity of matter in space known to astro-

nomers. I can scarcely avoid using the word " universe," but I

mean our universe, which may be a very small afifair after all,

occupying a very small portion of all the space in which there is

ponderable matter.

Supposing a sphere of radius 3"09.10^'^ kilometres (being the

distance at which a star must be to have parallax 0""001) to have

within it, uniformly distributed through it, a quantity of matter

equal to one thousand million times the sun's mass ; the velocity

acquired by a body placed originally at rest at the surface would,

in five million years, be about 20 kilometres per second, and in

twenty-five million years would be 108 kilometres per second (if

the acceleration remained sensibly constant for so long a time).

Hence, if the thousand million suns had been given at rest

twenty-five million years ago, uniformly distributed throughout

the supposed sphere, many of them would now have velocities of

20 or 30 kilometres per second, while some would have less and

some probably greater velocities than 108 kilometres per second;

or, if they had been given thousands of million years ago at rest

so distributed that now they were equally spaced throughout the

supposed sphere, their mean velocity would now be about 50 kilo-

metres per second*. This is not unlike the measured velocities

of stars, and hence it seems probable that there might be as

much matter as one thousand million suns within the distance

309.10^'^ kilometres. The same reasoning shows that ten thousand

million suns in the same sphere would produce, in twenty-

five million years, velocities far greater than the known star

velocities : and hence there is probably much less than ten

thousand million times the sun's mass in the sphere considered.

A general theorem discovered by Green seventy-three years ago

regarding force at a surface of any shape, due to matter (gravi-

tational, or ideal electric, or ideal magnetic) acting according to

the Newtonian law of the inverse square of the distance, shows

that a non-uniform distribution of the same total quantity of

matter would give greater velocities than would the uniform dis-

tribution. Hence we cannot, by any non-uniform distribution of

matter within the supposed sphere of 3'09 .
10^® kilometres radius,

escape from the conclusion limiting the total amount of the

* Phil. Mag. August 1901, pp. 169, 170.
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matter within it to something like one thousand million times

the sun's mass.

If we compare the sunlight with the light from the thousand

million stars, each being supposed to be of the same size and

brightness as our sun, we find that the ratio of the apparent

brightness of the star-lit sky to the brightness of our sun's disc

would be 3*87.10~^l This ratio* varies directly with the radius

of the containing sphere, the number of equal globes per equal

volume being supposed constant ; and hence to make the sum of

the apparent areas of discs 3"87 per cent, of the whole sky, the

radius must be 3-09.10-'' kilometres. With this radius light Avould

take 3^.10^^ years to travel from the outlying stars to the centre.

Irrefragable dynamics proves that the life of our sun as a luminary

may probably be between twenty-five and one hundred million

years ; but to be liberal, suppose each of our stars to have a life of

one hundred million years as a luminary : and it is found that the

time taken by light to travel from the outlying stars to the centre"

of the sphere is three and a quarter million times the life of a

star. Hence it follows that to make the whole sky aglow with

the light of all the stars at the same time the commencements
of the stars must be timed earlier and earlier for the more and
more distant ones, so that the time of the arrival of the light of

every one of them at the earth may fall within the durations of

the lights of all the others at the earth. My supposition as to

uniform density is quite arbitrary; but nevertheless I think it

highly improbable that there can be enough of stars (bright or

dark) to make a total of star-disc area more than 10~^- or 10~" of

the whole sky.

To help to understand the density of the supposed distribution

of one thousand million suns in a sphere of 3-09. 10^*^ kilometres

radius, imagine them arranged exactly in cubic order, and the

volume per sun is found to be 123-5. 10^^ cubic kilometres, and

the distance from one star to any one of its six nearest neighbours

would be 4-98.10^^ kilometres. The sun seen at this distance

would probably be seen as a star of between the first and second

magnitudes
; but supposing our thousand million suns to be all of

such brightness as to be stars of the first magnitude at distance

corresponding to parallax l"-0, the brightness at distance 3-09.10^'*

kilometres would be one one-millionth of this ; and the most

* Phil. Mag. August 1901, p. 175.
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distant of our stars would be seen through powerful telescopes

as stars of the sixteenth magnitude. Newcomb estimated from

thirty to fifty million as the number of stars visible in modern

telescopes. Young estimated at one hundred million the number

visible through the Lick telescope. This larger estimate is only

one-tenth of our assumed one thousand million masses equal to

the sun, of which, however, nine hundred million might be either

non-luminous, or, though luminous, too distant to be seen by us

at their actual distances from the earth. Remark, also, that it is

only for facility of counting that we have reckoned our imiverse

as one thousand million suns; and that the meaning of our

reckoning is that the total amount of matter within a sphere of

S'OQ.IO'" kilometres radius is one thousand million times the

sun's mass. The sun's mass is 1"99.10^'' metric tons, or TOO.IO'*^

grammes. Hence our reckoning of our supposed spherical uni-

verse is that the ponderable part of it amounts to 1'99.10*^

grammes, or that its average density is 1'61.10~^^ of the density

of water.

Let us now return to the question of sum of apparent areas.

The ratio of this sum to 47r, the total apparent area of the sky

viewed in all directions, is given by the formula*:

SN faV

provided its amount is so small a fraction of unity that its dimi-

nution by eclipses, total or partial, may be neglected. In this

formula, 2Vis a number of globes of radius a uniformly distributed

within a spherical surface of radius r. For the same quantity of

matter in iV' globes of the same density, uniformly distributed

through the same sphere of radius r, we have

i^ ~ w)

and therefore — = —
.

a a

With N=10\ r = 3-09.10i« kilometres; and a (the sun's radius)

= 7.10^ kilometres; we had a = 3-87.1 Q-^^ Hence a = 7 kilo-

metres gives a'= 3*87. 10~^; and a"= 1 centimetre gives a"= 1/369.

Hence if the whole mass of our supposed universe were reduced

* Phil. Mag. August 1901, p. 175.
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to globules of density r-l (being the sun's mean density), and of

2 centimetres diameter, distributed uniformly through a sphere

of 309.10''' kilometres radius, an eye at the centre of this sphere

would lose only 1/369 of the light of a luminary outside it!

The smallness of this loss is easily understood when we consider

that there is only one globule of 2 centimetres diameter per

864,000,000 cubic kilometres of space, in our supposed universe

reduced to globules of 2 centimetres diameter. Contrast with

the total eclipse of the sun by a natural cloud of water spherules,

or by the cloud of smoke from the funnel of a steamer.

Let now all the matter in our supposed universe be reduced

to atoms (literally brought back to its probable earliest condition).

Through a sphere of radius r let atoms be distributed uniformly

in respect to gravitational quality. It is to be understood that

the condition " uniformly " is fulfilled if equivolurainal globular

or cubic portions, small in comparison with the whole sphere,

but large enough to contain large numbers of the atoms, contain

equal total masses, reckoned gravitational ly, whether the atoms

themselves are of equal or unequal masses, or of similar or dis-

similar chemical qualities. As long as this condition is fulfilled,

each atom experiences very approximately the same force as if

the whole matter were infinitely fine-grained, that is to say,

utterly homogeneous.

Let us therefore begin with a uniform sphere of matter of

density p, gravitational reckoning; with no mutual forces except

gravitation between its parts, given with every part at rest at

the initial instant : and let it be required to find the subsequent

motion. Imagining the whole divided into infinitely thin con-

centric spherical shells, we see that every one of them falls

inwards, as if attracted by the whole mass within it collected

at the centre. Hence our problem is reduced to the well known
students' exercise of finding the rectilinear motion of a particle

attracted according to the inverse square of the distance from a

fixed point. Let a^o be the initial distance, -~-ocq the attracting

mass, V and x velocity and distance from the centre at time t.

The solution of the problem for the time during which the particle

is falling towards the centre is

47rp
^ 3

/'I 1

^3"
'^'
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Ix
where Q denotes the acute angle whose sine is a / — • This shows

that the time of falling through any proportion of the initial

distance is the same whatever be the initial distance; and that

the time (which we shall denote by T) of falling to the centre is

^TT /— , Hence in our problem of homogeneous gravitational

matter given at rest within a spherical surface and left to fall

inwards, the augmenting density remains homogeneous, and the

time of shrinkage to any stated proportion of the initial radius

is inversely as the square root of the density.

To apply this result to the supposed spherical universe of

radius S'OD.K)^" kilometres, and mass equal to a thousand million

times the mass of our sun, we find the gravitational attraction on

a body at its surface gives acceleration of 1-37. 10~^'^ kilometres

per second per second. This therefore is the value of —^Xq,

with one second as the unit of time and one kilometre as the

unit of distance; and we find T= 52'8.10^^ seconds = 168 million

years. Thus our formulas become

l2v'' = V^1A0-''x,{^-\

i; = 5-2:3.19-^ ya;o(|"-l)

ad

« = 52-8.10"
2d ( sin 26

hence, when sin 6 is very s mall,

4^
« = 52-8.10^(1---

Let now, for example, a?o = •j'09.10^'' kilometres, and —=10'';

and, therefore, sin 6'= ^ = 316.10-''; whence, v = 291,000 kilo-

metres per second, and t^T - 7080 seconds = T —2 hours ap-

proximately.

By these results it is most interesting to know that our sup-

posed sphere of perfectly compressible fluid, beginning at rest

with density 1-G1.10~-'^ of that of water, and of any magnitude
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large or small, and left imclogged by ether to shrink under the

influence of mutual gravitation of its parts, would take nearly

seventeen million years to reach -0161 of the density of water,

and about two hours longer to shrink to infinite density at its

centre. It is interesting also to know that if the initial radius is

3'09.10^^ kilometres, the inward velocity of the surface is 291,000

kilometres per second at the instant when its radius is 3"09.10"

and its density 01 Gl of that of water. If now, instead of an

ideal compressible fluid, we go back to atoms of ordinary matter

of all kinds as the primitive occupants of our sphere of 3"09.10i''

kilometres radius, all these conclusions (provided all the velocities

are less than the velocity of light) would still hold, notwith-

standing the ether occupying the space through which the atoms

move. This would, I believe*, exercise no resistance whatever

to uniform motion of an atom through it ; but it would certainly

add quasi-inertia to the intrinsic Newtonian inertia of the atom

itself moving through ideal space void of ether; which, according

to the Newtonian law, would be exactly in proportion to the

amount of its gravitational quality. The additional quasi-inertia

must be exceedingly small in comparison with the Newtonian in-

ertia, as is demonstrated by the Newtonian proofs, including that

founded on Kepler's laws for the groups of atoms constituting the

planets, and movable bodies experimented on at the earth's surface.

In one thousand seconds of time after the density '0161 of the

density of water is reached, the inward surface velocity would be

305,000 kilometres per second, or greater than the velocity of

light ; and the whole surface of our condensing globe of gas or

vapour or crowd of atoms would begin to glow, shedding light

inwards and outwards. All this is absolutely realistic, except

the assumption of uniform distribution through a sphere of the

enormous radius of 3-09. 10^" kilometres, which we adopted tem-

porarily for illustrational purpose. The enormously great velocity

(291,000 kilometres per second) and rate of acceleration (13-7

kilometres per second per second) of the boundary inwards, which

we found at the instant of density "0161 of that of water, are due

to greatness of the primitive radius, and the uniformity of density

in the primitive distribution.

* See App. A, "On the Motion produced in an Infinite Elastic Solid by the

Motion through the Space occupied by it of a Body acting on it only by Attraction

and Repulsion."
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To come to reality, according to the most probable judgment

present knowledge allows us to form, suppose at many millions,

or thousands of millions, or millions of millions of years ago, all

the matter in the universe to have been atoms very nearly at

rest* or quite at rest; more densely distributed in some places

than in others ; of infinitely small average density through the

whole of infinite space. In regions where the density was then

greater than in neighbouring regions, the density would become

greater still ; in places of less density, the density would become

less ; and large regions would quickly become void or nearly void

of atoms. These large void regions would extend so as to com-

pletely surround regions of greater density. In some part or

parts of each cluster of atoms thus isolated, condensation would

go on by motions in all directions not generally convergent to

points, and with no perceptible mutual influence between the

atoms until the density becomes something like 10"** of our

ordinary atmospheric density, when mutual influence by collisions

would begin to become practically effective. Each collision would

give rise to a train of waves in ether. These waves would carry

away energy, spreading it out through the void ether of infinite

space. The loss of energy, thus taken away from the atoms,

would reduce large condensing clusters to the condition of gas

in equilibriumf under the influence of its own gravity only, or

rotating like our sun or moving at moderate speeds as in spiral

nebulas, &c. Gravitational condensation would at first pi'oduce

rise of temperature, followed later by cooling and ultimately

freezing, giving solid bodies ; collisions between which would

produce meteoric stones such as we see them. We cannot regard

as probable that these lumps of broken-looking solid matter

(something like the broken stones used on our macadamised

roads) are primitive forms in which matter was created. Hence

we are forced, in this twentieth century, to views regarding the

atomic origin of all things closely resembling those presented by

Deraocritus, Epicurus, and their majestic Roman poetic expositor,

Lucretius.

* " On Mechanical Antecedents of Motion, Heat, and Light," Brit. Assoc. Rep.,

Part 2, 1854 ; Edin. New Phil. Journ. Vol. i. 1855 ; Comptes Rendus, Vol. xl. 1855

;

Kelvin's Collected Math, and Fhys. Papers, Vol. ii. Art. Ixix.

t Homer Lane, American Journal of Science, 1870, p. 57 ; Sir W. Thomson,

Phil. Mag. March 1887, p. 287.
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AEPINUS ATOMIZED*.

§ 1. According to the well-known doctrine of Aepinus,

commonly referred to as the one-fluid theory of electricity, positive

and negative electrifications consist in excess above, and deficiency

below, a natural quantum of a fluid, called the electric fluid,

permeating among the atoms of ponderable matter. Portions of

matter void of the electric fluid repel one another
;
portions of the

electric fluid repel one another
;
portions of the electric fluid and

of void matter attract one another.

§ 2. My suggestion is that the Aepinus' fluid consists of

exceedingly minute equal and similar atoms, which I call elec-

trionsf , much smaller than the atoms of ponderable matter ; and

* From the Jubilee Volume presented to Prof. Boscha in November, 1901.

t I ventured to suggest this name in a short article published in Nature,

May '27, 1897, in which, after a slight reference to an old idea of a "one-fluid

theory of electricity " with resinous electricity as the electric fluid, the following

expression of my views at that time occurs :
" I prefer to consider an atomic theory

'

' of electricity foreseen as worthy of thought by Faraday and Clerk Maxwell, very

" definitely proposed by Helmholtz in his last lecture to the Eoyal Institution, and

•' largely accepted by present-day workers and teachers. Indeed Faraday's law of

" electro-chemical equivalence seems to necessitate something atomic in electricity,

" and to justify the very modern name electron [given I believe originally by

Johnstone Stoney, and now largely used to denote an atom of either vitreous or

resinous electricity]. The older, and at present even more popular, name io7i

•'given sixty years ago by Faraday, suggests a convenient modification of it; elec-

" trion, to denote an atom of resinous electricity. And now, adopting the essentials

"of Aepinus' theory, and dealing with it according to the doctrine of Father Bos-

" covich, each atom of ponderable matter is an electron of vitreous electricity;

" which, with a neutralizing electron of resinous electricity close to it, produces a

' resulting force on every distant electron and electrion which varies inversely as the

" cube of the distance, and is in the direction determined by the well-known re-

" quisite application of the parallelogram of forces." It will be seen that I had

not then thought of the hypothesis suggested in the present communication, that

while electrions permeate freely through all space, whether occupied only by ether

or occupied also by the volumes of finite spheres constituting the atoms of pon-

derable matter, each electrion in the interior of an atom of ponderable matter ex-

periences electric force towards the centre of the atom, just as if the atom contained

within it, fixed relatively to itself, a uniform distribution of ideal electric matter.
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that they permeate freely through the spaces occupied by these

greater atoms and also freely through space not occupied by them.

As in Aepinus' theory we must have repulsions between the

electrions ; and repulsions between the atoms independently of the

electrions ; and attractions between electrions and atoms without

electrions. For brevity, in future by atom I shall mean an atom of

ponderable matter, whether it has any electrions within it or not.

§ 3. In virtue of the discovery and experimental proof by

Cavendish and Coulomb of the law of inverse square of distance

for both electric attractions and repulsions, we may now suppose

that the atoms, which I assume to be all of them spherical, repel

other atoms outside them with forces inversely as the squares of

distances between centres ; and that the same is true of electrions,

which no doubt occupy finite spaces, although at present we are

dealing with them as if they were mere mathematical points,

endowed with the property of electric attraction and repulsion.

We must now also assume that every atom attracts every electrion

outside it with a force inversely as the square of the distance

between centres,

§ 4. My assumption that the electrions freely permeate the

space occupied by the atoms requires a knowledge of the law of

the force experienced by an electrion within an atom. As a tenta-

tive hypothesis, I assume for simplicity that the attraction ex-

perienced by an electrion approaching an atom varies exactly

according to the inverse square of the distance from the centre,

as long as the electrion is outside ; has no abrupt change when

the electrion enters the atom ; but decreases to zero simply as the

distance from the centre when the electrion, approaching the

centre, is within the spherical boundary of the atom. This is

just as it would be if the electric virtue of the atom were due

to uniform distribution through the atom of an ideal electric

substance of which each infinitely small part repels infinitely

small portions of the ideal substance in other atoms, and attracts

electrions, according to the inverse square of the distance. But

we cannot make the corresponding supposition for the mutual

force between two overlapping atoms ; because we must keep our-

selves free to add a repulsion or attraction according to any law of

force, that we may find convenient for the explanation of electric,

elastic, and chemical properties of matter.
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§ 5. The neutralizing quantum of electrions for any atom or

group of atoms has exactly the same quantity of electricity of one

kind as the atom or group of atoms has of electricity of the

opposite kind. The quantum for any single atom may be one or

two or three or any integral number, and need not be the same

for all atoms. The designations mono-electrionic, dielectrionic,

trielectrionic, tetraelectrionic, polyelectrionic, etc., will accordingly

be convenient. It is possible that the differences of quality of

the atoms of different substances may be partially due to the

quantum-numbers of their electrions being different ; but it is

possible that the differences of quality are to be wholly explained

in merely Boscovichian fashion by differences in the laws of force

between the atoms, and may not imply any differences in the

numbers of electrions constituting their quantums.

§ 6. Another possibility to be kept in view is that the

neutralizing quantum for an atom may not be any integral number

of electrions. Thus for example the molecule of a diatomic gas,

oxygen, or nitrogen, or hydrogen, or chlorine, might conceivably

have three electrions or some odd number of electrions for its

quantum so that the single atoms, O, N, H, CI, if they could exist

separately, must be either vitreously or resinously electrified and

cannot be neutral.

§ 7. The present usage of the designations, positive and

negative, for the two modes of electrification originated no doubt

with the use of glass globes or cylinders in ordinary electric

machines giving vitreous electricity to the insulated prime con-

ductor, and resinous electricity to the not always insulated rubber.

Thus Aepinus and his followers regarded the prime conductors of

their machines as giving the true electric fluid, and leaving a

deficiency of it in the rubbers to be supplied from the earth. It

is curious, in Beccaria's account of his observations made about

1760 at Garzegna in Piedmont on atmospheric electricity, to read

of " The mild excessive electricity of the air in fair weather."

This in more modern usage would be called mild positive

electricity. The meaning of either expression, stated in non-

hypothetical language, is, the mild vitreous electricity of the air

in fair weather.

I 8. In the mathematical theory of electricity in equilibrium,

it is a matter of perfect indifference which of the opposite electric
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manifestations we call positive and which negative. But the

great diflFerences in the disruptive and luminous effects, when the

forces are too strong for electric equilibrium, presented by the two

modes of electrification, which have been known from the earliest

times of electric science, show physical properties not touched by

the mathematical theory. And Varley's comparatively recent

discovery* of the molecular torrent of resinously electrified

particles from the "kathode" or resinous electrode in apparatus

for the transmission of electricity through vacuum or highly

rarefied air, gives strong reason for believing that the mobile

electricity of Aepinus' theory is resinous, and not vitreous as he

accidentally made it. I shall therefore assume that our electrions

act as extremely minute particles of resinously electrified matter

;

that a void atom acts simply as a little globe of atomic substance,

possessing as an essential quality vitreous electricity uniformly

distributed through it or through a smaller concentric globe ; and
that ordinary ponderable matter, not electrified, consists of a vast

assemblage of atoms, not void, but having within the portions of

space which they occupy, just enough of electrions to annul electric

force for all places of which the distance from the nearest atom is

large in comparison with the diameter of an atom, or molecular

cluster of atoms.

§ 9. This condition respecting distance would, because of the

Fig. 1. Fig. 2.

Badii 3 and 1

C"C= 2-7 C'£'= -1458 C£=:-0462

inverse square of the distance law for the forces, be unnecessary

and the electric force would be rigorously null throughout all

Proc. Roy. Soc. Vol. xix. 1871, pp. 239, 240.
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space outside the atoms, if every atom had only a single electrion

at its centre, provided that the electric quantities of the opposite

electricities (reckoned according to the old definition of mathe-

matical electrostatics) are equal in the atom and in the electrion.

But even if every neutralized separate atom contains just one

electrion in stable equilibrium at its centre, it is obvious that,

when two atoms overlap so far that the centre of one of them is

within the spherical boundary of the other, the previous equi-

librium of the two electrions is upset, and they must find positions

of equilibrium elsewhere than at the centres. Thus in fig. 1 each

electrion is at the centre of its atom, and is attracted and repelled

with equal forces by the neighbouring atom and electrion at its

centre. In fig. 2, if E and E' were at the centres C, C, of the

two atoms, E would be repelled by E' more than it would be

attracted by the atom A'. Hence both electrions being supposed

free, E will move to the right ; and because of its diminished

repulsion on E', E' will follow it in the same direction. The

equations of equilibrium of the two are easily written down, not

so easily solved without some slight arithmetical artifice. The

solution is correctly shown in fig. 2, for the case in which one

radius is three times the other, and the distance between the

centres is 2'7 times the smaller radius*. The investigation in

* Calling e the quantity of electricity, vitreous or resinous, in each atom or

electrion : f the distance between the centres of the atoms ; a, a' the radii of the

two atoms; x, x' the displacements of the electrions from the centres; A', X' the

forces experienced by the electrions ; we have

L a^^{^+x-x'f 0.'-^ y
^^ " ''

L a'=*
+

(s-
- x'f (f+ X - x'YA

Each of these being equated to zero for equilibrium gives us two equations which

are not easily dealt with by frontal attack for the determination of two unknown

quantities x, x'; but which may be solved by a method of successive approximations,

as follows:—Let x^, x^,... x^, x^' , .-r/, ... .r/, be successive approximations to the

values of x and x', and take

where Bi"={^+Xi- x^)". As an example, take a= l, a' = 3. To find solutions for

gradual approach between centres, take successively f=2-9, 2-8, 2*7, 2-6. Begin

with Xu-0, V=0. we find ^4 = -01243, X4'=-0297, and the same values for x^,

and x.,'. Take next f=2-8, Xo = -01243, Xo' = -0297; we find X4=X5--0269,

x4' = x5' = -0702. Thus we have the solution for the second distance between

T. L. 35
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the footnote shows that if the atoms are brought a little nearer,

the equilibrium becomes unstable ; and we may infer that both

electrions jump to the right, E' to settle at a point within the

atom A on the left-hand side of its centre; and E outside A', to

settle at a point still within A. If,

lastly, we bring the centres closer

and closer together till they coincide,

E comes again within A', and the

two electrions settle, as shown in

fig. 3 at distances on the two sides of

the common centre, each equal to

13/ 9

2 1 1

a^ a.
's

Fig. 3.

£C' = C£ = -622

which for the case a — 3a is

2-27

28
= •622a.

§ 10. Mutual action of this kind might probably be presented

in such binary combinations as Og, N.,, Ho, CL, CO, SO, NaCl (dry

common salt) if each single atom, 0, N, H, CI, C*, S, Naf, had

just one electrion for its neutralizing quantum. If the combina-

tion is so close that the centres coincide, the two electrions will

rest stably at equal distances on the two sides of the common

centre as at the end of § 9. I see at present no reason for con-

sidering it excessively improbable that this may be the case for

SO, or for any other binary combinations of tiuo atoms of different

quality for neither of which there is reason to believe that its

neutralizing quantum is not exactly one electrion. But for the

binary combinations of two atoms of identical quality which the

centres. Next take ^-=2-7, x^ = -0269, a;o' = -0702; we find Xg = .r^ = -0462,

^-^' = 3;/= •1458. Working similarly for s''=2-6, we do not find convergence, and

we infer that a position of unstable equilibrium is reached by the electrions for

some value of f between 2-7 and 2-6.

* The complexity of the hydrocarbons and the Van 't Hoff and Le Bel doctrine

of the asymmetric results (chirality) produced by the quadrivalence of carbon

makes it probable tliat the carbon atom takes at least four electrions to neutralize

it electrically.

+ The fact that sodium, solid or liquid, is a metallic conductor of electricity

makes it probable that the sodium atom, as all other metallic elements, takes

a large number of electrions to neutralize it. (See below § 30.)
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chemists have discovered in diatomic gases (0^, No, etc.) there

must, over and above the electric repulsion of the two similar

electric globes, be a strong atomic repulsion preventing stable

equilibrium with coincident centres, however strongly the atoms

may be drawn together by the attractions of a pair of mutually

repellent electrions within them; because without such a repulsion

the two similar atoms would become one, which no possible action

in nature could split into two.

§ 11. Returning to § 9, let us pull the two atoms gradually

asunder from the concentric position to which we had brought

them. It is easily seen that they will both remain within the

smaller atom A, slightly disturbed from equality of distance on

the two sides of its centre by attractions towards the centre of ^';

and that when A' is infinitely distant they will settle at distances

each equal to ^a \/2 = 62996a on the two sides of C, the centre

of A. If, instead of two mono-electrionic atoms, we deal as in

§ 9 with two polyelectrionic atoms, we find after separation the

number of electrions in the smaller atom increased and in the

larger decreased ; and this with much smaller difference of magni-

tude than the three to one of diameters which we had for our

mono-electrionic atoms of § 9. This is a very remarkable conclusion,

pointing to what is probably the true explanation of the first

known of the electric properties of matter ; attractions and

repulsions produced by rubbed amber. Two ideal solids consisting

of assemblages of mono-electrionic atoms of largely different sizes

would certainly, when pressed and rubbed together and separated,

show the properties of oppositely electrified bodies; and the

preponderance of the electrionic quality would be in the assem-

blage of which the atoms are the smaller. Assuming as we do

that the electricity of the electrions is of the resinous kind, we

say that after pressing and rubbing together and separating the

two assemblages, the assemblage of the smaller atoms is resinously

electrified and the assemblage of the larger atoms is vitreously

electrified. This is probably the true explanation of the old-

known fact that ground glass is resinous relatively to polished

glass. The process of polishing might be expected to smooth down

the smaller atoms, and to leave the larger atoms more effective in

the surface.

§ 12. It probably contains also the principle of the explana-

35—2
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tion of Erskine Murray's* experimental discovery that surfaces of

metals, well cleaned by rubbing with glass-paper or emery-paper,

become more positive or less negative in the Volta contact

electricity scale by being burnished with a smooth round hard

steel burnisher. Thus a zinc plate brightened by rubbing on

glass-paper rose by "23 volt by repeated burnishing with a hard

steel burnisher, and fell again by the same difference when rubbed

again with glass-paper. Copper plates showed differences of

about the same amount and in the same direction when similarly

treated. Between highly burnished zinc and emery-cleaned

copper, Murray found a Volta-difference of 1'13 volts, Avhich is,

I believe, considerably greater than the greatest previously found

Volta-difference between pure metallic surfaces of zinc and

copper.

§ 13. To further illustrate the tendency (§ 9) of the smaller

atom to take electrions from the larger, consider two atoms ; A'

,

of radius a', the greater, having an electrion in it to begin with

;

and A, radius a, the smaller, void.

By ideal forces applied to the atoms while the electrion is free

let them approach gradually from a very great distance apart.

The attraction of A draws the electrion from the centre of A'\ at

first very slightly, but farther and farther as the distance between

the atoms is diminished. What will be the position of the

Fig. 4.

a' = l C'C= 2 C"£ = -38

Fig. 5.

C'C=l-89 C'£= 0-63

electrion when the distance between the centres is, as in fig. 4,

2a'? Without calculation we see that the electrion would be in

equilibrium if placed at the point in which the surface of ^' is

cut by the line of centres ; but the equilibrium would be obviously

* " On Contact Electricity of Metals," Proc. Roy. Soc. Vol. lxiii. 1898, p. 113.

See also Lord Kelvin, " Contact Electricity of Metals," Phil. Mag. Vol. xlvi. 1898,

pp. 90—98.
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unstable, and a simple calculation* shows that the stable position

actually taken by the electrion is 'SSa' from C", when the distance

between the centres is 2a' (fig. 4). If the distance between the

centres is now diminished from 2a' to l'89a' (a being now

supposed to be anything less than Sda) the electrion comes

gradually to distance 'GSa' from C (fig. 5) ; its equilibrium there

becomes unstable ; and it jumps out of A' towards A (like a cork

jumping out of a bottle). It will shoot through A (A' and A
being held fixed); and after several oscillations to and fro, perhaps-f-

ten or twenty [or perhaps a million (K., Aug. 9, 1903)], if it has

only quasi-inertia due to condensation or rarefaction j produced by

it in ether ; or perhaps many times more if it has intrinsic inertia

of its own ; it will settle, with decreasing range of excursions,

sensibly to rest within A, attracted somewhat from the centre

by A'. If, lastly, A' and A be drawn asunder to their original

great distance, the electrion will not regain its original position

in A\ but will come to the centre of A and rest there. Here

then we have another illustration of the tendency found in § 9,

of the smaller atom to take electrions from the larger.

§ 14. In preventing the two atoms from rushing together

by holding them against the attractive force of the electrion, we

shall have gained more work during the approach than we after-

wards spent on the separation ; and we have now left the system

* Denoting by f the distance between the centres, and by X the force on E when

its distance from C is x', we have

^~^L{^-xr «'d

1 x'
Hence for equilibrium ,:„ — -7, . This is a cubic for .i-' of which the proper

(^-x'f a 3

root (the smallest root) for the case f=2a' is -SSa'. The formula for A' has

a minimum value when 'g-x' — a ^2, which makes

•-?^G*-a
Hence the value of .r' for equilibrium coincides with the value of X, a minimum,

3 V2
and the equilibrium becomes unstable, when f is diminished to —|— a' — l'890a'.

^!/2
For this, the value of x is -^ a =:-63a'.

t " On the Production of Wave Motion in an Elastic Solid," Phil. Mag. Oct.

1899, § 44.

+ " On the Motion of Ponderable Matter through Space occupied by Ether,"

Phil. Mag. Aug. 1900, §§ 15, 17. [Reproduced in the present Volume as App. A.]
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deijrived of the farther amount of energy carried away by etherial

waves into space.

§ 15. The system in its final state with the electrion at the

centre of the smaller atom has less potential energy in it than it

had at the beginning (when the electrion was at the centre of A'),

by a difference equal to the excess of the work Avhich we gained

during the approach above that which we spent on the final

separation of A' and A, plus the amount carried away by the

etherial waves. All these items except the last are easily calcu-

lated from the algebra of the footnote on § 13; and thus we find

how much is our loss of energy by the etherial waves.

§ 16. Very interesting statical problems are presented to us

by consideration of the equilibrium of two or more electrions

Avithin one atom, whether a polyelectrionic atom with its saturat-

ing number, or an atom of any electric strength with any number

of electrions up to the greatest number that it can hold. To help

to clear our ideas, first remark that if the number of electrions is

infinite, that is to say if we go back to Aepinus' electric fluid, but

assume it to permeate freely through an atom of any shape

whatever and having any arbitrarily given distribution of elec-

tricity of the opposite kind fixed within it, the greatest quantity

of fluid which it can take is exactly equal to its own, and lodges

with density equal to its own in every part. Hence if the atom

is spherical, and of equal electric density throughout as we have

supposed it, and if its neutralizing quantum of electrions is a very

large number, their configuration of equilibrium will be an

assemblage of more and more nearly uniform density from surface

to centre, the greater the number. Any Bravais homogeneous

assemblage whatever would be very nearly in equilibrium if all

the electrions in a surface-layer of thickness a hundred times the

shortest distance from electrion to electrion were held fixed ; but

the equilibrium would be unstable except in certain cases. It

may seem probable that it is stable if the homogeneous assemblage

is of the species which I have called* equilateral, being that in

which each electrion with any two of its twelve next neighbours

forms an equilateral triangle. If now all the electrions in the

* Molecular Tactics of a Crystal, § 4, being the second Kobert Boyle Lecture,

delivered before the Oxford University Junior Scientific Club, May 16, 1893

(Clarendon Press, Oxford). [Reproduced in the present Volume as App. H.]



STABLE EQUILIBRIUM OF SEVERAL ELECTRIONS IN AN ATOM. 551

surface layer are left perfectly free, a slight rearrangement among
themselves and still slighter among the neighbouring electrions

in the interior will bring the whole multitude (of thousands or

millions) to equilibrium. The subject is of extreme interest,

geometrical, dynamical and physical, but cannot be pursued

further at present.

§ 17. To guide our ideas respecting the stable equilibrium of

moderate numbers of electrions within an atom, remark first that

for any number of electrions there may be equilibrium with all

the electrions on one spherical surface concentric with the atom.

To prove this, discard for a moment the atom and imagine the

electrions, whatever their number, to be attached to ends of equal

inextensible strings of which the other ends are fixed to one

point C. Every string will be stretched in virtue of the mutual

repulsions of the electrions ; and there will be a configuration or

configurations of equilibrium with the electrions on a spherical

surface. Whatever their number there is essentially at least one

configuration of stable equilibrium. Remark also that there is

always a configuration of equilibrium in which all the strings are

in one plane, and the electrions are equally spaced round one

great circle of the sphere. This is the sole configuration for two

electrions or for three electrions : but for any number exceeding

three it is easily proved to be unstable, and is therefore not the

sole configuration of equilibrium. For four electrions it is easily

seen that, besides the unstable equilibrium in one plane, there is

only one stable configuration, and in this the four electrions are at

the four corners of an equilateral tetrahedron.

§ 18. For five electrions we have clearly stable equilibrium

with three of them in one plane through C, and the other two at

equal distances in the line through G perpendicular to this plane.

There is also at least one other configuration of equilibrium : this

we see by imagining four of the electrions constrained to remain

in a freely movable plane, which gives stable equilibrium

with this plane at some distance from the centre and the fifth

electrion in the diameter perpendicular to it. And similarly

for any greater number of electrions, we find a configuration of

equilibrium by imagining all but one of them to be constrained

to remain in a freely movable plane. But it is not easy, without

calculation, to see, at all events for the case of only five electrions,
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whether that equilibrium would be stable if the constraint of all

of them but one, to one plane is annulled. For numbers greater

than five it seems certain that that equilibrium is unstable.

§ 19. For six we have a configuration of stable equilibrium

with the electrions at the six corners of a regular octahedron

;

for eight at the corners of a cube. For ten, as for any even

number, we should have two configurations of equilibrium (both

certainly unstable for large numbers) with two halves of the

number in two planes at equal distances on the two sides of the

centre. For twelve we have a configuration of stable equilibrium

Avith the electrions at positions of the twelve nearest neighbours

to G in an equilateral homogeneous assemblage of points*; for

twenty at the twenty corners of a pentagonal dodecahedron. All

these configurations of § 19 except those for ten electrions are

stable if, as we are now supposing, the electrions are constrained

to a spherical surface on which they are free to move.

§ 20. Except the cases of § 18, the forces with which the

strings are stretched are the same for all the electrions of each

case. Hence if we now discard the strings and place the electrions

in an atom on a spherical surface concentric with it, its attraction

on the electrions towards the centre takes the place of the tension

of the string, provided it is of the proper amount. But it does

not secure, as did the strings, against instability relatively to

radial displacements, different for the different electrions. To

secure the proper amount of the radial force the condition is

—— = T ; where i deiiotes the number of electrions ; e the electric
Q,3 5

quantity on each (and therefore, § 8, ie the electric quantity of

vitreous electricity in the atom) ; r denotes the radius of the

spherical surface on which the electrions lie : a the radius of the

atom ; and T the tension of the string in the arrangement of

§ 17. We have generally T=q~ where g- is a numeric depending

on the number and configuration of the electrions found in each

case by geometry. Hence we have ~ = a / • for the ratio of the

radius of the smaller sphere on which the electrions lie to the

radius of the atom. For example, take the case of eight electrions

* App. H, " Molecular Tactics of a Crystal," § 4.
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at the eight corners of a cube. T is the resultant of" seven

repulsions, and we easily find 5' = f (\/3 + Vf + i) and finally

T
- = "6756. Dealing similarly with the cases of two, three, four,

and six electrions, we have the following table of values of

-
j
and -

; to which is added a last column showing values of

.„ 3a- — r- ^ a . . a ,. , ,
. .

,

I -iz-T, i T^ , being , 01 the work required to remove the
2a- D " e-

^

electrions to infinite distance. D is the distance between any two

of the electrions.

" X work

Number
of

Electrions
Configuration ©' r

a

reqiiired to re-

move the elec-

trions to infi-

nite distance
= U'

1 At the centre 1-500

2 At quarter points from the
ends of a diameter

1

8
•5000 4-500

3 At the corners of an equi-

lateral triangle

1

3^3
•5774 9^000

•4 At the corners of a square J2 I
8 16

•6208 14-750

4 At the corners of an equi-

lateral tetrahedron

3 /3

16V 2
•6124 15-000

6 At the corners of an equi-

lateral octahedron
1 +V2

24
•6522 33-335

8 At the corners of a cube 3^2(^^+\/

2

^l)
•6756 52-180

§ 21. In the configurations thus expressed the equilibrium is

certainly stable for the cases of two electrions, three electrions,

and four electrions at the corners of a tetrahedron. It seems to me,

without calculation, also probably stable for the case of six, and

possibly even for the case of eight. For the case of twenty at the

corners of a pentagonal dodecahedron the equilibrium is probably

not stable ; and even for the cases of twelve electrions and ten

electrions, the equilibrium in the configurations described in §§ 18,

19 may probably be unstable, when, as now, we have the attraction

of the atom towards the centre instead of the inextensible strings.

§ 22. In fact when the number of electrions exceeds four,
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we must think of the tendency to be crowded out of one spherical

surface, which wdth very large numbers gives a tendency to

uniform distribution throughout the volume of the atom as

described in § 16 above. Thus, in the case of five electrions,

§ 18 shows a configuration of equilibrium in which the two

electrions lying in one diameter are, by the mutual repulsions,

pushed very slightly further from the centre than are the three

in the equatorial plane. In this case the equilibrium is clearly

stable. Another obvious configuration, also stable, of five elec-

trions within an atom is one at the centre, and four on a concentric

spherical surface at the corners, of a tetrahedron. From any case

of any number of electrions all on one spherical surface, we may
pass to another configuration with one more electrion placed at

the centre and the proper proportionate increase in the electric

strength of the atom. Thus from the cases described in § 19, we
may pass to configurations of equilibrium for seven, nine, eleven,

thirteen, and twenty-one electrions. All these cases, with questions

of stability or instability and of the different amounts of work

required to pluck all the electrions out of the atom and remove

them to infinite distances, present most interesting subjects for

not difficult mathematical work ; and I regret not being able to

pursue them at present.

§ 23. Consider now the electric properties of a real body,

gaseous, liquid, or solid, constituted by an assemblage of atoms

with their electrions. It follows immediately from our hypothesis,

that in a monatomic gas or in any sufficiently sparse assemblage

of single atoms, fixed or moving, Faraday's " conducting j^owerfor

lines of electric force," or luhat is noiu commonly called tJie sjjecijic

electro-inductive capacity, or the electro-inductive permeability,

exceeds unity by three times the ratio of the sum of the volumes of

the atoms to tlie whole volume of space occupied by the assemblage,

whether the atoms be mono-electrionic or polyelectrionic, and how-

ever much the electrion, or group of electrions, within each atom

is set to vibrate or rotate with each collision, according to the

kinetic theory of gases. To prove this, consider, in a uniform

field of electrostatic force of intensity F, a single atom of radius a;

and, at rest within it, a group of i electrions in stable equi-

librium. The action of F produces simply displacements of the

electrions relatively to the atom, equal and in parallel lines, with

therefore no change of shape and no rotation ; and, x denoting the
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amount of this displacement, the equation tor the equilibrium of

each electrion is —~ = F. This oives iex = a~F for the electric

moment of the electrostatic polarization induced in the atom by F.

In passing, remark that ol^F is also equal to the electric moment
of the polarization produced in an insulated unelectrified metal

globe of radius a, when brought into an electrostatic field of

intensity F: and conclude that the electric inductive capacity of

a uniformly dense assemblage of fixed metallic globules, so sparse

that their mutual influence is negligible, is the same as that of

an equal and similar assemblage of our hypothetical atoms, what-

ever be the number of electrions in each, not necessarily the same

in all. Hence our hypothetical atom realizes perfectly for sparse

assemblages Faraday's suggestion of " small globular conductors,

as shot" to explain the electro-polarization which he discovered in

solid and liquid insulators. {Experimental Researches, § 1679.)

§ 24. Denoting now by N the number of atoms per unit

volume we find NVol^F as the electric moment of any sparse

enough assemblage of uniform density occupying volume V in

a uniform electric field of intensity F. Hence No? is what

(following the analogy of electro-magnetic nomenclature) we may
call the electro-inductive susceptibility* of the assemblage; being

the electric moment per unit bulk induced by an electric field of

unit intensity. Denoting this by /a, and the electro-inductive

permeability by w we have [Electrostatics and Magnetism, § 629,

(14)].

which proves the proposition stated at the commencement of § 28.

§ 25. To include vibrating and rotating groups of electrions

in the demonstration, it is only necessary to remark that the time-

average of any component of the displacement of the centre of

inertia of the group relatively to the centre of the atom will, under

the influence of F, be the same as if the assemblage were at rest

in stable equilibrium.

§ 26. The consideration of liquids consisting of closely packed

mobile assemblages of atoms or groups of atoms with their elec-

* Suggested in my Electrostatics and Magnetism, §§ 628, 629.
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trions, forming comp;Hind molecules, as in liquid argon or helium

(monatomic), nitrogen, oxygen, etc. (diatomic), or pure water, or

water with salts or other chemical substances dissolved in it,

or liquids of various complex chemical constitutions, cannot be

entered on in the present communication, further than to remark

that the suppositions we have made regarding forces, electric and

other, between electrions and atoms, seem to open the way to a

very definite detailed dynamics of electrolysis, of chemical affinity,

and of heat of chemical combination. Estimates of the actual

magnitudes concerned (the number of molecules per cubic centi-

metre of a gas, the mass in grammes of an atom of any substance,

the diameters of the atoms, the absolute value of the electric

quantity in an electrion, the effective mass or inertia of an elec-

trion) seem to show that the intermolecular electric forces are

more than amply great enough to account for heat of chemical

combination, and every mechanical action manifested in chemical

interactions of all kinds. We might be tempted to assume that

all chemical action is electric, and that all varieties of chemical

substance are to be explained by the numbers of the electrions

required to neutralize an atom or a set of atoms (§ 6 above) ; but

we can feel no satisfaction in this idea when we consider the great

and wild variety of quality and affinities manifested by the

different substances or the different "chemical elements"; and as

we are assuming the electrions to be all alike, we must fall back

on Father Boscovich, and require him to explain the difference of

quality of different chemical substances, by different laws of force

between the different atoms.

§ 27. Consider lastly a solid ; that is to say, an assemblage in

which the atoms have no relative motions, except through ranges

small in comparison with the shortest distances between their

centres*. The first thing that we remark is that every solid

would, at zero of absolute temperature (that is to say all its atoms

and electrions at rest), be a perfect insulator of electricity under

the influence of electric forces, moderate enough not to pluck

electrions out of the atoms in which they rest stably when there

is no disturbing force. The limiting value of F here indicated

* I need scarcely say that it is only for simplicity in the text that we con-

veniently ignore Roberts-Austen's admirable discovery of the interdiffusion of solid

gold and solid lead, found after a piece of one metal is allowed to rest on a piece of

the other for several weeks, months, or years.
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for perfect insulation, I shall for brevity call the disruptional

force or disruptional intensity. It is clear that this disruptional

force is smaller the greater the number of electrions within an

atom.

§ 28. The electro-inductive permeability of a solid at zero

temperature is calculable by the static dynamics of § 24, modified

by taking into account forces on the electrions of one atom due to

the attractions of neighbouring atoms and the repulsions of their

electrions. Without much calculation it is easy to see that

generally the excess of the electro-inductive permeability above

unity will be much greater than three times the sum of the

volumes of the electric atoms per unit volume of space, which we

found in § 24 for the electro-inductive permeability of an assem-

blage of single atoms, sparse enough to produce no disturbance

by mutual actions. Also without much calculation, it is easy to

see that now the induced electric moment will not be in simple

proportion to F, the intensity of the electric field, as it was

rigorously for a single atom through the whole range up to the

disruptional value of F\ but will tend to increase more than in

simple proportion to the value of F ; though for small practical

values of F the law of simple proportion is still very nearly

fulfilled.

I 29. Raise the temperature now to anything under that at

which the solid would melt. This sets the electrions to per-

forming wildly irregular vibrations, so that some of them wdll

occasionally be shot out of their atoms. Each electrion thus shot

out will quickly either fall back into the atom from which it

has been ejected, or will find its way into another atom. If the

body be in an electric field F, a considerable proportion of the

electrions which are shot out will find their way into other atoms

in the direction in which they are pulled by F; that is to say,

the body which was an infinitely perfect insulator at zero absolute

temperature has now some degree of electric conductivity, which

is greater the higher the temperature. There can be no doubt

that this is a matter-of-fact explanation of the electric con-

ductivity, which so nearly perfect an insulator as the flint glass

of my quadrant electrometer at atmospheric temperatures shows,

when heated to far below its melting point (according to Professor

T. Gray*, -98 .
10-=" at 60° Cent.; 4-9 . lO"--' at 100°; 8800 .

10-=" at

* Proc. U. S. Vol. XXXIV. Jan. 12, 1882. The figures of the text are in c. a. s.



558 APPENDIX E.

200" Cent.). It explains also the enormous increase of electric

conductivity of rare earths at lising temperatures above 800° C,

so arlmii'ably taken advantage of by Pi-f^fessor Nernst in his now

celebrated electric lamp.

§ 30. If the hypotheses suggested in the present communica-

tion are true, the electric conductivity of metals must be explained

in the same way as that of glass, gutta-percha, vulcanite, Nernst

filament, etc., with only this difference, that the metallic atom

must be so crowded with electrions that some of them are always

being spilt out of each atom by the intermolecular and electrionic

thermal motions, not only at ordinary atmospheric temperatures,

and higher, but even at temperatures of less than 16° Centigrade

above the absolute zero of temperature. I say 16° because in

Dewar's Bakerian Lecture to the Royal Society of London, June

13, 1901, The Nadir of Temperature, we find that platinum, gold,

silver, copper and iron have exceedingly high electric conductivity

at the temperature of liquid hj'drogen boiling under 30 mms. of

mercury, which must be something between 20°"5, the boiling

point of hydrogen at 760 mms. pressure, and 16°, the temperature

of melting solid hydrogen, both determined by Dewar with his

helium thermometer. There is no difficulty in believing that the

electrions in each of the metallic atoms are so numerous that

though they rest in stable equilibrium within the atoms, closely

packed to constitute the solid metal at 0° absolute, and may move

about within the atom with their wildly irregular thermal motions

at 1° of absolute temperature, they may between 1° and 2° begin

to spill from atom to atom. Thus, like glass or a Nernst filament

below 300° absolute, a metal may be an almost perfect insulator

of electricity below 1° absolute : may, like glass at 838° absolute,

show very notable conductivity at 2° absolute : and, like glass at

473° absolute as compared with glass at 333° absolute, may show

8000 times as much electric conductivity at 2°"8 as at 2°. And,

like the Nernst filament at 1800° or 2000° absolute, our hypo-

thetical metal may at 6° absolute show a high conductivity, com-

parable with that of lead or copper at ordinary temperatures.

The electric conductivity in the Nernst filament goes on increasing

as the temperature rises till the filament melts or evaporates.

Nevertheless it is quite conceivable that in our hypothetical metal

with rising temperature from 2° to 16° absolute the electric con-

ductivity may come to a maximum and decrease with further rise
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of temperature up to and beyoud ordinary atmospheric tempera-

tures. In fact, while some extent of thermal motions is necessary

for electric conductivity (because there can be no such thing as

" lability " in electrostatic equilibrium), too much of these motions

must mar the freedom with which an electrion can thread its

way through the crowd of atoms to perform the function of electric

conduction. It seems certain that this is the matter-of-fact

explanation of the diminution of electric conductivity in metals

with rise of temperature.

§ 31. Regretting much not to be able (for want of time) to

include estimates of absolute magnitudes in the present com-

munication, I end it with applications of our hypothesis to the

pyro-electricity and piezo-electricity of crystals. A crystal is a

homogeneous assemblage of bodies. Conversely, a homogeneous

assemblage of bodies is not a crystal if the distance between

centres of nearest neighbours is a centimetre or more ; it is a

crystal if the distance between nearest neighbours is 10"*^ of a cm.

or less. Pyro-electricity and piezo-electricity are developments

of vitreous and resinous electric forces such as would result from

vitreous and resinous electrification on different parts of the

surface of a crystal, produced respectively by change of tem-

perature and by stress due to balancing forces applied to the

surfaces.

§ 32. To see how such properties can or must exist in crystals

composed of our hypothetical atoms with electrions, consider first

Fig. 6.

merely a row of equal tetra-electrionic atoms in a straight line,

each having its quantum of four electrions within it. Fig. 6

shows a configuration of stable equilibrium of the electrions not,

however, truly to scale. The sets of three dots indicate trios of

electrions at the corners of equilateral triangles, the middle dot

in each row being alternately on the far side and the near side of

the plane of the paper, which contains the centres of the atoms

and the remainini^ electrion of each four. Let f\, C, C, be the
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centres of the atoms Ay, A, A'. An easy calculation shows that

the quartet of electrions within A, regarded for the moment as a

group of four material points rigidly connected, is attracted to the

left with a less force by ^i than to the right by A' (in making the

calculation remember that A^ attracts all the electrions within A
as if it were a quantity e of vitreous electricity collected at C\,

and similarly in respect to A'). There are corresponding smaller

differences between the opposite attractions of the more and more

remote atoms on the two sides of A. Let 8 denote the excess of

the sum of the rightwards of these attractions above the leftwards.

The geometrical centre of the electrions within A is displaced

rightwards from C to a distance, I, equal to ^^ •

§ 33. Imagine now a crystal or a solid of any shape built up

of parallel rows of atoms such as those of § 32. The amount of

the displacing force on each quartet of electrions will be some-

what altered by mutual action between the rows, but the general

character of the result will be the same ; and we see that

throughout the solid, except in a thin superficial layer of perhaps

five or tens atoms deep, the whole interior is in a state of homo-

geneous electric polarization, of which the electric moment per

unit of volume is 4!eNl ; where N is the number of atoms per

unit volume, and I is the displacement of the geometrical centre

of each quartet from the centre of its atom. This is the

interior molecular condition of a di-polar pyro-electric crystal,

which I described in 1860* as probably accounting for their

known pyro-electric quality, and as in accordance with the free

electro-polarities of fractured surfaces of tourmaline discovered

by Canton f. If a crystal, which we may imagine as given with

the electrions wholly undisturbed from their positions according

* Collected Mathematical and Physical Papers, Vol. i. p. 315.

t Wiedemann {Die Lehre von der Elektricitdt, Second Edition, 1894, Vol. ii.

§ 378) mentions an experiment without fully describing it by which a null result,

seemingly at variance with Canton's experimental discovery and condemnatory of

my suggested theory, was found. Interesting experiments might be made by

pressing together and reseparating fractured surfaces of tourmaline, or by pressing

and rubbing polished surfaces together and separating them. It would be very

difficult to get trustworthy results by breakages, because it would be almost

impossible to avoid irregular electrifications by the appliances used for making

the breakage. The mode of electric measurement followed in the experiment

referred to bv Wiedemann is not described.
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to § 82, is dipped in water and then allowed to dry, electrions

would by this process be removed from one part of its surface and

distributed over the remainder so as to wholly annul its external

manifestation of electric quality. If now either by change of

temperature or by mechanical stress the distances between the

atoms are altered, the interior electro-polarization becomes neces-

sarily altered ; and the masking superficial electrification previously

got by the dipping in water and drying, will now not exactly

annul the electrostatic force in the air around the solid. If at

the altered temperature or under the supposed stress the solid

is again dipped in water and dried, the external electric force

will be again annulled. Thus is explained the pyro-electricity

of tourmaline discovered by Aepinus.

§ 34. But a merely di-polar electric crystal with its single

axis presents to us only a small, and the very simplest, part of the

whole subject of electro-crystallography. In boracite, a crystal of

the cubic class, Hully found in the four diagonals of the cube, or

the perpendiculars to the pairs of faces of the regular octahedron,

four di-polar axes : the crystal on being irregularly heated or

cooled showed as it were opposite electricities on the surfaces in

the neighbourhood of opposite pairs of corners of the cube, or

around the centres of the opposite pairs of triangular faces of the

octahedron. His discoveries allow us to conclude that in general

the electric aeolotropy of crystals is octo-polar with four axes, not

merely di-polar as in the old-known electricity of the tourmaline.

The intensities of the electric virtue are generally different for

the four axes, and the directions of the axes are in general un-

symmetrically oriented for crystals of the unsymmetrical classes.

For crystals of the optically uniaxal class, one of the electro-polar

axes must generally coincide with the optic axis, and the other

three may be perpendicular to it. The intensities of the electro-

polar virtue are essentially equal for these three axes : it may be

null for each of them : it may be null or of any value for the so-

called optic axis. Haiiy found geometrical differences in respect

to crystalline facets at the two ends of a tourmaline ; and between

the opposite corners of cubes, as leucite, which possess electro-

polarity. There are no such differences between the two ends of

a quartz crystal (hexagonal prism with hexagonal pyramids at the

two ends) but there are structural differences (visible or invisible)

T. L. 36
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between the opposite edges of the hexagonal prism. The electro-

polar virtue is null for the axis of the prism, and is proved to

exist between the opposite edges by the beautiful piezo-electric

discovery of the brothers Curie, according to which a thin flat

bar, cut with its faces and its length perpendicular to two parallel

faces of the hexagonal prism and its breadth parallel to the edges

of the prism, shows opposite electricities on its two faces, when

stretched by forces pulling its ends. This proves the three electro-

polar axes to bisect the 120° angles between the consecutive plane

faces of the prism.

§ 35. For the present let us think only of the octo-polar

electric aeolotropy discovered by Haiiy in the cubic class of

crystals. The quartet of electrions at the four corners of a

tetrahedron presents itself readily as^ possessing intrinsically the

symmetrical octo-polar quality which is realized in the natural

crystal. Ifwe imagine an assemblage of atoms in simple cubic order

each containing an equilateral quartet of electrions, all similarly

oriented with their four faces perpendicular to the four diagonals

of each structural cube, we have exactly the required seolotropy

;

but the equilibrium of the electrions all similarly oriented would

probably be unstable ; and we must look to a less simple assem-

blage in order to have stability with similar orientation of all the

electrionic quartets.

§ 36. This, I believe, we have in the doubled equilateral

homogeneous assemblage of points described in § 69 of my paper

on Molecular Constitution of Matter republished from the Trans-

actions of the Royal Society of Edinburgh for 1889 in Volume ill.

of my Collected Mathematical and Physical Papers (p. 426)

;

which may be described as follows for an assemblage of equal and

similar globes. Beginning with an equilateral homogeneous

assemblage of points, A, make another similar assemblage of

points, B, by placing a 5 in the centre of each of the similarly

oriented quartets of the assemblage of A'q. It will be found that

every A is at the centre of an oppositely oriented quartet of

the jB's. To understand this, let A^, A^, A^, A^, be an equilateral

quartet of the ^'s ; and imagine A.^, A^, A^, placed on a horizontal

glass plate* with A-^ above it. Let B^ be at the centre of

* Parallel glass plates carrying little white or black or coloured paper-circles are

useful auxiliaries for graphic construction and illustrative models in the molecular

theory of crystals.
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Ai, A2, Ai, Ai, and let B^, B^, B3, B^, be a quartet of the B's

similarly oriented to A^, A^, A3, A^. We see that B^, B3, B^, lie

below the glass plate, and that the quartet ^1, B^, B3, B^, has

none of the A's at its centre. But the vertically opposite quartet

Bi, B2 , B3, Bi, contains A^ within it; and it is oppositely oriented

to the quartet A^, A^, A3, A^. Thus we see that, while the half

of all the quartets of A's which are oriented oppositely to

Ai, A^, A3, Ai, are void of B's, the half of the quartets of B's

oppositely oriented to A^, A^, A3, A^, have each an A within it,

while the other half of the quartets of the B's are all void

of A's.

§ 37. Now let all the points A and all the points B, of § 36,

be centres of equal and similar spherical atoms, each containing a

quartet of electrions. The electrions will be in stable equilibrium

under the influence of their own mutual repulsions, and the at-

tractions of the atoms, if they are placed as equilateral quartets

of proper magnitude, concentric with the atoms, and oriented all

as any one quartet of the A's or B's. To see that this is true,

confine attention first to the five atoms A^, Ao, A3, Ai, B^. If the

electrions within ^1, A^, A3, A^ are all held similarly oriented to

the quartet of the centres of these atoms, the quartet of electrions

within Bi must obviously be similarly oriented to the other

quartets of electrions. If again, these be held oriented oppositely

to the quartet of the atoms, the stable configuration of the

electrions within B^, will still be similar to the orientation of the

quartets within A^, A^, A3, A^, though opposite to the orientation

of the centres of these atoms. If, when the quartets of electrions

are all thus similarly oriented either way, the quartet within B^^

is turned to reverse orientation, this will cause all the others to

turn and settle in stable equilibrium according to this reversed

orientation. Applying the same consideration to every atom of

the assemblage and its four nearest neighbours, we have proof of

the proposition asserted at the commencement of the present

section. It is most interesting to remark that if, in a vast homo-
geneous assemblage of the kind with which we are dealing, the

orientation of any one of the quartets of electrions be reversed

and held reversed, all the others will follow and settle in stable

equilibrium in the reversed orientation.

§ 38. This double homogeneous assemblage of tetra-electrionic

36—2
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atoms seems to be absolutely the simplest* molecular structure in

which Haiiy's octo-polar electric quality can exist. To see that it

has octo-polar electric quality, consider an octahedron built up

according to it. The faces of this octahedron, taken in proper

order, will have, next to them, alternately points and triangular

faces of the electrionic quartets within the atoms. This itself is

the kind of electric ffiolotropy which constitutes octo-polar quality.

Time prevents entering fully at present on any dynamical investi-

gation of static or kinetic results.

§ 39. [Added Oct. 23, 1901.] Since what precedes was written,

I have seen the explanation of a difficulty which had prevented

me from finding what was wanted for octo-polar electric seolotropy

in a homogeneous assemblage of single atoms. I now find (§ 40

below) that quartets of electrions will rest stably in equilibrium,

under the influence of the

mutual repulsion between

electrion and electrion and

attraction between atom

and electrion, in an equi-

lateral homogeneous as-

semblage in the configura-

tion indicated in fig. 7.

The quartets of electrions

are supposed to have their

edges parallel to the six

lines of symmetry of the

assemblage. The plane of

the paper is supposed to

be that of the centres of

the seven atoms. The central point in each circle represents a

simple electrion which is at distance r, according to the notation

of § 20 above, from the plane of the paper on the near side ;
and

therefore the other three at the corners of an equilateral triangle

at distance ^r on the far side to make the electric centre of gravity

of the quartet coincide with the centre of its atom. The radius of

the circle on which these three lie is —^ r or -94. The diagram

is drawn correctly to scale according to the value "6123 given

Fig. 7.

Not the simplest. See § 40 below.
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for r in the table of § 20, on the supposition that the circles

shown iu the diagram represent the electric spheres of the atoms

in contact.

§ 40. Imagine now the electrions of each quartet to be rigidly

connected with one another and given freedom only to rotate

about an axis perpendicular to the plane of the paper. To all of

them apply torques ; turning the central quartet of the diagram

slowly and keeping all the others at rest. It is clear that the

first 60° of turning brings the central quartet to a position of

unstable equilibrium, and 60° more to a position of stable equi-

librium corresponding to the first position, which we now see is

stable when the others are all held fixed. We are now judging

simply from the mutual actions between our central quartet and

the six shown around it in the diagram ; but it may be easily

proved that our judgment is not vitiated by the mutual action

between the central quartet and all around it, including the six

in the diagram. Similarly we see that any one quartet of the

assemblage, free to turn round an axis perpendicular to the plane

of the paper while all the others are fixed, is in stable equilibrium

when oriented as are those shown in the diagram. And similarly

again we see the same conclusion in respect to three other

diagrams in the three other planes parallel to the faces of the

tetrahedrons or corresponding octahedrons of the assemblage.

Hence we conclude that if the axial constraints are all removed,

and the quartets left perfectly free, every one of them rests in

stable equilibrium when oriented either as one set or as the other

set of equilateral tetrahedronal quartets of the assemblage. It is

interesting to remark that if, after we turned the central quartet

through 60°, we had held it in that position and left all the others

free to rotate, rotational vibrations would have spread out among

them from the centre ; and, after losing in waves spreading

through ether outside the assemblage the energy which we gave

them by our torque acting on the central quartet, they would come

to stable equilibrium with every one of them turned 60° in one

direction or the other from its primitive position, and oriented

as the central quartet in the position in which we held it.

§ 41. We have thus found that an equilateral homogeneous

assemblage of atoms each having four electrions within it,

arranges these electrions in equilateral quartets all oriented in one
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or other of two ways. The assemblage of atoms and electrions

thus produced is essentially octo-polar. Of the two elementary

structural tetrahedi'ons, of the two orientations, one will have

every one of its electrionic quartets pointing towards, the other

from, its faces. The elementary structural octahedron has four of

its faces next to corners, and four next to triangles, of its electrionic

quartets. This is essentially a dynamically octo-polar* assemblage

;

and it supplies us with a perfect explanation of the piezo-electric

quality to be inferred from the brothers Curie's experimental

discovery, and Voigt's mathematical theory.

§ 42. Look at the diagram in § 39 ; and remember that it

indicates a vast homogeneous assemblage consisting of a vast

number of parallel plane layers of atoms on each side of the

plane of the paper, in which seven atoms are shown. The
quartets of electrions were described as all similarly oriented, and

each of them equilateral, and having its geometrical centre at the

centre of its atom ; conditions all necessary for equilibrium.

§ 43. Let now the assemblage of atoms be homogeneously

stretched from the plane on both sides to any extent, small or

great, without any component motions of the centres of the atoms

parallel to the planes of the layers. First let the stretch be very

great
;

great enough to leave undisturbed by the other layers

the layer for which the centres of atoms are, and the geometrical

centres of the quartets were, in the plane of the paper. The

geometrical centres of the quartets are not now in the plane of

the paper. The single electrions on the near side seen in the

diagram over the centres of the circles are drawn towards the

plane of the paper ; the equilateral triangles on the far side are

also drawn nearer to the paper ; and the equilateral triangles are

enlarged in each atom by the attractions of the surrounding

atoms. The contrary inward movements of the single atoms on

one side of the plane, and of the triplets on the other side, cannot

* The octo-polar pyro-electricity, which is supposed to have been proved by

Haiiy's experiment, must have been due to something seolotropic in the heating.

Uniform heating throughout a regular cube or octahedron could not give opposite

electric manifestations in the four pairs of alternate corners of the cube, or

alternate faces of the octahedron. Nevertheless the irregular finding of electric

octo-polarity by Haiiy is a splendid discovery ; of which we only now know the

true and full significance, through the experimental and mathematical labours of

the brothers Curie, of Friedel, and of Voigt.
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in general be in the proportion of three to one. Hence the

geometrical centres of gravity of the quartets are now displaced

perpendicularly to the plane of the paper to far side or near side

;

I cannot tell which without calculation. The calculation is easy

but essentially requires much labour; involving as it does the

determination of three unknowns, the length of each side of the

equilateral triangle seen in the diagram, the distance of each of

its corners from the electrion on the near side of the paper, and

the displacement of the geometrical centre of gravity of the four

to one side or other of the plane. Each one of the three equations

involves summations of infinite convergent series, expressing force

components due to all the atoms surrounding any chosen one in

the plane. A method of approximation on the same general plan

as that of the footnote to § 9 above would give a practicable

method of calculation.

§ 44. Return to § 42 ; and consider the diagram as represent-

ing a crystal in its natural unstressed condition, consisting of a

vast train of assemblages of atoms with centres in the plane of

the paper, and in parallel planes on each side of it. We now see

that the forces experienced by the electrions of one quartet from

all the surrounding atoms in the plane of the paper would, if

uncompensated, displace the geometrical centre of gravity of the

quartet to one side or other of the plane of the paper, and we

infer that the forces experienced from all the atoms on the two

sides of this plane give this compensation to keep the centre of

gravity of the quartet in the plane. Stretch now the assemblage

to any degree equally in all directions. The quartets remain

equilateral with their centres of gravity in the plane of the paper

and parallel planes. Lastly stretch it farther equally in all direc-

tions parallel to the plane of the paper, with no component motion

perpendicular to this plane. This last stretching diminishes

the influence of all the atoms whose centres are in the plane of

the paper tending to displace the centres of gravity of their

electrions in one direction from this plane ; and therefore leaves

all the atoms out of this plane to predominate, and to cause a

definite calculable displacement of the centres of gravity of all

the quartets in the contrary direction to the former.

§ 45. To realize the operations of § 44, cut a thin hexagonal

plate from the middle between two opposite corners of a cubic
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crystal, or parallel faces of an octahedron. Fix clamps to the six

edges of this plate, and apply forces pulling their pairs equally in"

contrary directions. The whole material of the plate becomes

electro-polar with electric moment per unit bulk equal to 4iVea;;

of which the measurable result is uniform electrostatical potentials *

in vacuous ether close to the two sides of the plate, differing by

47r . 4 iVea;^ ; where t denotes the thickness of the plate, cc the

calculated displacement of the centre of gravity of each quartet

from the' centres of the atoms parallel to the two faces of the

plate, e the electric mass of an electrion, and iV the number of

atoms per cubic centimetre of the substance. This crystal of the

cubic class is, in Voigt's mathematical theory, the analogue to

the electric effect discovered in quartz by the brothers Curie, and

measured by aid of thin metal foils attached to the two faces of

the plate and metrically connected to the two principal electrodes

of an electrometer.

* See my Electrostatics and Magnetism, § 512, Cor. 3.
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(Having been in type more than twelve years as Articles XCIII.—XCVII.

for projected Vol. iv. of Mathematical and Physical Papers.)

Art. XCIII. Dynamical Illustrations of the Magnetic

and the heligoidal rotatoky effects of transparent

Bodies on Polarized Light.

[From the Proc. Roy. Soc, Vol. viii., June 1856 ; Phil. Mag., March 1857.]

The elastic reaction of a homogeneously strained solid has a

character essentially devoid of all helicjoidal and of all dipolar

asymmetry. Hence the rotation of the plane of polarization of

light passing through bodies which either intrinsically possess the

heli9oidal property (syrup, oil of turpentine, quartz crystals, &c.),

or have the magnetic property induced in them, must be due to

elastic reactions dependent on the heterogeneousness of the strain

through the space of a wave, or to some heterogeneousness of the

luminous motions* dependent on a heterogeneousness of parts of

the matter of lineal dimensions not infinitely small in comparison

with the wave length. An infinitely homogeneous solid could

not possess either of those properties if the stress at any point of

it was influenced only by parts of the body touching it ; but if

the stress at one point is directly influenced by the strain in

parts at distances from it finite in comparison with the wave

length, the heli9oidal property might exist, and the rotation of

the plane of polarization, such as is observed in many liquids and

in quartz crystals, could be explained as a direct dynamical

consequence of the statical elastic reaction called into play by

such a strain as exists in a wave of polarized light. It may,

however, be considered more probable that the matter of trans-

parent bodies is really heterogeneous from one part to another of

lineal dimensions not infinitely small in comparison with a wave

* As would be were there different sets of vibrating particles, or were Eankine's

important hypothesis true, that the vibrations of luminiferous particles are directly

affected by pressure of a surrounding medium in virtue of its inertia. [In Lectures

XIX. and XX. we have seen reason to believe that this is true.]



570 APPENDIX F.

length, than that it is infinitely homogeneous and has the property

of exerting finite direct "molecular" force at distances comparable

with the wave length : and it is certain that anj^ spiral hetero-

geneousuess of a vibrating medium must, if either right-handed

or left-handed spirals predominate, cause a finite rotation of the

plane of polarization of all waves of which lengths are not

infinitely great multiples of the steps of the structural spirals.

Thus a liquid filled homogeneously with spiral fibres, or a solid

with spiral passages through it of steps not less than the forty-

milUonth of an inch, or a crystal with a right-handed or a left-

handed geometrical arrangement of parts of some such lineal

dimensions as the forty-millionth of an inch, might be certainly

expected to cause either a right-handed or a left-handed rotation

of ordinary light (the wave length being T^^th of an inch for

homogeneous yellow).

But the magnetic influence on light discovered by Faraday

depends on the direction of motion of moving particles. For

instance, in a medium possessing it, particles in a straight line

parallel to the lines of magnetic force, displaced to a helix round

this line as axis, and then projected tangentially with such veloci-

ties as to describe circles, will have different velocities according

as their motions are round in one direction (the same as the

nominal direction of the galvanic current in the magnetizing

coilj, or in the contrary direction. But the elastic reaction of the

medium must be the same for the same displacements, whatever

be the velocities and directions of the particles ; that is to say,

the forces which are balanced by centrifugal force of the circular

motions are equal, while the luminiferous motions are unequal.

The absolute circular motions being therefore either equal or such

as to transmit equal centrifugal forces to the particles initially

considered, it follows that the luminiferous motions are only com-

ponents of the whole motion ; and that a less luminiferous com-

ponent in one direction, compounded with a motion existing in

the medium when transmitting no light, gives an equal, resultant

to that of a greater luminiferous motion in the contrary direction

compounded ^v^th the same non-luminous motion. I think it is

not only impossible to conceive any other than this dynamical

explanation of the fact that circularly polarized light transmitted

through magnetized glass parallel to the lines of magnetizing force,

with the same quality, right-handed always, or left-handed always,
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is propagated at different rates according as its course is in the

direction or is contrary to the direction in which a north magnetic

pole is drawn ; but I believe it can be demonstrated that no

other explanation of that fact is possible. Hence it appears that

Faraday's optical discovery affords a demonstration of the reality

of Ampere's explanation of the ultimate nature of magnetism

;

and gives a definition of magnetization in the dynamical theory

of heat. The introduction of the principle of moments of momenta

(" the conservation of areas ") into the mechanical treatment of

Mr Raukine's hypothesis of " molecular vortices," appears to in-

dicate a line perpendicular to the plane of resultant rotatory

momentum (" the invariable plane ") of the thermal motions as

the magnetic axis of a magnetized body, and suggests the resultant

moment of momenta of these motions as the definite measure of

the " magnetic moment." The explanation of all phenomena of

electro-magnetic attraction or repulsion, and of electro-magnetic

induction, is to be looked for simply in the inertia and pressure

of the matter of which the motions constitute heat. Whether

this matter is or is not electricity, whether it is a continuous fluid

interpermeating the spaces between molecular nuclei, or is itself

molecularly grouped; or whether all matter is continuous, and

molecular heterogeneousness consists in finite vortical or other

relative motions of contiguous parts of a body ; it is impossible

to decide, and perhaps in vain to speculate, in the present state

of science.

I append the solution of a dynamical problem for the sake of

the illustrations it suggests for the two kinds of effect on the

plane of polarization referred to above.

Let the two ends of a cord of any length he attached to tiuo

points at the ends of a horizontal arm made to rotate round a

vertical qaHs through its middle point at a cotistant angular velocity^

0), and let a second cord bearing a weight he attached to the middle

of the first cord. The two cords being each perfectly light and

fiexihle, and the weight a material point, it is required to determine

its motion when infinitely little disturbed from its position of equi-

librium*.

Let I be the length of the second cord, and m the distance from

* By meaus of this arrangement, but without the rotation of the bearing arm,

a very beautiful experiment, due to Professor Blackburn, may be made by attach-

ing to the weight a bag of sand discharging its contents through a fiue aperture.
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the weight to the middle point of the arm bearing the first. Let

X and y be, at any time t, the rectangular coordinates of the

position of the weight, referred to the position of equilibrium 0,

and two rectangular lines OX, OY, revolving uniformly in a hori-

zontal plane in the same direction, and with the same angular

velocity as the bearing arm ; then, if we choose OX parallel to

this arm, and if the rotation be in the direction with OY preceding

OX, we have, for the equations of motion,

df
"^^ ^"^ dt~ Z^'

d'^y „ ^ dx q

If for brevity we assume

we find, by the usual methods, the following solution :

—

^ = J. cos
{
[ft)' + n' + (X* + Wwfft + a]

+ B cos {[ft)' + n'- (V + 47iV)^]^^ + y8},

2ft)'^-A,'+(V + 4wW)* , . ^
w = ^ -^r^ A sm d)^

2ft) [(^' + n^ + (V + Woi')^Y

2ft,^ - V'' - (\* + 47iV)^ „ . ,

-Ti/sm>|r,
2ft)[ft)' + w'-(X*+4^W)']^

where A, a, B, /3 are arbitrary constants, and cf) and -v/r are used for

brevity to denote the arguments of the cosines appearing in the

expression for x.

The interpretation of this solution, when (o is taken equal to

the component of the earth's angular velocity round a vertical at

the locality, affords a full explanation of curious phenomena which

have been observed by many in failing to repeat Foucault's admir-

able pendulum experiment. When the mode of suspension is

perfect, we have X = ; but in many attempts to obtain Foucault's

result, there has been an asymmetry in the mode of attachment

of the head of the cord or wire used, or there has been a slight

lateral unsteadiness in the bearings of the point of suspension,

which has made the observed motion be the same as that expressed

by the preceding solution, where \ has some small value either
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greater than or less than o), and n has the vakie * /'^ • The only

case, however, that need be considered as illustrative of the subject

of the present communication is that in which co is very great in

comparison with n. To obtain a form of solution readily inter-

preted in this case, let

[(o' + n' + (X* + ^nWf] ^ = (o + p, [fo'+ n' - {\' + ^nWf] ^ = co-a,

l + e,

The preceding solution becomes

os= A cos {{(o + p)t+ a] + B cos {(ft) — a)t+ /3]

y = — Asm{(Q) + p)t + a]—B sin {(&> — a)t + ^}

- eA sin {(w + p)t-\-a] +fB sin {(&> -a)t + /3|.

To express the result in terms of coordinates ^, r), with reference

to fixed axes, instead of the revolving axes OX, OY, we may

assume

^ = X cos oit — y sin cot,

rj= X sin cot + y cos cot.

Then we have

1^ = J. cos ipt + a) -\- B cos {at - /3)

+ {eA sin {{co + p) t + a] -fB sin \{co — a) t + ^]) sin cot

7) = — A sin {pt + a) +B sin {a-t — ^)

+ {- eA sin {{co + p) t + 1} +fB sin {{oo - a) t + /3}) cos cot.

When CO is very large, e and f are both very small, and the last

two terms of each of these equations become very small periodic

terms, of very rapidly recurring periods, indicating a slight tremor

in the resultant motion. Neglecting this, and taking a = and

/3 = 0, as we may do without loss of generality, by properly choosing

the axes of reference, and the era of reckoning for the time, we

have finally, for an approximate solution of a suitable kind,

^= A cos pt + B cos at,

7] = — A sin pt + B sin at.
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The terms B, in this expression, represent a circular motion of

27r
period , in the positive direction (that is, from the positive axis

O"

of ^ to the positive axis of rj), or in the same direction as that of

the rotation co; and the terms A represent a circular motion, of

27r
period —-, in the contrary direction. Now, o) being very great,

p and a are very nearly equal to one another ; but p is rather less

than a, as the following approximate expressions derived from

their exact values expressed above, show :

—

1 V 1 X* 1 V 1 \^

'^
8 con 8 CO 8 co^n 8 co

Hence the form of solution simply expresses that circular vibrations

of the pendulum in the contrary directions have slightly different

periods, the shorter, —
-

, when the motion of the pendulum follows

2'jr
that of the arm supporting it, and the longer, — , when it is in the

r

contrary direction. The equivalent statement, that if the pendulum

be simply drawn aside from its position of equilibrium, and let go

without initial velocity, the vertical plane of its motion will rotate

slowly at the angidar rate | (cr— p), is expressed most shortly by

taking A — B, and reducing the preceding solution to the form

I = 2^ cos sri cos n't,

7) = 2A sin 'srt cos n't,

where n = ^ (cr + p), or, approximately, n = n +~ ^

,

^ o CO n

1 IX*
and OT = - (cr — p), or, approximately, tn- = - —3

.

Z 8 ft)

It is a curious part of the conclusion thus expressed, that the

faster the bearing arm is carried round, the slower does the plane

of a simple vibration of the pendulum follow it. When the bearing

arm is carried round infinitely fast, the plane of a vibration of the

pendulum will remain steady, and the period will be w ; in other

words, the motion of the pendulum will be the same as that of

2
a simple pendulum whose length is ^, or a harmonic mean

- + -
e m
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between the effective lengths in the two principal planes of the

actual pendulum.

It is easy to prove from this, that if a long straight rod, or

a stretched cord possessing some rigidity, unequally elastic or of

unequal dimensions, in different transverse directions, be made to

rotate very rapidly round its axis, and if vibrations be maintained

in a line at right angles to it through any point, there will result,

running along the rod or cord, waves of sensibly rectilineal trans-

verse vibrations, in a plane which in the forward progress of the

wave, turns at a uniform rate in the same direction as the rotation

27r
of the substance ; and that if — be the period of rotation of the

CO

substance, and I and in the lengths of simple pendulums respec-

tively isochronous with the vibrations of two plane waves of the

same length, a, in the planes of maximum and of minimum

elasticity of the substance, when destitute of rotation, the period

of vibration in a wave of the same length in the substance when

made to rotate will be
27r

1 X'

and the angle through which the plane of vibration turns, in the

propagation through a wave length, will be

or the number of wave lengths through which the wave is pro-

pagated before its plane turns once round, will be

8n(o'

where, as before,

and ft) denotes the angular velocity with which the substance is

made to rotate.

If next we suppose the rod or cord to be slightly twisted about

its axis, so that its directions of maximum and minimum elasticity

shall lie on two rectangular heli9oidal surfaces (heligo'ides gauches),

and if, while regular rectilineal vibrations are maintained at one
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point of it with a period to which the wave length corresponding

is a very large multiple of the step of the screw, the substance be

made to rotate so rapidly as to make the velocity of a point carried

along one of the screw surfaces in a line parallel to the axis be

equal to the velocity of propagation of a wave, it is clear that a

series of sensibly plane waves will run along the rod or cord with

no rotation of the plane of vibration. The period of vibration

of a particle will be, approximately, the same as before, that is,

27r
approximately, equal to — . Its velocity of propagation will

n
na

therefore be — , and, if s be the step of the screw, the period of

rotation of the substance, to fulfil the stated condition, must be

, or its angular velocity — . Now it is easily seen that the

effects of the rapid rotation, and the effects of the slight twist,

may be considered as independently superimposed ; and therefore

the effect of the twist, with no rotation of the substance, must be

to give a rotation to the plane of vibration equal and contrary to

that which the rotation of the substance would give if there were

no twist. But the effect on the plane of vibration, due to an

angular velocity tw, of rotation of the substance, is, as we have

seen, one turn in ^
wave lengths ; and therefore it is one turn

A/

in 8 —J -3 wave lengths when the angular velocity is — . Hence
A* o o

the effect of a twist amounting to one turn in a length, s, a small

fraction of the wave length, is to cause the plane of vibration of a

wave to turn round with the forward propagation of the wave, at

the rate of one turn in 8 -^ ^ wave lengths, in the same direction
\. s

as that of a point kept on one of the screw surfaces.

From these illustrations it is easy to see in an infinite variety

of ways how to make structures, homogeneous when considered on

a large enough scale, which (1) with certain rotatory motions of

component parts having, in portions large enough to be sensibly

homogeneous, resultant axes of momenta arranged like lines of

magnetic force, sliall have the dynamical property by which the

optical phenomena of transparent bodies in the magnetic field are

explained; (2) with s^piral arrangements of component parts, having

axes all ranged parallel to a fixed line^ shall have the axial rotatory
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propey^ty cori^esponding to that of quartz C7'ystal ; and (3) with

spiral arrangements of component groups, having axes totally un-

arranged, shall have the isotropic rotatory property possessed by

solutionis of sugar and tartaric acid, by oil of turpentine, and many

other liquids.

Art. XCIV. Sui fenomeni magnetocristalline.

[jYtcovo Cimento, IV., 1856.]

[Electrostatics and Magnetism, Art. xxx.]

Art. XCV. On the Alteration of Temperature accompany-

ing Changes of Pressure in Fluids.

\_rroc. Roy. Soc, June, 1857 ; Pltil. Mag., June Suppl., 1858.]

The subject of this paper is given in Mathematical and Physical

Papers, Art. xlviii. (Vol. i.).

Art. XCVI. Remarks on the interior JVLelting of Ice.

[Part of a letter to Prof. Stokes ; Proc. Roy. Soc. ix., Feb. 1858.]

In the Number of the Proceedings just published, which I

received yesterday, I see some very interesting experiments de-

scribed in a communication by Dr Tyndall, " On some Physical

Properties of Ice." I write to you to point out that they afford

direct ocular evidence of my brother's theory of the plasticity of

ice, published in the Proceedings of the 7th of May last ; and to

add, on my own part, a physical explanation of the blue veins

in glaciers, and of the lamellar structure which Dr Tyndall has

shown to be induced in ice by pressure, as described in the sixth

section of his paper.

Thus, my brother, in his paper of last May, says, " If we
" commence with the consideration of a mass of ice perfectly free

" from porosity, and free from liquid particles diffused through its

" substance, and if we suppose it to be kept in an atmosphere at

" or above 0° Cent., then, as soon as pressure is applied to it, pores

" occupied by liquid water must instantly be formed in the com-
" pressed parts, in accordance with the fundamental principle of

" the explanation I have propounded—the lowering, namely, of the

T. L. 87
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" freezing-point or melting-point, by pressure, and tbe fact that ice

" cannot exist at 0° Cent, under a pressure exceeding that of the

" atmosphere." Dr Tyndall finds that when a cylinder of ice is

placed between two slabs of box-wood, and subjected to gradually

increasing pressure, a dim cloudy appearance is observed, which

he finds is due to the melting of small portions of the ice in the

interior of the mass. The permeation into portions of the ice,

for a time clear, "by the water squeezed against it from such

parts as may be directly subjected to the pressure," theoretically

demonstrated by my brother, is beautifully illustrated by Dr Tyn-

dall's statement, that " the hazy surfaces produced by the com-
" pression of the mass were observed to be in a state of intense

" commotion, which followed closely upon the edge of the surface

" as it advanced through the solid. It is finally shown that these

" surfaces are due to the liquefaction of the ice in planes perpen-

" dicular to the pressure."

There can be no doubt but that the "oscillations" in the

melting-point of ice, and the distinction between strong and weak

pieces in this respect, described by Dr Tyndall in the second

section of his paper, are consequences of the varying pressures

which different portions of a mass of ice must experience w^hen

portions within it become liquefied.

The elevation of the melting temperature which my brother's

theory shows must be produced by diminishing the pressure of ice

below the atmospheric pressure, and to which I alluded as a

subject for experimental illustration, in the article describing my
experimental demonstration of the lowering effect of pressure

{Proceedings, Roy. Soc. Edin. Feb. 1850), demonstrates that a

vesicle of water cannot form in the interior of a solid of ice

except at a temperature higher than 0" Cent. This is a conclusion

Avhich Dr Tyndall expresses as a result of mechanical considera-

tions : thus, " Regarding heat as a mode of motion," " liberty of

" liquidity is attained by the molecules at the surface of a mass of

" ice before the molecules at the centre of the mass can attain this

" liberty."

The physical theory shows that a removal of the atmospheric

pressure would raise the melting-point of ice by 4foths of a degree

Centigrade. Hence it is certain that the interior of a solid of

ice, heated by the condensation of solar rays by a lens, will rise

to at least that excess of temperature above the superficial parts.
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It appears very nearly certain that cohesion Avill prevent the

evoUition of a bubble of vapour of water in a vesicle of water

forming by this process in the interior of a mass of ice, until a

high " negative pressure " has been reached, that is to say, until

cohesion has been called largely into operation, especially if the

water and ice contain little or no air by absorption (just as water

freed from air may be raised considerably above its boiling-point

under any non-evanescent hydrostatic pressure). Hence it appears

nearly certain that the interior of a block of ice originally

clear, and made to possess vesicles of water by the concentration

of radiant heat, as in the beautiful experiments described by

Dr Tyndall in the commencement of his paper, will rise very

considerably in temperature, while the vesicles enlarge under the

continued influence of the heat received by radiation through the

cooler enveloping ice and through the fluid medium (air and a

watery film, or water) touching it all round, which is necessarily

at 0° Cent, where it touches the solid.

I find I have not time to execute my intention of sending you

to-day a physical explanation of the blue veins of glaciers which

occurred to me last May, but I hope to be able to send it in

a short time.

Art. XCVII. On the Stratification of Vesicular Ice

BY Pressure.

[Part of a letter to Prof. Stokes ; Proc. Roy. Soc. ix., April, 1858.]

In my last letter to you I pointed out that my brother's

theory of the effect of pressure in lowering the freezing-point of

water, affords a perfect explanation of various remarkable pheno-

mena involving the internal melting of ice, described by Professor

Tyndall in the Number of the Proceedings which has just been

published. I wish now to show that the stratification of vesicular

ice by pressure observed on a large scale in glaciers, and the

lamination of clear ice described by Dr Tyndall as produced in

hand specimens by a Bramah's press, are also demonstrable as

conclusions from the same theory.

Conceive a continuous mass of ice, with vesicles containing

either air or water distributed through it ; and let this mass be

pressed together by opposing forces on two opposite sides of it.

37—2
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The vesicles will gradually become arranged in strata perpen-

dicular to the lines of pressure, because of the melting of ice in the

localities of greatest pressure and the regelation of the water in the

localities of least jiressure, in the neighbourhood of groups of these

cavities. For, any two vesicles nearly in the direction of the

condensation will afford to the ice between them a relief from

pressure, and will occasion an aggravated pressure in the ice

round each of them in the places farthest out from the line join-

ing their centres ; while the pressure in the ice on the far sides

of the two vesicles will be somewhat diminished from what it

Avould be were their cavities filled up with the solid, although

not nearly as much diminished as it is in the ice between the

two. Hence, as demonstrated by my brother's theory and my
own experiment, the melting temperature of the ice round each

vesicle will be highest on its side nearest to the other vesicle,

and lowest in the localities on the whole farthest from the line

joining the centres. Therefore, ice will melt fro?Ti these last-

mentioned localities, and, if each vesicle have water in it, the

partition between the two will thicken by freezing on each side

of it. Any two vesicles, on the other hand, which are nearly in

a line perpendicular to the direction of pressure will agree in

leaving an aggravated pressure to be borne by the solid between

them, and will each direct away some of the pressure from the

portions of the solid next itself on the two sides farthest from

the plane through the centres, perpendicular to the line of pres-

sure. This will give rise to an increase of pressure on the whole

in the solid all round the two cavities, and nearly in the plane

perpendicular to the pressure, although nowhere else so much

as in the part between them. Hence these two vesicles will

gradually extend towards one another by the melting of the

intervening ice, and each will become flattened in towards the

plane through the centres perpendicular to the direction of pres-

sure, by the freezing of water on the parts of the bounding surface

farthest from this plane. It may be similarly shown that two

vesicles in a line oblique to that of condensation will give rise to

such variations of pressure in the solid in their neighbourhood, as

to make them, by melting and freezing, to extend, each obliquely

towards the other and froon the parts of its boundary most remote

from a plane midway between them, perpendicular to the direction

of pressure.
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Tlic general tendency clearly is for the vesicles to become
flattened and arranged in layers, in planes perpendicular to the

direction of the pressure from without.

It is clear that the same general tendency must be experienced

even when there are bubbles of air in the vesicles, although no

doubt the resultant effect would be to some extent influenced by

the running down of water to the lowest part of each cavity.

I believe it will be found that these principles afford a satis-

factory physical explanation of the origin of that beautiful veined

structure which Professor Forbes has shown to be an essential

organic property of glaciers. Thus the first effect of pressure not

equal in all directions, on a mass of snow, ought to be, according

to the theory, to convert it into a stratified mass of layers of

alternately clear and vesicular ice, perpendicular to the direction

of maximum pressure. In his remarks " On the Conversion of the

Nevd into Ice*," Professor Forbes says, " that the conversion into ice

is simultaneous" (and in a particular case referred to "identical")

"with tJie formation of the blue hands;... and that these bands are

" formed where the ' pressure is most intense, and where the dif-

" ferential 'motion of the parts is a maximum, that is, near the walls

" of a glacier." He farther states, that, after long doubt, he feels

satisfied that the conversion of snow into ice is due to the effects

of pressure on the loose and porous structure of the former ; and

he formally abandons the notion that the blue veins are due to

the freezing of infiltrated water, or to any other cause than the

kneading action of pressure. All the observations he describes

seem to be in most complete accordance with the theory indicated

above. Thus, in the thirteenth letter, he says, " the blue veins

" are formed where the pressure is most intense and the differential

" motion of the parts a maximum."

Now the theory not only requires pressure, but requires differ-

ence of pressure in different directions to explain the stratification

of the vesicles. Difference of pressure in different directions pro-

duces the " differential motion " referred to by Professor Forbes.

Further, the difference of pressure in different directions must be

continued until a very considerable amount of this differential

motion, or distortion, has taken place, to produce any sensible

degree of stratification in the vesicles. The absolute amount of

distortion experienced by any portion of the viscous mass is

" Thirteenth Letter on Glacier.s, section (2), dated Dec. 18-10.
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therefore an index of the persistence of the differential pressure,

by the continued action of which the blue veins are induced.

Hence also we see why blue veins are not formed in any mass,

ever so deep, of snow resting in a hollow or corner.

As to the direction in which the blue veins appear to lie, they

must, according to the theory, be something intermediate between

the surfaces perpendicular to the greatest pressure, and the sur-

faces of sliding ; since they will commence being formed exactly

perpendicular to the direction of greatest pressure, and will, hy

the differential motion accompanying their formation, become

gradually laid out more and more nearly parallel to the sides of

the channel through which the glacier is forced. This circum-

stance, along with the comparatively weak mechanical condition

of the white strata (vesicular layers between the blue strata),

must, I think, make these white strata become ultimately, in

reality, the surfaces of " sliding " or of " tearing," or of chief

differential motion, as according to Professor Forbes's observations

they seem to be. His first statement on the subject, made as

early as 1842, that "the blue veins seem to be perpendicular to

the lines of maximum pressure," is, however, more in accordance

with their mechanical origin, according to the theory I now

suggest, than the supposition that they are caused by the tearing

action which is found to take place along them when formed. It

appears to me, therefore, that Dr Tyndall's conclusion, that the

vesicular stratification is produced by pressure in surfaces per-

pendicular to the directions of maximum pressure, is correct as

regards the mechanical origin of the veined structure; while there

seems every reason, both from observation and from mechanical

theory, to accept the view given by Professor Forbes of their

function in glacial motion.

The mechanical theory I have indicated as the explanation

of the veined structure of glacial ice is especially applicable to

account for the stratification of the vesicles observed in ice

originally clear, and subjected to differential pressure, by Dr
Tyndall ; the formation of the vesicles themselves being, as re-

marked in my last letter*, anticipated by my brother's theory,

published in the Pi^oceedings for May, 1857.

I believe the theory I have given above contains the true

explanation of one remai'kable fact observed by Dr Tyndall in

''' 8ee rivceediiiiis for February '2o, ItiiJS.
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connexion with the beautiful set of phenomena which he dis-

covered to be produced by radiant heat, concentrated on an

internal portion of a mass of clear ice by a lens ; the fact, namely,

that the planes in which the vesicles extend are generally parallel

to the sides when the mass of ice operated on is a flat slab ; for

the solid will yield to the " negative " internal pressure due to

the contractility of the melting ice, most easily in the direction

perpendicular to the sides. The so-called negative pressure is

therefore least, or which is the same thing, the positive pressure

is greatest in this direction. Hence the vesicles of melted ice,

or of vapour caused by the contraction of melted ice, must, as

I have shown, tend to place themselves parallel to the sides of

the slab.

The division of the vesicular layers into leaves like six-petaled

flowers is a phenomenon which does not seem to me as yet so

easily explained ; but I cannot see that any of the phenomena

described by Dr Tyndall can be considered as having been proved

to be due to ice having mechanical properties of a uniaxal crystal.

[It now seems to me most probable Tyndall was right in

attributing the six-rayed structure to the molecular mechanics of

a uniaxal crystal. K., Dec. 13, 1903.]
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HYDROKINETIC SOLUTIONS AND OBSERVATIONS.

Part I. On the Motion of Free Solids through a Liquid.

This paper commences with the following extract from the

author's private journal, of date January 6, 1858:

—

" Let ^, ^, 2;, %, JWl, ^ be rectangular components of an

impulsive force and an impulsive couple applied to a solid of

invariable shape, with or without inertia of its own, in a perfect

liquid, and let u, v, w, ot, p, a be the components of linear and

angular velocity generated. Then, if the vis viva* (twice the

mechanical value) of the whole motion be, as it cannot but be,

given by the expression

Q = [u^ ti\ u^ + [v, v]v" i- ... +2 [v, u] VII, + 2 [w, u] tun -\- ...

+ 2 [ot, m] CTIA + . . ,
,

where —\ii,u\ \y,v\ &c. denote 21 constant coefficients deter-

minable by transcendental analysis from the form of the surface

of the solid, probably involving only elliptic transcendentals when

the surface is ellipsoidal : involving, of course, the moments of

inertia of the solid itself: we must have

[u, w] u 4- \y, (/] v + [iv, it] IV + [ot, »] vs + [p, li] p + [o-, li] a = .^, &c.,

\ll, -ar] a + \y, -ar] v + [w, ct] w + [ct, ot] -27 + [p, w] /3 + [o", w] o" = H, &c.

If now a continuous force Z, Y, Z, and a continuous couple

L, M, N, referred to axes fixed in the body, are applied, and if

X, . .
.

, &c. denote the impulsive force and couple capable of

* Parts I. and II. fiom the Frocecdbujs of the Royal Societij of Edinburgh,

1870-71. Parts III. and IV. from letters to Professor Tait of August 1871.

Part V. from Phil. Macj. November, 1871.

In Part II., T, instead of ^ Q, is used to denote the " mechanical value," or, as it

is now called, the " kinetic energy " of the motion.
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generating from rest the motion a, v, w, ot, p, a, which exists in

reality at any time t ; or, merely mathematically, if 3C &c. denote

for brevity the preceding linear functions of the components of

motion, the equations of motion are as follow :

—

f-l. + S, = X, f = &c.

'^ - '^'^ + ^^^ - iat!^ + iLo- - i¥,

'^- aey +|9u- lip ^mt^=N ,

Three first integrals, when

j: = o, f=o, z=o, x = o, j/ = o, i\^ = o...(2),

must of course be, and obviously are,

X^ + ^" + -^2 = const (3),

resultant momentum constant

;

TLX + iWH + iaSS = const (4),

resultant of moment of moinentam constant ; and

11^ + v|9 + w% + ^1L + pilia + cria = Q = const. . . .(5)."

These equations were communicated in a letter to Professor

Stokes, of date (probably January) 1858, and they were referred

to by Professor Rankine, in his first paper on Stream-lines,

communicated to the Royal Society of London*, July 1863.

They are now communicated to the Royal Society of Edin-

burgh, and the following proof is added :

—

Let P be any point fixed relatively to the body ; and at time t,

let its coordinates relatively to axes OX, OY, OZ, fixed in space,

be X, y, z. Let PA, PB, PC be three rectangular axes fixed

relatively to the body, and {A, X), {A, Y), ... the cosines of the

nine inclinations of these axes to the fixed axes OX, OY, OZ.

* These equations will be very conveniently called the Eulerian equations of the

motion. They correspond precisely to Euler's equations for the rotation of a rigid

body, and include them as a particular case. As Euler seems to have been the first

to give equations of motion in terms of coordinate components of velocity and force

referred to lines fixed relatively to the moving body, it will be not only convenient,

but just, to designate as " Eulerian equations" any equations of motion in which the

lines of reference, whether for position, or velocity, or moment of momentum, or

force, or couple, move with the body, or the bodies, whose motion is the subject.
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Let the components of the "impulse*" or generalized mo-

mentum parallel to the fixed axes be ^, t], ^, and its moments

round the same axes \, fi, v; so that if A'', Y, Z be components

of force acting on the solid, in line through P, and i, M, N
components of couple, we have

d^ _ Y drj

dt~ ' dt

dX

dt

dfjb

di

dv= L + Zy - Yz, ~ =M + Xz - Zx, ^=N+ Yx - Xi/

(6).

Let 3C, ^, Z and %, JW, ^ be the components and moments

of the impulse relativ^ely to the axes FA, PB, PC moving with

the body. We have

^ = X (.1, X) + II {B, X) + % {C, X\ \

X = llL{A,X) +m (B, X) +M (C, X) + %y - ^z,
.(7).

Now let the fixed axes OX, OY, OZ be chosen coincident

with the position at time t of the moving axes PA, PB, PC: we

shall consequently have

dzdx _ dy _
rf^~"' dt^"^' dt^^"]

{A,X) = {B,Y) = {G,Z) = 1,

{A, Y) = {A, Z) = {B, X) = (5, Z) = {C, X) = {C, Y) = 0,

•(8),

d{A,Y)
dt

d{A,Z)
dt

o-,

d{B^X)
dt

d{B,Z)
dt

= - cr,

d (C,X)

dt

djC, Y)

dt

.(9).

Using (7), (8), and (9) in (6), we find (1).

One chief object of this investigation was to illustrate dyna-

mical effects of heli^oidal property (that is, right or left-handed

asymmetry). The case of complete isotropy, with heli9oidal

quality, is that in which the coefficients in the ([uadratic ex-

pression Q fulfil the following conditions:

—

* See " Vortex Motion," § C, Trans. Roij. Soc. Edin. (1868).
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.(10);

[u, ii] = [v, v] = [w, lu] (let m bo their common value)/

[^,-=7] = [p, p] = [o-, 0-] „ n

[w, tn-] = [y, p] = [tu, a] „ h ,, „ „

[v, tu] = [lu, u] = [u, y] = ; [p, cr] = [a-, ot] = [ct, p] = 0,

and

[h, p] = [a, a] = [v, a] = [v, ct] := [w, -sr] = [w, p] =

so that the formula for Q is

Q = III {a- + V' + W-) + II (ot- + p- + cr-) + 2/i (wot + vp + iDa). ..(11).

For this case, therefore, the Eulerian equations (1) become

d (inu + A-ar)

and

dt

d (war + hu)

— ni(v<r — tup) = X, &c.,

L, &c. V...(ii').

-Lines of reference fixed relatively

dt

[Memorandum

:

to the body.]

But inasmuch as (11') remains unchanged when the lines of

reference are altered to any other three lines at right angles to

one another through P, it is easily shown directly from (6), (7),

and (9) that if, altering the notation, we take u, v, w to denote

the components of the velocity of P parallel to three fixed

rectangular lines, and ur, p, a the components of the body's

angular velocity round these lines, we have

and

d (mu + hur)

dt

d^ii'ST + hu)

dt "

= A^ &c..
d {mv + hp)

~dt
= F,

+ h (av — pw) = L, &c. ...(12),

[Memorandum :—Lines of reference fixed in space],
^

which are more convenient than the Eulerian equations.

The integration of these equations, when neither force nor

couple acts on the body (A'' = &c., L — &c.), presents no

difficulty; but its result is readily seen from §21 ("Vortex

Motion") to be that, when the impulse is both translatory and

rotational, the point P, round which the body is isotropic, moves

uniformly in a circle or spiral so as to keep at a constant

distance from the " axis of the impulse," and that the components
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of angular velocity round the three fixed rectangular axes are

constant.

An isotropic heli9oid [chiroid as I now call it ; Lee. XX.,

§ 204] may be made by attaching projecting vanes to the surface

of a globe in proper positions ; for instance, cutting at 45° each,

at the middles of the twelve quadrants of any three great circles

dividing the globe into eight quadrantal triangles. By making

the globe and the vanes of light paper, a body might probably be

obtained rigid enough and light enough to illustrate by its motions

through air the motions of an isotropic helic;oid through an incom-

pressible liquid. But curious phenomena, not deducible from the

present investigation, will, no doubt, on account of viscosity, be

observed.

Part II.

Still considering only one movable rigid body, infinitely

remote from disturbance of other rigid bodies, fixed or movable,

let there be an aperture or apertures through it, and let there be

irrotational circulation or circulations (§ 60, " Vortex Motion ")

through them. Let f , 77, ^ be the components of the " impulse
"

at time t, parallel to three fixed axes, and A,, fi, v its moments

round these axes, as above, with all notation the same, we still

have (§ 26, " Vortex Motion ")

(6) (repeated).

| = X + ^,-F.,&c.j

But, instead of for ^Q a quadratic function of the com.ponents of

velocity as before, we now have

T=E + hJ^[u,a'\u:'^...+'2[a,v\uv^ ...] (13),

where E is the kinetic energy of the fiuid motion when the solid

is at rest, and h [[u, lil n' + • •] is the same quadratic as before.

The coefficients [w, u\ [«., v], &c. are determinable by a tran-

scendental analysis, of which the character is not at all influenced

by the circumstance of there being apertures in the solid. And

dT
instead of ^ — -^, &c., as above, we now have

du
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^ dT J, dT , ^ dT ^
^= ~j^ +11, r]= , + Im, ^= :i- + In,

du dv div
-...(14),

dT
X, = ^—I- / {ny — mz) + Gl, /u, = &c., v = &c.

J

where / denotes the resultant "impulse" of the cyclic motion

when the solid is at rest, I, vi, )i its direction-cosines, G its

" rotational moment " (§ 6, " Vortex Motion "), and .r, y, z the

coordinates of any point in its "resultant axis." These, (14)

with (13), used in (6) give the equations of the solid's motion

referred to fixed rectangular axes. They have the inconvenience

of the coefficients \ii, ii\, \ii, w], &c. being functions of the angular

coordinates of the solid. The Eulerian equations (free from this

inconvenience) are readily found on precisely the same plan as

that adopted above for the old case of no cyclic motion in the

fluid.

The formulae for the case in which the ring is circular, has no

rotation round its axis, and is not acted on by applied forces,

though, of course, easily deduced from the general equations

(14), (13), (0), are more readily got by direct application of first

principles. Let P be such a point in the axis of the ring, and

C A, B such constants that hiOLto^ + An- + Bv-) is the kinetic

energy due to rotational velocity ty round D, any diameter

through P, and translational velocities n along the axis and v

perpendicular to it. The impulse of this motion, together with

the supposed cyclic motion, is therefore compounded of

. T ^, , r. f^?' +/ along the axis,
momentum m fines through P k ,, ^- ,

[Bv perpendicular to axis,

and moment of momentum (Bco round the diameter D.

Hence if OX be the axis of resultant momentum, (x, y) the

coordinates of P relatively to fixed axes OX, OY; the inclina-

tion of the axis of the ring to ; and | the constant value of the

resultant momentum, we have

^cose = Au + I; -^sm0 = Bv; ^y = Q!.(o: 1

and d; = ticosd — vsind \ y = usm6 + vcosd; O^coj

Hence for we have the differential equation

.(15).

^<.-^ / sm ^ +
^ ^ sm 2^ = (16),
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which shows that the ring oscillates rotationally according to the

law of a horizontal magnetic needle carrying a bar of soft iron

rigidly attached to it parallel to its magnetic axis.

When 6 is and remains infinitely small, 6, y, and if are each

infinitely small, x remains infinitely nearly constant, and the

ring experiences an oscillator}'^ motion in period

9^ /
^^

-^ Y [7 ^ {A - B) x]{I + AxY

compounded of translation along OY and rotation round the

diameter D. This result is curiously comparable with the well-

known gyroscopic vibrations.

Part III. The Influence of frictionless Wind on Waves in water

supposed frictionless. {Letter to Professor Tait, of date

August 16, 1871.)

Taking OX vertically downwards and OF horizontal, let

X = h sin n(y — at) (1)

be the equation of the section of the water by a plane perpen-

dicular to the wave-ridges ; and let h (the half wave-height) be

infinitely small in comparison with (the wave-length). The

ic-component of the velocity of the water at the surface is then

— nah cos niy — at) (2).

This (because h is infinitesimal) must be the value of t- for

the point (0, y), if ^ denote the velocity-potential at any point

{x, y) of the water. Now because

^ +^ =
dx- dy-

and ^ is a periodic function of y, and a function of x which (as

we suppose the water infinitely deep) becomes zero when x= cc
,

it must be of the form

P cos {ny — e) e""^,

where P and e are independent of x and y. Hence, taking -p ,

putting ./ = in it, and equating it to (2), we have

— Pn cos (ny — e) = — nah cos (ny — not)
;
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and therefore F = ah, and e = neat ; so that we have

(f)
= a/ie~"*' cos /I (?/ — ai) (3).

This, it is to be remarked, results simply from the assumptions

that the water is frictionless, that it has been at rest, and that its

surface is moving in the manner specified by (1).

If the air were a frictionless liquid moving irrotatioually, with

a constant velocity V at heights above the water (that is to say,

values of — x) considerably exceeding the wave-length, its velocity-

potential T^, found on the same principle, would be

^|r = {V-a) he^'^ cos 71 (y- at) + Vy (4).

Let now q denote the resultant velocity at any point {x, y) of the

air. Neglecting infinitesimals of the order {nKf, we have

Lq'^ = :LV--V{V - a) nhe^'' sin n(y-(xt) (5).

Now, if ]) denote the pressure at any point (cc, y) in the air, and

a the density of the air, we have by the general equation for

pressure in an irrotationally moving fluid.

o-P-^Q + W-9^) (fi).

Using (4) and (5) in this and putting C = ^(tV\ we find

p^a- [nh ( V - afe"''' sin n{y-at)+gx] (7).

Similarly if p' denote the pressure at any point {x, y) of the

water, since in this case q^ is infinitesimal, we have

— p' = -^ — g^ = nha^e"^^ sin n (y — at) — gx (8),

the density of the water being taken as unity.

Now let T be the cohesive tension of the separating surface of

air and water. The curvature of this surface being -^ derived

from (1), is equal to

— n^Ji sin n{x — at) (9).

Hence at any point in the water-surface,

p —p' = Tn% Hmn{x — at) (10)

:

and by (7) and (8), with for x its value by (1) (which, as // is

infinitesimal, may be taken as zero except in their last terms), we

have

p -p =h {n [a{V — a)'" + a"] ~ g(l — a)] sinn{x — at)...{ll).

This, compared with (10), gives

n[cT(V-a)"- + a:']-g{l-a)^Tn' (12).



592 APPENDIX G.

-V^^fr^' <^^>'

which (being the value of a for V=0) is the velocity of propa-

gation of waves with no wind, when the wave-length is — .

Then (12) becomes

a- + cr(F-g>
^^^^, whence a' = (l + a)w~- a-(V- ay...{U).

1 + (T

This determines a, the velocity of the waves when there is wind,

of velocity V, in the direction of their advance. It shows that,

for given wave-length, 27r/n, the greatest wave-velocity is

w V(l + 0-),

which is reached when this is the velocity of the wind. It is

interesting to see that with wind of any other speed than that of

the waves, and in the direction of the waves, their speed is less.

For instance, the wave-speed with no wind, which is tv, is less by

approximately ha- of w, (or about 1/1650,) than the speed when the

wind is with the waves and of their speed. The explanation

clearly is that when the air is motionless relatively to the wave

crests and hollows its inertia is not called into play. Solving (14)

for a, as a quadratic, we have

« = iT^±f (TT^4 ^''^-

This result leads to the following conclusions :

—

(1) When F/» = /i^=2,S-7x(n-^^).

one of the values of a is zero, that is to say, static corrugations

of wave-length 27r/n, would be equilibrated by Avind of velocity

w V[(l + o-)/(r].

But the equilibrium would be unstable.

(2) When
^/'^'=^X^'^^^'^''i^'^ST5)'

the two values of a are equal.

(8) When V/w>^^,

both values of a are imaginary, and therefore the wind would blow

into spin-drift, waves of length 27r/?? or shorter.

1
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Looking back to (13), we see that it gives a minimum value

for tu equal to

^'^'^'^^ («)•

Hence the water with a plane level surface would be unstable,

even if air were frictionless, when the velocity of the wind exceeds

yyziti^') („',,
cr

W. T.

Part IV. (Letter to Professor Tait, of date August 23, 1871.)

Defining a ripple as any wave on water whose length

/T'
< 27r A / -y *, where

T
and r =

l+<7

•(17);

(cr = "00121), you always see an exquisite pattern of ripples in

front of any solid cutting the surface of water and moving

horizontally at any speed, fast or slow [if not less than about

23 cm. per sec.]. The ripple-length is the smaller root of the

equation

^^T' + ^^g'^w^ (18),

where iv is the velocity of the solid. The latter may be a sailing-

vessel or a row-boat, a pole held vertically and moved horizontally,

an ivory pencil-case, a penknife-blade either edge or flat side

foremost, or (best) a fishing-line kept approximately vertical by

a lead weight hanging down below water, while carried along at

about half a mile per hour by a becalmed vessel. The fishing-line

shows both roots admirably ; ripples in front, and waves of same

velocity (X the greater root of same equation) in rear. If so

fortunate as to be becalmed again, I shall tr}^ to get a drawing of

the whole pattern, showing the transition at the sides from ripples

* Which for pure water= 1-7 centim. (see Part V.).

T. L. 38
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to waves. When the speed with which the fishing-line is dragged

is diminished towards the critical velocity

J2 ^Jg'T,

which is the minimum velocity of a wave, being [see Part V.

below] for pure water 23 centims. per second (or -^ of a

nautical mile per hour), the ripples in front elongate and become

less curved, and the waves in rear become shorter, till at the

critical velocity waves and ripples seem nearly equal, and with

ridges nearly in straight lines perpendicular to the line of motion.

(This is observation.) It seems that the critical velocity may

be determined with some accuracy by experiment thus [see

Part V. below] :

—

Remark that the shorter the ripple-length the greater is the

velocity of propagation : and that the moving force of the ripple-

motion is partly gravity, but chiefly cohesion ; and with very

short ripple-length it is almost altogether cohesion, i.e. the same

force as that which makes a dew-drop tremble. The least

velocity of frictionless air that can raise a ripple on rigorously

quiescent frictionless water is [(16') above]

660 centimetres per second

[being —-— x minimum wave-velocity

j

— 12 8 nautical miles per hour.

Observation shows the sea to be ruffled by wind of a much
smaller velocity than this. Such ruffling, therefore, is due to

viscosity of the air.

W. T.

Postscript to Part IV. {October 17, 1871).

The influence of viscosity gives rise to a greater pressure on

the anterior than on the posterior side of a solid moving uniformly

relatively to a fluid. A symmetrical solid, as for example a

globe, moving uniformly through a frictionless fluid, experiences

augmentation of pressure in front and behind equally ; and

diminished pressure over an intervening zone. Observation (as
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for instance in Mr J. R. Napier's experiments on his "pressure

log," for measuring the speed of vessels, and experiments by

Joule and myself*, on the pressure at different points of a solid

globe exposed to wind) shows that, instead of being increased,

the pressure is sometimes actually diminished on the posterior

side of a solid moving through a real fluid such as air or water.

Wind blowing across ridges and hollows of a fixed solid (such as

the furrows of a field) must, because of the viscosity of the air,

press with greater force on the slopes facing it than on the

sheltered slopes. Hence if a regular series of waves at sea

consisted of a solid body moving with the actual velocity of the

waves, the wind would do work upon it, or it would do work

upon the air, according as the velocity of the wind were greater

or less than the velocity of the waves. This case does not afford

an exact parallel to the influence of wind on waves, because the

surface particles of water do not move forward with the velocity

of the waves as those of the furrowed solid do. Still it may be

expected that when the velocity of the wind exceeds the velocity

of propagation of the waves, there will be a greater pressure on

the posterior slopes than on the anterior slopes of the waves

;

and vice versa, that when the velocity of the waves exceeds the

velocity of the wind, or is in the direction opposite to that of

the wind, there will be a greater pressure on the anterior than

on the posterior slopes of the waves. In the first case the

tendency will be to augment the wave, in the second case to

diminish it. The question whether a series of waves of a certain

height gradually augment with a certain force of wind or gradually

subside through the wind not being strong enough to sustain

them, cannot be decided offhand. Towards answering it Stokes's

investigation of the work against viscosity of water required to

maintain a wavef, gives a most important and suggestive instal-

ment. But no theoretical solution, and very little of experimental

investigation, can be referred to with respect to the eddyings of

the air blowing across the to|)s of the waves, to which, by its

giving rise to greater pressure on the posterior than on the

* "Thermal Effects of Fluids in Motion," Trans. Roy. Soc. 1860; Phil. Mag.

1860, Vol. XX. p. 552.

t Trans. Camh. Phil. Soc. 1851 ("Effect of Internal Friction of Fluids on the

Motion of Pendulums," § V.).

38—2
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anterior slopes, the influence of the wind in sustaining and

maintaining waves is chiefly if not altogether due.

My attention having been called three days ago, by Mr Froude,

to Scott Russell's Report on Waves (British Association, York,

1844), I find in it a remarkable illustration or indication of the

leading idea of the theory of the influence of wind on waves,

that the velocity of the wind must exceed that of the waves, in

the following statement :—" Let him [an observer studying the

surface of a sea or large lake, during the successive stages of an

increasing wind, from a calm to a storm] begin his observations

"in a perfect calm, when the surface of the water is smooth and

"reflects like a mirror the images of surrounding objects. This

" appearance will not be affected by even a slight motion of the

" air, and a velocity of less than half a mile an hour (8^ in. per

" sec.) does not sensibly disturb the smoothness of the reflecting

"surface. A gentle zephyr flitting along the surface from point

" to point, may be observed to destroy the perfection of the

" mirror for a moment, and on departing, the surface remains

" polished as before ; if the air have a velocity of about a mile an
" hour, the surface of the water becomes less capable of distinct

"reflexion, and on observing it in such a condition, it is to be

" noticed that the diminution of this reflecting power is owing

"to the presence of those minute corrugations of the superficial

"film which form waves of the third order. These corrugations

" produce on the surface of the water an effect very similar to the

" effect of those panes of glass \vhich we see corrugated for the

" purpose of destroying their transparency, and these corrugations

" at once prevent the eye from distinguishing forms at a consider-

"able depth, and diminish the perfection of forms reflected in

" the water. To fly-fishers this appearance is well known as

"diminishing the facility with which the fish see their captors.

" This first stage of disturbance has this distinguishing circum-

" stance, that the phenomena on the surface cease almost

"simultaneously with the intermission of the disturbing cause,

"so that a spot which is sheltered from the direct action of the

" wind remains smooth, the waves of the third order being in-

" capable of travelling spontaneously to any considerable distance,

" except when under the continued action of the original disturb-

"ing force. This condition is the indication of present force,

" not of that which is past. While it remains it gives that deep
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" blackness to the water which the sailor is accustomed to regard

" as an index of the presence of wind, and often as the forerunner

" of more.

" The second condition of wave motion is to be observed when

"the velocity of the wind acting on the smooth water has in-

" creased to two miles an hour. Small waves then begin to rise

" uniformly over the whole surface of the water ; these are waves

"of the second order, and cover the water with considerable

" regularity. Capillary waves disappear from the ridges of these

"waves, but are to be found sheltered in the hollows between

" them, and on the anterior slopes of these waves. The regularity

" of the distribution of these secondary waves over the surface is

" remarkable ; they begin with about an inch of amplitude, and

" a couple of inches long ; they enlarge as the velocity or duration

" of the wave increases ; by and by conterminal waves unite ; the

" ridges increase, and if the wind increase the waves become
" cusped, and are regular waves of the second order. They con-

" tinue enlarging their dimensions ; and the depth to which they

" produce the agitation increasing simultaneously with their

" magnitude, the surface becomes extensively covered with waves

" of nearly uniform magnitude."

The " Capillary waves " or " waves of the third order " referred

to by Russell are what I, in ignorance of his observations on this

branch of his subject, had called "ripples." The velocity of

8^ inches (21 J centimetres) per second is precisely the velocity

he had chosen (as indicated by his observations) for the velocity

of propagation of the straight-ridged waves streaming obliquely

from the two sides of the path of a small body moving at speeds

of from 12 to 36 inches per second ; and it agrees remarkably

with my theoretical and experimental determination of the

absolute minimum Avave-velocity (23 centimetres per second

;

see Part V.). Russell has not explicitly pointed out that his

critical velocity of 8| inches per second was an absolute minimum
velocity of propagation. But the idea of a minimum velocity of

waves can scarcely have been far from his mind when he fixed

upon 8^ inches per second as the minimum of wind that can

sustain ripples. In an article to appear in Nature on the

26th of this month, I have given extracts from Russell's Report

(including part of a quotation which he gives from Poncelet

and Lesbros in the memoirs of the French Institute for 1829),
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showing how far my observations on ripples had been anticipated.

I need say no more here than that these anticipations do not

include any indication of the dynamical theory which I have

given, and that the subject was new to me when Parts III., IV.,

and V. of the present communication were written.

Part V. Waves under motive power of Gravity and

Cohesion jointly, without wind.

Leaving the question of wind, consider (13), and introduce

notation of (16), (17) in it. It becomes

w" = ^--^T'n (19).
n ^ ^

o 9r|2 •?_

This has a minimum value,

"^^"
,. \ (20).

^ =VF
In applying these formulas to the case of air and water, we

may neglect the difference between g and g', as the value of a is

about -^Iq ; and between T and T', although it is to be remarked

that it is T' rather than T that is ordinarily calculated from

experiments on capillary attraction. From experiments of Gay-

Lussac's it appears that the value of T' is about *074 of a

gramme weight per centimetre ; that is to say, in terms of the

kinetic unit of force founded on the gramme as unit of mass,

r = ^x-073.

To make the density of water unity (as that of the lower liquid

has been assumed), we must take one centimetre as unit of length.

Lastly, with one second as unit of time, we have

5r = 982;

and (18) gives

w = A / 982 f- + -074 X n

for the wave-velocity in centimetres per second, corresponding

'lir 1 /

to wave-length . When - = V-078 = '27 (that is, when the
n n
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wave-length is I'T centimetre), the velocity has a minimum value

of 23 centimetres per second.

The part of the preceding theory which relates to the effect of

cohesion on waves of liquids occurred to me in consequence of

having recently observed a set of very short waves advancing

steadily, directly in front of a body moving slowly through water,

and another set of waves considerably longer following steadily

in its wake. The two sets of waves advanced each at the same

rate as the moving body ; and thus I perceived that there were

two different wave-lengths which gave the same velocity of pro-

pagation. When the speed of the body's motion through the

water was increased, the waves preceding it became shorter, and

those in its wake became longer. Close before the cut-water of

a vessel moving at a speed of not more than two or three knots*

through very smooth water, the surface of the water is marked

with an exquisitely fine and regular fringe of ripples, in which

several scores of ridges and hollows may be distinguished (and

probably counted, with a little practice) in a space extending 20

or 30 centimetres in advance of the solid. Right astern of either

a steamer or sailing vessel moving at any speed above four or

five knots, waves may generally be seen following the vessel at

exactly its own speed, and appearing of such lengths as to verify

as nearly as can be judged the ordinary formula

for the length of waves advancing with velocity w, in deep

water. In the well-known theory of such waves, gravity is

assumed as the sole origin of the motive forces. When cohesion

was thought of at all (as, for instance, by Mr Froude in his

important nautical experiments on models towed through water,

or set to oscillate to test qualities with respect to the rolling of

ships at sea), it was justly judged to be not sensibly influential

in waves exceeding 5 or 10 centimetres in length. Now it

becomes apparent that, for waves of any length less than 5 or

10 centimetres, cohesion contributes sensibly to the motive

system ; and that, when the length is a small fraction of a

* The speed 'one knot' is a velocity of one nautical mile per hour, or 51'5 centi-

metres per second.
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centimetre, cohesion is much more influential than gravity as

" motive " for the vibrations.

The following extract from part of a letter to Mr Froude,

forming part of a communication to Nature (to appear on the

26th of this month, October 1871), describes observations for an

experimental determination of the minimum velocity of waves in

sea-water :

—

" About three weeks later, being becalmed in the Sound of

"Mull, I had an excellent opportunity, with the assistance of

" Professor Helmholtz, and my brother from Belfast, of deter-

" mining by observation the minimum wave-velocity with some
" approach to accuracy. The fishing-line was hung at a distance

" of two or three feet from the vessel's side, so as to cut the water

"at a point not sensibly disturbed by the motion of the vessel.

" The speed was determined by throwing into the sea pieces of

"paper previously wetted, and observing their times of transit

"across parallel planes, at a distance of 912 centimetres asunder,

" fixed relatively to the vessel by marks on the deck and gunwale.

" By watching carefully the pattern of ripples and waves which
" connected the ripples in front with the waves in rear, I had seen

" that it included a set of parallel waves slanting off obliquely on
" each side, and presenting appearances which proved them to be
" waves of the critical length and corresponding minimum speed

" of propagation. Hence the component velocity of the fishing-

"line perpendicular to the fronts of these waves was the true

"minimum velocity. To measure it, therefore, all that was
" necessary was to measure the angle between the two sets of

" parallel lines of ridges and hollows sloping away on the two
" sidef- of the wake, and at the same time to measure the velocity

" with which the fishing-line was dragged through the water.

" The angle was measured by holding a jointed two-foot rule,

"with its two branches, as nearly as could be judged by the eye,

" parallel to the set of lines of wave ridges. The angle to which

"the ruler had to be opened in this adjustment was the angle

" sought. By laying it down on paper, drawing two straight

" lines by its two edges, and completing a simple geometrical

"construction with a length properly introduced to represent

" the measured velocity of the moving solid, the required

" minimum wave-velocity was readily obtained. Six observa-

" tions of this kind were made, of which two were rejected as
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" not satisfactory. The following are the results of the other

" four :

—

Velocity of moving
solid.

51 centimetres per second.

26

24

Deduced minimum wave-
velocity.

23"0 centimetres per second.

23-8

23-2

22-9

Mean 2322

" The extreme closeness of this result to the theoretical

" estimate (23 centimetres per second) was, of course, merely a
" coincidence ; but it proved that the cohesive force of sea-water
" at the temperature (not noted) of the observation cannot be
" very different from that which I had estimated from Gay-
" Lussac's observations for pure water."
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ON THE MOLECULAR TACTICS OF A CRYSTAL*.

§ 1. My subject this evening is not the physical properties

of crystals, not even their dynamics ; it is merely the geometry of

the structure—the arrangement of the molecules in the constitu-

tion of a crystal. Every crystal is a homogeneous assemblage of

small bodies or molecules. The converse proposition is scarcely

true, unless in a very extended sense of the term crystal (§ 20

below). I can best explain a homogeneous assemblage of molecules

by asking you to think of a homogeneous assemblage of people.

To be homogeneous every person of the assemblage must be equal

and similar to every other : they must be seated in rows or stand-

ing in rows in a perfectly similar manner. Each person, except

those on the borders of the assemblage, must have a neighbour

on one side and an equi-distant neighbour on the other : a neigh-

bour on the left front and an equi-distant neighbour behind on

the right, a neighbour on the right front and an equi-distant

neighbour behind on the left. His two neighbours in front and his

two neighbours behind are members of two rows equal and similar

to the rows consisting of himself and his right-hand and left-hand

neighbours, and their neighbours' neighbours indefinitely to right

and left. In particular cases the nearest of the front and rear

neighbours may be right in front and right in rear; but we must

not confine our attention to the rectangularly grouped assemblages

thus constituted. Now let there be equal and similar assemblages

on floors above and below that which we have been considering,

and let there be any indefinitely great number of floors at equal

distances from one another above and below. Think of any one

person on any intermediate floor and of his nearest neighbours on

the floors above and below. These three persons must be exactly

* The Eobert Boyle Lecture, delivered before the Oxford University Junior

Scientific Club, May 16, 1893.
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in one line ; this, in virtue of the homogeneousness of the assem-

blages on the three floors, will secure that every person on the

intermediate floor is exactly in line with his nearest neighbours

above and below. The same condition of alignment must be

fulfilled by every three consecutive floors, and we thus have a

homogeneous assemblage of people in three dimensions of space.

In particular cases every person's nearest neighbour in the floor

above may be vertically over him, but we must not confine our

attention to assemblages thus rectangularly grouped in vertical

lines.

§ 2. Consider now any particular person C (fig. 1) on any

intermediate floor, D and D' his nearest

neighbours, E and E' his next nearest

neighbours all on his own floor. His

next next nearest neighbours on that

floor will be in the positions F and F'

in the diagram. Thus we see that

each person C is surrounded by six

persons, DD', EE', and FF', being his

nearest, his next nearest, and his next

next nearest neighbours on his own

floor. Excluding for simplicity the

special cases of rectangular grouping

we see that the angles of the six equal and similar triangles CDE,
GEF, &LC., are all acute : and because the six triangles are equal

and similar we see that the three pairs of mutually remote sides

of the hexagon DEFD'E'F' are equal and parallel.

§ 3. Let now A, A', A", &c., denote places of persons of the

homogeneous assemblage on the floor immediately above, and

B, B', B", &c. on the floor immediately below, the floor of G. In

the diagram let a, a', a" be points in which the floor of GDE is cut

by perpendiculars to it through A, A', A" of the floor above, and

h, b', h" by perpendiculars from 5, B\ B" of the floor below. Of all

the perpendiculars from the floors immediately above and below,

just two, one from each, cut the area of the parallelogram GDEF:
and they cut it in points similarly situated in respect to the

oppositely oriented triangles into which it is divided by either of

its diagonals. Hence if a lies in the triangle GDE, the other five

triangles of the hexagon must be cut in the corresponding points,

/

Fig. 1
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as shown in the diagram. Thus, if we think only of the floor of C
and of the floor immediately above it, we have points A, A', A"
vertically above a, a\ a". Imagine now a triangular pyramid, or

tetrahedron, standing on the base CDE, and having A for vertex

:

we see that each of its sides AGD, ABE, ABC is an acute-angled

triangle because, as we have already seen, CDE is an acute-angled

triangle, and because the shortest of the three distances CA, DA,
EA is (§ 2) greater than CE (though it may be either greater than

or less than DE). Hence the tetrahedron CDEA has all its angles

acute ; not only the angles of its triangular faces, but the six angles

between the planes of its four faces. This important theorem

regarding homogeneous assemblages was given by Bravais, to

whom we owe the whole doctrine of homogeneous assemblages in

its most perfect simplicity and complete generality. Similarly

we see that we have equal and similar tetrahedrons on the bases

D'CF, E'F'C ; and three other tetrahedrons below the floor of C,

having the oppositely oriented triangles CDE', &c. for their bases

and B, B', B" for their vertices. These three tetrahedrons are

equal and heterochirally* similar to the first three. The con-

sideration of these acute-angled tetrahedrons is of fundamental

importance in respect to the engineering of an elastic solid, or

crystal, according to Boscovich. So also is the consideration of

the cluster of thirteen points C, and the six neighbours DEFD'E'F'

in the plane of the diagram, and the three neighbours AA'A" on

the floor above, and BB'B" on the floor below.

§ 4. The case in which each of the four faces of each of

the tetrahedrons of § 3 is an equilateral triangle is particularly

interesting. An assemblage fulfilling this condition may con-

veniently be called an ' equilateral homogeneous assemblage,' or,

for brevity, an ' equilateral assemblage.' In an equilateral assem-

blage Cs twelve neighbours are all equi-distant from it. I hold

in my hand a cluster of thirteen little black balls, made up by

taking one of them and placing the twelve others in contact with

it (and therefore packed in the closest possible order), and fixing

them all together by fish-glue. You see it looks, in size, colour,

and shape, quite like a mulberry. The accompanying diagram

shows a stereoscopic view of a similar cluster of balls painted

white for the photograph.

* See footnote on § 22 below.
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§ 5. By adding ball after ball to such a cluster of thirteen,

and always taking care to place each additional ball in some

Fiff. 2.

position in which it is properly in line with others, so as to make
the whole assemblage homogeneous, we can exercise ourselves in a

very interesting manner in the building up of any possible form of

crystal of the class called ' cubic ' by some writers and ' octahedral

'

by others. You see before you several examples. I advise any of

you who wish to study crystallography to contract with a wood-

turner, or a maker of beads for furniture tassels or for rosaries, for

a thousand wooden balls of about half an inch diameter each.

Holes through them will do no harm, and may even be useful

;

but make sure that the balls are as nearly equal to one another,

and each as nearly spherical as possible.

p ^-#^

Fig. 3.
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£

§ 6. You see here before you a large model which I have

made to illustrate a homogeneous assemblage of points, on a plan

first given, I believe, by Mr William Barlow {Nature, December 20

and 27, 1883). The roof of the model is a lattice-frame (fig. 3)

consisting of two sets of eigiit parallel wooden bars crossing one

another, and kept together by pins through the middles of the

crossings. As you see, I can alter it to make parallelograms of all

degrees of obliquity till the bars touch, and again you see I can

make them all squares.

§ 7. The joint pivots are (for cheapness of construction) of

copper wire, each bent to make a hook below the lattice frame.

On these sixty-four hooks are hung sixty-four

fine cords, firmly stretched by little lead weights.

Each of these cords (fig. 4) bears eight short

perforated wooden cylinders, which may be

slipped up and down to any desired position*.

They are at present actually placed at distances

consecutively each equal to the distance from

joint to joint of the lattice frame.

I 8. The roof of the model is hung by four

cords, nearly vertical, of independently variable

lengths, passing over hooks from fixed points

above, and kept stretched by weights, each

equal to one-quarter of the weight of roof and

pendants. You see now by altering the angles

of the lattice-work and placing it horizontal or

in any inclined plane, as I am allowed to do

readily by the manner in which it is hung,

I have three independent variables, by varying

which I can show you all varieties of homo-

geneous assemblages, in which three of the

neighbours of every point are at equal distances

from it. You see here, for example, we have the equilateral

assemblage. I have adjusted the lattice roof to the proper angle,

and its plane to the proper inclination to the vertical, to make
a wholly equilateral assemblage of the little cylinders of wood on

* The holes in the cylinders are bored obliquely, as shown in fig. 4, which

causes them to remain at any desired position on the cord, and allows them to be

freed to move up and down by slackening the cord for a moment.

Fig. 4.
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the vertical cords, a case, as we have seen, of special importance.

If I vary also the distances between the little pieces of wood on

the cords ; and the distances between the joints of the lattice

work (variations easily understood, though not conveniently pro-

ducible in one model without more of mechanical construction

than would be worth making), I have three other independent

variables. By properly varying these six independent variables,

three angles and three lengths, we may give any assigned value to

each edge of one of the fundamental tetrahedrons of § 3.

§ 9. Our assemblage of people would not be homogeneous

unless its members were all equal and similar and in precisely

similar attitudes, and were all looking the same way. You under-

stand what a number of people seated or standing on a floor or

plain and looking the same way means. But the expression

'looking' is not conveniently applicable to things that have no

eyes, and we want a more comprehensive mode of expression.

We have it in the words ' orientation/ ' oriented,' and (verb) ' to

orient,' suggested by an extension of the idea involved in the

word 'orientation,' first used to signify positions relatively to east

and west, of ancient Greek and Egyptian temples and Christian

churches. But for the orientation of a house or temple we have

only one angle, and that angle is called ' azimuth ' (the name

given to an angle in a horizontal plane). For orientation in three

dimensions of space we must extend our ideas and consider position

with reference to east and west and up and down. A man lying

on his side, with his head to the north and looking east, would not

be similarly oriented to a man standing upright and looking east.

To provide for the complete specification of how a body is oriented

in space we must have in the body a plane of reference, and a line

of reference in this plane, belonging to the body and moving with

it. We must also have a fixed plane and a fixed line of reference

in it, relatively to which the orientation of the moveable body is

to be specified; as, for example, a horizontal plane, and the east

and west horizontal line in it. The position of a body is completely

specified when the angle between the plane of reference belonging

to it and the fixed plane is given ;
and when the angles between

the line of intersection of the two planes and the lines of reference

in them are also given. Thus we see that three angles are neces-

sary and sufficient to specify the ox'ientation of a moveable body.
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and we see how the specification is conveniently given in terms of

three angles.

§ 10. To illustrate this take a book lying on the table before

you with its side next the title-page up, and its back to the north.

I now lift the east edge (the top of the book), keeping the bottom

edge north and south on the table till the book is inclined, let us

say, 20" to the table. Next, without altering this angle of 20°,

between the side of the book and the table, I turn the book round

a vertical axis through 45° till the bottom edge lies north-east

and south-west. Lastly, keeping the book in the plane to which

it has been thus brought, I turn it round in this plane through 35°.

These three angles of 20°, 45°, and 35° specify, with reference to

the horizontal plane of the table and the east and west line in it,

the orientation of the book in the position to which you have seen

me bring it, and in which I hold it before you.

§ 11. In figs. 5 and 6 you see two assemblages, each of

twelve equal and similar molecules in a plane. Fig. 5, in which

the molecules are all same-ways oriented, is one homogeneous

Fig. 5.
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assemblage of twenty-four molecules. Fig. 6, in which in one set

of rows the molecules are alternately oriented two different ways,

may either be regarded as two homogeneous assemblages, each of

twelve single molecules ; or one homogeneous assemblage of twelve

pairs of those single molecules.

Fig. 6.

I
12. I must now call your attention to a purely geometrical

question* of vital interest with respect to homogeneous assemblages

in general, and particularly the homogeneous assemblage of mole-

cules constituting a crystal :

—

what can ive take as ' the ' boundary

or ' a ' boundary enclosing each molecule with whatever portion of

sjKice around it we are at liberty to choose for it, and separating it

from neighbours and their j^ortions of space given to them in homo-

geneous fairness ?

§ 13. If we had only mathematical points to consider we

should be at liberty to choose the simple obvious partitioning by

three sets of parallel planes. Even this may be done in an infinite

* " On the Homogeneous Division of Space," by Lord Kelvin, Royal Society

Proceedings, VoL lv., Jan. 18, 1894.

T. L. 39
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number of ways, thus :—Beginning with any point P of the

assemblage, choose any other three points A, B, G, far or near,

provided only that they are not in one plane with P, and that

there is no other point of the assemblage in the lines PA, PB, PC,

or within the volume of the parallelepiped of which these lines are

conterminous edges, or within the areas of any of the faces of this

parallelepiped. There will be points of the assemblage at each of

the corners of this parallelepiped and at all the corners of the

parallelepipeds equal and similar to it which we find by drawing

sets of equi-distant planes parallel to its three pairs of faces.

(A diagram is unnecessary.) Every point of the assemblage is

thus at the intersection of three planes, which is also the point

of meeting of eight neighbouring parallelepipeds. Shift now any

one of the points of the assemblage to a position within the volume

of any one of the eight parallelepipeds, and give equal parallel

motions to all the other points of the assemblage. Thus we have

every point in a parallelepipedal cell of its own, and all the points

of the assemblage are similarly placed in their cells, which are

themselves equal and similar.

§ 14. But now if, instead of a single point for each member

of the assemblage, we have a group of points, or a globe or cube

or other geometrical figure, or an individual of a homogeneous

assemblage of equal, similar, similarly dressed, and similarly

oriented ladies, sitting in rows, or a homogeneous assemblage of

trees closely planted in regular geometrical order on a plane with

equal and similar distributions of molecules, and parallel planes

above and below, we may find that the best conditioned plane-

faced parallelepipedal partitioning which we can choose would cut

off portions properly belonging to one molecule of the assemblage

and give them to the cells of neighbours. To find a cell enclosing

all that belongs to each individual, for example, every part of each

lady's dress, however complexly it may be folded among portions

of the equal and similar dresses of neighbours ; or, every twig, leaf,

and rootlet of each one of the homogeneous assemblage of trees

;

we must alter the boundary by give-and-take across the plane

faces of the primitive parallelepipedal cells, so that each cell shall

enclose all that belongs to one molecule, and therefore (because

of the homogeneousness of the partitioning) nothing belonging to

any other molecule. The geometrical problem thus presented,
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wonderfully complex as it may be in cases such as some of those

which I have suggested, is easily performed for any possible case

if we begin with any particular parallelepipedal partitioning deter-

mined for corresponding points of the assemblage, as explained in

§ 13, for any homogeneous assemblage of single points. We may

prescribe to ourselves that the corners are to remain unchanged,

but if so they must to begin with be either in interfaces of contact

between the individual molecules, or in vacant space among the

molecules. If this condition is fulfilled for one corner it is fulfilled

for all, as the corners are essentially corresponding points relatively

to the assemblage.

§ 1.5. Begin now with any one of the twelve straight lines

between corners which constitute the twelve edges of the parallel-

epiped, and alter it arbitrarily to any curved or crooked line between

the same pair of corners, subject only to the conditions (1) that it

does not penetrate the substance of any member of the assemblage,

and (2) that it is not cut by equal and similar parallel curves*

between other pairs of corners.

Considering now the three fours of parallel edges of the

parallelepiped, let the straight lines of one set of four be altered

to equal and similar parallel curves in the manner which I have

described ; and proceed by the same rule for the other two sets of

four edges. We thus have three fours of parallel curved edges

instead of the three fours of parallel straight edges of our primitive

parallelepiped with corners (each a point of intersection of three

edges) unchanged. Take now the quadrilateral of four curves

substituted for the four straight edges of one face of the parallel-

epiped. We may call this quadrilateral a curvilineal parallelogram,

because it is a circuit composed of two pairs of equal parallel

curves. Draw now a curved surface (an infinitely thin sheet of

perfectly extensible india-rubber if you please to think of it so)

bordered by the four edges of our curvilineal parallelogram, and

so shaped as not to cut any of the substance of any molecule of

the assemblage. Do the same thing with an exactly similar and

parallel sheet relatively to the opposite face of the parallelepiped

;

and again the same for each of the two other pairs of parallel

faces. We thus have a curved-faced parallelepiped enclosing the

* Similar curves are said to be parallel when the tangents to them at correspond-

ing points are parallel.

89—2
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whole of one molecule and no part of any other ; and by similar

procedure we find a similar boundary for every other molecule

of the assemblage. Each wall of each of these cells is common

to two neighbouring molecules, and there is no vacant space any-

where between them or at corners. Fig. 7 illustrates this kind of

Fig. 7.

partitioning by showing a plane section parallel to one pair of

plane faces of the primitive parallelepiped for an ideal case. The

plane diagram is in fact a realization of the two-dimensional

problem of partitioning the pine pattern of a Persian carpet by

parallelograms about as nearly rectilinear as we can make them.

In the diagram faint straight lines are drawn to show the primitive

parallelogrammatic partitioning. It will be seen that of all the

crossings (marked with dots in the diagram) every one is similarly

situated to every other in respect to the homogeneously repeated

pattern figures : A, B, C, D are four of them at the corners of one

cell.

§ 16. Confining our attention for a short time to the homo-

geneous division of a plane, remark that the division into

parallelograms by two sets of crossing parallels is singular in

this respect—each cell is contiguous with three neighbours at

every corner. Any shifting, large or small, of the parallelograms
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by relative sliding in one direction or another violates this con-

dition, brings us to a configuration like that of the faces of

regularly hewn stones in ordinary bonded masonry, and gives

a partitioning which fulfils the condition that at each corner

each cell has only two neighbours. Each cell is now virtually

a hexagon, as will be seen by the letters A, B, C, D, E, F in the

diagram fig. 8. A and D are to be reckoned as corners, each

Fig. 8.

with an interior angle of 180°. In this diagram the continuous

heavy lines and the continuous faint lines crossing them show

a primitive parallelogrammatic partition by two sets of continuous

parallel intersecting lines. The interrupted crossing lines (heavy)

show, for the same homogeneous distribution of single points or

molecules, the virtually hexagonal partitioning which we get by

shifting the boundary from each portion of one of the light

lines to the heavy line next it between the same continuous

parallels.

Fig. 8 his represents a further modification of the boundary

by which the 180° angles A, D become angles of less than 180°.

The continuous parallel lines (light) and the short light portions

of the crossing lines show the configuration according to fig. 8,

from which this diagram is derived.

§ 17. In these diagrams (figures 8 and 8 bis) the object

enclosed is small enough to be enclosable by a primitive parallelo-

grammatic partitioning of two sets of continuous crossing parallel

straight lines, and by the partitioning of ' bonded ' parallelograms

both represented in fig. 8, and by the derived hexagonal partition-
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ing represented in fig. 8 his, with faint lines showing the primitive

and the secondary parallelograms. In fig. 7 the objects enclosed

were too large to be enclosable by any rectilinear parallelogram

-

Fig. 8 Ms.

matic or hexagonal partitioning. The two sets of parallel faint

lines in fig. 7 show a primitive parallelogram matic partitioning,

and the corresponding pairs of parallel curves intersecting at the

corners of these parallelograms, of which A, B, C, D is a specimen,

show a corresponding partitioning by curvilineal parallelograms.

Fig. 9.

Fig. 9 shows for the same homogeneous distribution of objects

a better conditioned partitioning by hexagons, in each of which

one pair of parallel edges is curved. The sets of intersecting
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parallel straight lines in fig. 9 show the same primitive parallelo-

grammatic partitioning as in fig. 7, and the same slightly shifted

to suit points chosen for well-conditionedness of hexagonal par-

titioning.

§ 18. For the division of continuous three-dimensional space*

into equal, similar, and similarly oriented cells, quite a correspond-

ing transformation from partitioning by three sets of continuous

mutually intersecting parallel planes to any possible mode of

homogeneous partitioning, may be investigated by working out

the three-dimensional analogue of §§ 16—17. Thus we find that

the most general possible homogeneous partitioning of space with

plane interfaces between the cells gives us fourteen walls to each

cell, of which six are three pairs of equal and parallel parallelo-

grams, and the other eight are four pairs of equal and parallel

hexagons, each hexagon being bounded by three pairs of equal

and parallel straight lines. This figure, being bounded by four-

teen plane faces, is called a tetrakaidekahedron. It has thirty-six

edges of intersection between faces ; and twenty-four corners, in

each of which three faces intersect. A particular case of it, which

I call an orthic tetrakaidekahedron, being that in which the six

parallelograms are equal squares, the eight hexagonal faces are

equal equilateral and equiangular hexagons, and the lines joining

corresponding points in the seven pairs of parallel faces are

perpendicular to the planes of the faces, is represented by a

stereoscopic picture in fig. 10. The thirty-six edges and the

twenty-four corners, which are easily counted in this diagram,

occur in the same relative order in the most general possible

partitioning, whether by plane-faced tetrakaidekahedrons or by

the generalized tetrakaidekahedron described in § 19.

I 19. The most general homogeneous division of space is not

limited to plane-faced cells ; but it still consists essentially of

tetrakaidekahedronal cells, each bounded by three pairs of equal

and parallel quadrilateral faces, and four pairs of equal and

parallel hexagonal faces, neither the quadrilaterals nor the

hexagons being necessarily plane. Each of the thirty-six edges

may be straight or crooked or curved ; the pairs of opposite edges,

whether of the quadrilaterals or hexagons, need not be equal and

* See footnote to § 12 above.
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parallel ; neither the four corners of each quadrilateral nor the six

corners of each hexagon need be in one plane. But every pair of

corresponding edges of every pair of parallel corresponding faces,
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whether quadrilateral or hexagonal, must be equal and parallel.

I have described an interesting case of partitioning by tetrakai-

dekahedrons of curved faces with curved edges in a paper*

published about seven years ago. In this case each of the

quadrilateral faces is plane. Each hexagonal face is a slightly

curved surface having three rectilineal diagonals through its

centre in one plane. The six sectors of the face between these

diagonals lie alternately on opposite sides of their plane, and are

bordered by six arcs of plane curves lying on three pairs of parallel

planes. This tetrakaidekahedronal partitioning fulfils the con-

dition that the angles between three faces meeting in an edge are

everywhere each 120°; a condition that cannot be fulfilled in any

plane-faced tetrakaidekahedron. Each hexagonal wall is an anti-

clastic surface of equal opposite curvatures at every point, being

the surface of minimum area bordered by six curved edges. It

is shown easily and beautifully, and with a fair approach to

accuracy, by choosing six little circular arcs of wire, and soldering

them together by their ends in proper planes for the six edges

of the hexagon ; and dipping it in soap solution and taking

it out.

§ 20. Returning now to the tactics of a homogeneous assem-

blage remark that the qualities of the assemblage as a whole

depend both upon the character and orientation of each molecule,

and on the character of the homogeneous assemblage formed by

corresponding points of the molecules. After learning the simple

mathematics of crystallography, with its indicial system j- for

defining the faces and edges of a crystal according to the Bravais

rows and nets and tetrahedrons of molecules in which we think

only of a homogeneous assemblage of points, we are apt to forget

that the true crystalline molecule, whatever its nature may be,

has sides, and that generally two opposite sides of each molecule

may be expected to be very different in quality, and we are almost

surprised when mineralogists tell us that two parallel faces on two

sides of a crystal have very different qualities in many natural

crystals. We might almost as well be surprised to find that an

army in battle array, which is a kind of large-grained crystal,

* "On the Division of Space with Minimum Partitional Area," Philosophical

Magazine, Vol. xxiv., 1887, p. 502, and Acta Mathematica of the same year.

t A. Levy, Edinburgh Philosophical Journal, April, 1822 ; Whewell, Phil. Trans.

Royal Society, 1825 ; Miller, Treatise on Crystallography.
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presents very different appearance to anyone looking at it from

outside, according as every man in the ranks with his rifle and

bayonet faces to the front or to the rear or to one flank or to the

other.

§ 21. Consider, for example, the ideal case of a crystal consist-

ing of hard, equal and similar tetrahedronal solids all same-ways

oriented. A thin plate of crystal cut parallel to any one set of the

faces of the constituent tetrahedrons would have very different

properties on its two sides ; as the constituent molecules would all

present points outwards on one side and flat surfaces on the other.

We might expect that the two sides of such a plate of crystal

would become oppositely electrified when rubbed by one and the

same rubber; and, remembering that a piece of glass with part of

its surface finely ground but not polished and other parts polished

becomes, when rubbed with white silk, positively electrified over

the polished parts and negatively electrified over the non-polished

parts, we might almost expect that the side of our supposed

crystalline plate towards which flat faces of the constituent

molecules are turned would become positively electrified, and

the opposite side, showing free molecular corners, would become

negatively electrified, when both are rubbed by a rubber of

intermediate electric quality. We might also from elementary

knowledge of the fact of piezo-electricity, that is to say, the

development of opposite electricities on the two sides of a crystal

by pressure, expect that our supposed crystalline plate, if pressed

perpendicularly on its two sides, would become positively electrified

on one of them and negatively on the other.

§ 22. Intimately connected with the subject of enclosing cells

for molecules of given shape, assembled homogeneously, is the

homogeneous packing together of equal and similar molecules

of any given shape. In every possible case of any infinitely great

number of similar bodies the solution is a homogeneous assem-

blage. But it may be a homogeneous assemblage of single solids

all oriented the same way, or it may be a homogeneous assemblage

of clusters of two or more of them placed together in different

orientations. For example, let the given bodies be halves (oblique

or not oblique) of any parallelepiped on the two sides of a dividing

plane through a pair of parallel edges. The two halves are homo-
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chirally* similar; and, being equal, we may make a homogeneous

assemblage of them by orienting them all the same way and

placing them properly in rows. But the closest packing of this

assemblage would necessarily leave vacant spaces between the

bodies : and we get in reality the closest possible packing of the

given bodies by taking them in pairs oppositely oriented and

placed together to form parallelepipeds. These clusters may be

packed together so as to leave no unoccupied space.

Whatever the number of pieces in a cluster in the closest

possible packing of solids may be for any particular shape we

may consider each cluster as itself a given single body, and

thus reduce the problem to the packing closely together of

assemblages of individuals all same-ways oriented ; and to this

problem therefore it is convenient that we should now confine our

attention.

§ 23. To avoid complexities, such as those which we find in

the familiar problem of homogeneous packing of

forks or spoons or tea-cups or bowls of any ordinary

shape, we shall suppose the given body to be of such

shape that no two of them similarly oriented can

touch one another in more than one point. Wholly

convex bodies essentially fulfil this condition ; but it

may also be fulfilled by bodies not wholly convex, as

is illustrated in fig-. 11.

§ 24. To find close and closest packing of any

number of our solids *S^i, Sn, S-^... of shape fulfilling

the condition of § 23 proceed thus :

—

(1) Bring So to touch Si at any chosen point jj

of its surface (fig. 12).

(2) Bring S3 to touch Si and S., at r and q
^^'

respectively.

(3) Bring >S'4 (not shown in the diagram) to touch ^1, So,

and >S^o.

* I call any geometrical figure, or group of points, chiral, and say that it has

chirality if its image in a plane mirror, ideally realized, cannot be brought to

coincide with itself. Two equal and similar right hands are homochirally similar.

Equal and similar right and left hands are heterochirally similar or ' allochirally

'

similar (but heterochirally is better). These are also called ' enantiomorphs,' after

a usage introduced, I believe, by German writers. Any chiral object and its image

in a plane mirror are heterochirally similar.
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(4) Place any number of the bodies together in three rows

continuing the lines of S1S.2, S^Ss, S^S^, and in three sets of

equi-distant rows parallel to these. This makes a homogeneous

assemblage. In the assemblage so formed the molecules are

necessarily found to be in three sets of rows parallel respectively

to the three pairs SoS^, 8^84, 8^82. The whole space occupied by

an assemblage of n of our solids thus arranged has clearly 6n times

the volume of a tetrahedron of corresponding points of 81, 82,

83, 84. Hence the closest of the close packings obtained by

the operations (1)...(4) is found if we perform the operations

(1), (2), and (3) as to make the volume of this tetrahedron least

possible.

§ 25. It is to be remarked that operations (1) and (2) leave

for (3) no liberty of choice for the place of 84, except between two

determinate positions on opposite sides of the group 8^, 82, 83.

Fig. 12.

The volume of the tetrahedron will generally be different for these

two positions of ^4, and, even if the volume chance to be equal in

any case, we have differently shaped assemblages according as we

choose one or other of the two places for >Si4.

This will be understood by looking at fig. 12, showing 81 and

neighbours on each side of it in the rows of 8^82, 8183, and in a

row parallel to that of 82S3. The plane of the diagram is parallel

to the planes of corresponding points of these seven bodies, and

the diagram is a projection of these bodies by lines parallel to the

intersections of the tangent planes through p and r. If the three

tangent planes through p, q, and r, intersected in parallel lines,

q would be seen like p and r as a point of contact between the

outlines of two of the bodies ; but this is only a particular case,
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and in general q must, as indicated in the diagi-am, be concealed

by one or other of the two bodies of which it is the point of

contact. Now imagining, to fix our ideas and facilitate brevity

of expression, that the planes of corresponding points of the seven

bodies are horizontal, we see clearly that >§, may be brought into

proper position to touch *S*i, S^ and >S^3 either from above or from

below ; and that there is one determinate place for it if we bring

it into position from above, and another determinate place for it

if we bring it from below.

I
26. If we look from above at the solids of which fig. 12

shows the outline we see essentially a hollow leading down to

a perforation between 8i, S^, S3, and if Ave look from below we see

a hollow leading upwards to the same perforation : this for brevity

we shall call the perforation pqi: The diagram shows around Si

six hollows leading down to perforations, of which two are similar

to pqi% and the other three, of which p'q'r' indicates one, are similar

one to another but are dissimilar to pqr. If we bring ^4 from

above into position to touch S^, S2 and S3, its place thus found is

in the hollow pq7-, and the places of all the solids in the layer

above that of the diagram are necessarily in the hollows similar to

pqr. In this case the solids in the layer below that of the diagram

must lie in the hollows below the perforations dissimilar to pqr, in

order to make a single homogeneous assemblage. In the other

case S^ brought up from below finds its place on the under side of

the hollow pqr, and all solids of the lower layer find similar places :

while solids in the layer above that of the diagram find their

places in the hollows similar to p'q'r . In the first case there are

no bodies of the upper layer in the hollows above the perforations

similar to p)'q'r', and no bodies of the lower layer in the hollows

below the perforations similar to p>qr. In the second case there

are no bodies of the upper layer in the hollows above the perfora-

tions similar to pqr, and none of the under layer in the hollows

below the perforations similar to p'q'r'.

§ 27. Going back now to operation (1) of § 24, remark that

when the point of contact ]) is arbitrarily chosen on one of the two

bodies Si, the point of contact on the other will be the point on it

corresponding to the point or one of the points of Si, where its

tangent plane is parallel to the tangent plane at p. If Si is wholly
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convex it has only two points at which the tangent planes are

parallel to a given plane, and therefore the operation (1) is deter-

minate and unambiguous. But if there is any concavity there

will be four or some greater even number of tangent planes

parallel to any one of some planes, while there will be other

planes to each of which only one pair of tangent planes is parallel.

Hence, operation (1), though still determinate, will have a multi-

plicity of solutions, or only a single solution, according to the

choice made of the position of j^- [-^ny change of configuration

of the assemblage in stable equilibrium causes expansion ! K.

;

Holwood, May 23, 1896.]

Henceforth, however, to avoid needless complications of ideas,

we shall suppose our solids to be wholly convex ; and of some such

unsymmetrical shape as those indicated in fig. 12 of § 25, and

shown by stereoscopic photograph in fig. 13 of § 36. With or

without this convenient limitation, operation (1) has two freedoms,

as j9 may be chosen freely on the surface of 8i ; and operation (2)

has clearly just one freedom after operation (1) has been performed.

Thus, for a solid of any given shape, we have three disposables, or,

as commonly called in mathematics, three ' independent variables,'

all free for making a homogeneous assemblage according to the

rule of §22*.

* The following is information regarding ratio of void to whole space in heaps

of gravel, sand, and broken stones, extracted from books of reference for engineers :

Hurst's Focket-Book.

Thames Ballast 20 cub. ft. per ton

Gravel coarse 19 ,, ,,

Sandpit 22 ,,

Shingle 23

Haswell's Pocket-Book.

Voids in a cub. yard of Stone broken to gauge of 2-5" 10 cub. ft.

2" 10-66 „
1-5" 11-33 „

Shingle 9 ,,

Thames Ballast (containing sand) 4-5 ,,

Law and Burrell's Civil Engineering.

(Road Metal.)

" A cub. yard of broken stone metal of an ordinary size—2" or 2^" cube—when
" screened and beaten down in regular layers 6" thick contains. ..11 cub. ft. of inter-

" spaces, as tested by filling up the metal with liquid.". ..Herr E. Bokeberg found

that in a cubic yard of loosely heaped broken stones the void space was 50 °/g of

the whole.
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§ 28. In the homogeneous assemblage defined in § 24 each

solid, St^, is touched at twelve points, being the three points of

contact with >S2, 83,84, and the three 3's of points on S^ correspond-

ing to the points on 8^, 83, 8i,-Sit which these bodies are touched

by the others of the quartet. This statement is somewhat difficult

to follow, and we see more clearly the twelve points of contact by

not confining our attention to the quartet 81, 82, S3, 84 (convenient

as this is for some purposes), but completing the assemblage and

considering six neighbours around Si in one plane layer of the

solids as shown in fig. 12, with their six points pr-q'p'r'q" of

contact with 8^ ; and the three neighbours of the two adjacent

parallel layers which touch it above and below. This cluster

of thii-teen, 8^ and twelve neighbours, is shown for the case of

spherical bodies in the stereoscopic photograph of § 4 above. We
might of course, if we pleased, have begun with the plane layer of

which 81, 8.,, 8^ are members, or with that of which 8^, 83, 84 are

members, or with the plane layer parallel to the fourth side S.28384

of the tetrahedron: and thus we have four different ways of

grouping the twelve points of contact on >S^i into one set of six and

two sets of three.

§ 29. In this assemblage we have what I call ' close order ' or

' close packing.' For closest of close packings the volume of the

tetrahedron (§ 24) of corresponding points of >S^j, 82, S3, and 84

must be a minimum, and the least of minimums if, as generally

will be the case, there are two more different configurations for

each of which the volume is a minimum. There will in general

also be configurations of minimax volume and of maximum volume,

subject to the condition that each body is touched by twelve

similarly oriented neighbours.

§ 30. Pause for a moment to consider the interesting kine-

matical and dynamical problems presented by a close homogeneous

assemblage of smooth solid bodies of given convex shape, whether

perfectly frictionless or exerting resistance against mutual sliding

according to the ordinarily stated law of friction between dry hard

\golid bodies. First imagine that they are all similarly oriented

/and each in contact with twelve neighbours, except outlying

individuals (which there must be at the boundary if the assem-

blage is finite, and each of which is touched by some number of

neighbours less than tAvelve). The coherent assemblage thus



624 APPENDIX H,

defined constitutes a kinematic frame or skeleton for an elastic

solid of very peculiar properties. Instead of the six freedoms, or

disposables, of strain presented by a natural solid it has only

three. Change of shape of the whole can only take place in

virtue of rotation of the constituent parts relatively to any one

chosen row of them, and the plane through it and another chosen

row.

§ 31. Suppose first the solids to be not only perfectly smooth

but perfectly frictionless. Let the assemblage be subjected to

equal positive or negative pressure inwards all around its boundary.

Every position of minimum, minimax, or maximum volume will

be a position of equilibrium. If the pressure is positive the

equilibrium will be stable if, and unstable unless, the volume is

a minimum. If the pressure is negative the equilibrium will be

stable if, and unstable unless, the volume is a maximum. Con-

figurations of minimax volume will be essentially unstable.

§ 32. Consider now the assemblage of § 31 in a position of

stable equilibrium under the influence of a given constant uniform

pressure inwards all round its boundary. It will have rigidity in

simple proportion to the amount of this pressure. If now by

the superposition of non-uniform pressure at the boundary, for

example equal and opposite pressures on two sides of the assem-

blage, a finite change of shape is produced : the whole assemblage

essentially swells in bulk. This is the ' dilatancy ' which Osborne

Reynolds has described* in an exceedingly interesting manner

with reference to a sack of wheat or sand, or an india-rubber bag

tightly filled with sand or even small shot. Consider, for example,

a sack of wheat filled quite full and standing up open. It is limp

and flexible. Now shake it down well, fill it quite full, shake

again, so as to get as much into it as possible, and tie the mouth

very tightly close. The sack becomes almost as stiff as a log of

wood of the same shape. Open the mouth partially and it be-

comes again limp, especially in the upper parts of the bag. In

Reynolds' observations on india-rubber bags of small shot his

* dilatancy ' depends, essentially and wholly, on breaches of some

of the contacts which exist between the molecules in their configu-

ration of minimum volume : and it is possible that in all his cases

* Philosophical Magazine, Vol. xx., 1885, second balf-year, p. 469, and British

Association Report, 1885, Aberdeen, p. 896,
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the dilatations which he observed are chiefly, if not wholly, due to

such breaches of contact.

But it is possible, it almost seems probable, that in bags or

boxes of sand or powder, of some kinds of smooth rounded bodies

of any shape, not spherical or ellipsoidal, subjected persistently to

unequal pressures in different directions, and well shaken, stable

positions of equilibrium are found with almost all the particles

each touched by twelve others.

Here is a curious subject of Natural History through all ages

till 1885, when Reynolds brought it into the province of Natural

Philosophy by the following highly interesting statement :

—

"A well-marked phenomenon receives its explanation at once

" from the existence of dilatancy in sand. When the falling tide

" leaves the sand firm, as the foot falls on it, the sand whitens and

" appears momentarily to dry round the foot. When this happens

" the sand is full of water, the surface of which is kept up to that

"of the sand by capillary attractions; the pressure of the foot

" causing dilatation of the sand more water is required, which has

" to be obtained either by depressing the level of the surface

"against the capillary attractions, or by drawing water through

" the interstices of the surrounding sand. This latter requires

" time to accomplish, so that for the moment the capillary forces

" are overcome ; the surface of the water is lowered below that of

"the sand, leaving the latter white or drier until a sufficient

" supply has been obtained from below, when the surface rises and

" wets the sand again. On raising the foot it is generally seen

" that the sand under the foot and around becomes momentarily

" wet ; this is because, on the distorting forces being removed, the

" sand again contracts, and the excess of water finds momentary

" relief at the surface."

This proves that the sand under the foot, as well as the surface

around it, must be dry for a short time after the foot is pressed

upon it, though we cannot see it whitened, as the foot is not

transparent. That it is so has been verified by Mr Alex. Gait,

Experimental Instructor in the Physical Laboratory of Glasgow

University, by laying a small square of plate-glass on wet sand on

the sea-shore of Helensburgh, and suddenly pressing on it by a

stout stick with nearly all his weight. He found the sand, both

under the glass and around it in contact with the air, all became

white at the same moment. Of all the two hundred thousand

T. L. 40
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million men, women, and children who, from the beginning of the

world, have ever walked on wet sand, how many, prior to the

British Association Meeting at Aberdeen in 1885, if asked, "Is the

sand compressed under your foot ? " would have answered otherwise

than " Yes ! " ?

(Contrast with this the case of walking over a bed of wet

sea-Aveed
!)

§ 33. In the case of globes packed together in closest order

(and therefore also in the case of ellipsoids, if all similarly oriented),

our condition of coherent contact between each molecule and

twelve neighbours implies absolute rigidity of form and constancy

of bulk. Hence our convex solid must be neither ellipsoidal nor

spherical in order that there may be the changes of bulk which

we have been considering as dependent on three independent

variables specifying the orientation of each solid relatively to rows

of the assemblage. An interesting dynamical problem is presented

by supposing any mutual forces, such as might be produced by

springs, to act between the solid molecules, and investigating

configurations of equilibrium on the supposition of frictionless

contacts. The solution of it of course is that the potential energy

of the springs must be a minimum or a minimax or a maximum
for equilibrium, and a minimum for stable equilibrium. The

solution will be a configuration of minimum or minimax, or

maximum, volume, only in the case of pressure equal in all

directions.

§ 34. A purely geometrical question, of no importance in

respect to the molecular tactics of a cr3^stal but of considerable

interest in pure mathematics, is forced on our attention by our

having seen (§ 27) that a homogeneous assemblage of solids of

given shape, each touched by twelve neighbours, has three freedoms

which may be conveniently taken as the three angles specifying

the orientation of each molecule relatively to rows of the assemblage

as explained in § 30.

Consider a solid 8^ and the twelve neighbours which touch it,

and try if it is possible to cause it to touch more than twelve of

the bodies. Attach ends of three thick flexible wires to any places

on the surface of S^ ; carry the wires through interstices of the

assemblage, and attach their other ends at any three places of

A, B, G, respectively, these being any three of the bodies outside
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the cluster of 8^ and its twelve neighbours. Cut the wires across

at any chosen positions in them ; and round off the cut ends, just

leaving contact between the rounded ends, which we shall call

/y, g'g, h'h. Do homogeneously for every other solid of the

assemblage what we have done for S^. Now bend the wires

slightly so as to separate the pairs of points of contact, taking

care to keep them from touching any other bodies which they

pass near on their courses between ^i and A, B, G respectively.

After having done this, thoroughly rigidify all the wires thus

altered. We may now, having three independent variables at

our disposal, so change the orientation of the molecules relatively

to rows of the assemblage, as to bring f'J, g'g, and h'h again into

contact. We have thus six fresh points of S^ ; of which three are

f, g , h' ; and the other three are on the three extensions of Si

corresponding to the single extensions oi A, B, G respectively,

which we have been making. Thus Ave have a real solution of

the interesting geometrical problem :—It is required so to form

a homogeneous assemblage of solids of any arbitrarily given shape

that each solid shall be touched by eighteen others. This problem

is determinate, because the making of the three contacts /'/, g'g,

h'h, uses up the three independent variables left at our disposal

after we have first formed a homogeneous assemblage Avith twelve

points of contact on each solid. But our manner of finding a shape

for each solid which can allow the solution of the problem to be

real proves that the solution is essentially imaginary for every

wholly convex shape.

§ 35. Pausing for a moment longer to consider afresh the

geometrical problem of putting arbitrarily given equal and similar

solids together to make a homogeneous assemblage of which each

member is touched by eighteen others, Ave see immediately that it

is determinate (whether it has any real solution or not), because

Avhen the shape of each body is given Ave have nine disposables for

fixing the assemblage : six for the character of the assemblage of

the corresponding points, and three for the orientation of each

molecule relatively to roAvs of the assemblage of corresponding

points. These nine disposables are determined by the condition

that each body has nine pairs of contacts Avith others.

Suppose now a homogeneous assemblage of the given bodies,

in open order Avith no contacts, to be arbitrarily made according

40—2
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to any nine arbitrarily chosen values for the six distances between

a point of Si and the corresponding points of its six pairs of nearest

and next nearest neighbours (§ 1 above), and the three angles

(§ 9 above) specifying the orientation of each body relatively to

rows of the assemblage. We may choose in any nine rows through

;S^i any nine pairs of bodies at equal distances on the two sides of

^1 far or near, for the eighteen bodies which are to be in contact

with >S^i. Hence there is an infinite number of solutions of the

problem of which only a finite number can be real. Every solution

of the problem of eighteen contacts is imaginary when the shape

is wholly convex.

§ 36. Without for a moment imagining the molecules of

matter to be hard solids of convex shape, we may derive valuable

lessons in the tactics of real crystals by studying the assemblage

described in §§ 24 and 25, and represented in figs. 12 and 13.

I must for the present forego the very attractive subject of the

tactics presented by faces not parallel to one or other of the four

Fig. 13.

faces of the primitive tetrahedrons which we found in § 24, and

ask you only to think of the two sides of a plate of crystal parallel

to any one of them, that is to say, an assemblage of such layers

as those represented geometrically in fig. 12 and shown in

stereoscopic view in fig. 13. If, as is the case with the solids*

* The solids of the photograiih are castings in fine plaster of Paris from a

scalene tetrahedron of paraffin wax, with its corners and edges rounded, used as

a pattern.
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photographed in fig. 13, the under side of each solid is nearly

plane but slightly convex, and the top is somewhat sharply curved,

we have the kind of difference between the upper and under of the

two parallel sides of the crystal which I have already described to

you in § 21 above. In this case the assemblage is formed by letting

the solids fall down from above and settle in the hollows to which

they come most readily, or which give them the stablest position.

It would, we may suppose, be the hollows jjq'r , not "pqr (fig. 12,

§ 25), that would be chosen ; and thus, of the two formations

described in § 25, we should have that in which the hollows above

p'q'7^' are occupied by the comparatively flat under-sides of the

molecules of the layer above, and the hollows below the apertures

pqr by the comparatively sharp tops of the molecules of the layer

below.

I 37. For many cases of natural crystals of the wholly asym-

metric character, the true forces between the crystalline molecules

will determine precisely the same tactics of crystallization as would

be determined by the influence of gravity and fluid viscosity in the

settlement from water, of sand composed of uniform molecules of

the wholly unsymmetrical convex shape represented in figs. 12

and 13. Thus we can readily believe that a real crystal which is

growing by additions to the face seen in fig. 12 would give layer

after layer regularly as I have just described. But if by some

change of circumstances the plate, already grown to a thickness

of many layers in this way, should come to have the side facing

from us in the diagram exposed to the mother-liquor, or mother-

gas, and begin to grow from that face, the tactics might probably

be that each molecule would find its resting-place with its most

nearly plane side in the wider hollows under p'q^r, instead of with

its sharpest corner in the narrower and steeper hollows under pqr,

as are the molecules in the layer below that shown in the diagram

in the first formation. The result would be a compound crystal

consisting of two parts, of differently oriented quality, cohering

perfectly together on the two sides of an interfacial plane. It

seems probable that this double structure may be found in nature,

presented by crystals of the wholly unsymmetric class, though it

may not hitherto have been observed or described in crystallo-

graphic treatises.

§ 38. This asymmetric double crystal becomes simply the
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well-known symmetrical ' twin-crystal* ' in the particular case in

which each of the constituent molecules is symmetrical on the

two sides of a plane through it parallel to the plane of our

diagrams, and also on the two sides of some plane perpendicular

Fig. 14.

to this plane. We see, in fact, that in this case if we cut in two

the double crystal by the plane of fig. 14, and turn one part

ideally through 180° round the intersection of these two planes,

we bring it into perfect coincidence with the other part. This

we readily understand by looking at fig. 14, in which the solid

shown in outline may be either an egg-shaped figure of revolution,

or may be such a figure flattened by compression perpendicular to

the plane of the diagram. The most readily chosen and the most

stable resting-places for the constituents of each successive layer

might be the wider hollows 'p'qr : and therefore if, from a single

* "A twin-crystal is composed of two crystals joined together in such a manner
" that one would come into the position of the other by revolving through two right

" angles round an axis which is perpendicular to a plane which either is, or may be,

"a face of either crystal. The axis will be called the twin-axis, and the plane to

" which it is perpendicular the twin-plane." Miller's Treatise on Cri/stallography,

p. 103. In the text the word ' twin-plane,' quoted from the writings of Stokes and

Eayleigh, is used to signify the plane common to the two crystals in each of the

cases referred to: and not the plane perpendicular to this plane, in which one part

of the crystal must be rotated to bring it into coincidence with the other, and which

is the twin-plate as defined by Miller.

Twinning in which each molecule turns (iV. P. P. Vol. in. xcvii. §§ 60, 61) must

also be considered. Here all the molecules are not necessarily of same orientation.

See 1. 12 from foot of § 37. K., Oct. 12, 189G.

Turning in the plane of the paper, as contemplated by Miller, could not bring

molecules into coincidence with big and little ends : but turning round the axis AB
does bring them into coincidence. K., Oct. 12, 1896.
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layer to begin with, the assemblage were to grow by layer after

layer added to it on each side, it might probably grow as a twin-

crystal. But it might also be that the presence of a molecule in

the wider hollow p'^'V on one side, might render the occupation

of the corresponding hollow on the other side by another molecule

less probable, or even impossible. Hence, according to the con-

figuration and the molecular forces of the particular crystalline

molecule in natural crystallization, there may be necessarily, or

almost necessarily, the twin, when growth proceeds simultaneously

on the two sides : or the twin growth may be impossible, because

the first occupation of the wider hollows on one side may compel

the continuity of the crystalline quality throughout, by leaving

only the narrower hollows pqr free for occupation by molecules

attaching themselves on the other side.

§ 39. Or the character of the crystalline molecule may be

such that when the assemblage grows by the addition of layer

after layer on one side only, with a not very strongly decided

preference to the wider hollows p'(^r\ some change of circumstances

may cause the molecules of one layer to place themselves in a

hollow pcir. The molecules in the next layer after this would find

the hollows p'qr occupied on the far side, and would thus have

a bias in favour of the hollows pqv. Thus layer after layer might

be added, constituting a twinned portion of the growth, growing,

however, with less strong security for continued homogeneousness

than when the crystal was growing, as at first, by occupation of

the wider hollows p'q'r'. A slight disturbance might again occur,

causing the molecules of a fresh layer to settle, not in the narrow

hollows pqr, but in the wider hollows p'q'r , notwithstanding the

nearness of molecules already occupying the wider hollows on the

other side. Disturbances such as these occurring irregularly during

the growth of a crystal might produce a large number of successive

twinnings at parallel planes with irregular intervals between them,

or a large number of twinnings in planes at equal intervals might

be produced by some regular periodic disturbance occurring for a

certain number of periods, and then ceasing. Whether regular

and periodic, or irregular, the tendency would be that the number

of twinnings should be even, and that after the disturbances cease

the crystal should go on growing in the first manner, because of

the permanent bias in favour of the wider hollows p'q'r'. These
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changes of molecular tactics, which we have been necessarily led

to by the consideration of the fortuitous concourse of molecules,

are no doubt exemplified in a large variety of twinnings and

counter-twinnings found in natural minerals. In the artificial

crystallization of chlorate of potash the}^ are of frequent occurrence,

as is proved, not only by the twinnings and counter-twinnings

readily seen in the crystalline forms, but also by the brilliant

iridescence observed in many of the crystals found among a large

multitude, which was investigated scientifically by Sir George

Stokes ten years ago, and described in a communication to the

Royal Society " On a remarkable phenomenon of crystalline reflec-

tion" {Proc. R S., Vol. XXXVIII., 1885, p. 174).

§ 40. A very interesting phenomenon, presented by what was

originally a clear homogeneous crystal of chlorate of potash, and

was altered by heating to about 245°—248° Cent., which I am

able to show you through the kindness of Lord Rayleigh, and of

its discoverer, Mr Madan, presents another very wonderful case

of changing molecular tactics, most instructive in respect of the

molecular constitution of elastic solids. When I hold this plate

before you with the perpendicular to its plane inclined at 10°

or more to your line of vision you see a tinsel-like appearance,

almost as bright as if it were a plate of polished silver, on this

little area, which is a thin plate of chlorate of potash cemented

for preservation between two pieces of glass; and, when I hold

a light behind, you see that the little plate is almost perfectly

opaque like metal foil. But now when I hold it nearly perpen-

dicular to your line of vision the tinsel-like appearance is lost.

You can see clearly through the plate, and you also see that very

little light is reflected from it. As a result, both of Mr Madan's

own investigations and further observations by himself. Lord

Rayleigh came to the conclusion that the almost total reflection

of white light which you see is due to the reflection of light at

many interfacial planes between successive layers of twinned and

counter-twinned crystal of small irregular thicknesses, and not to

any splits or cavities or any other deviation from homogeneousness

than that presented by homogeneous portions of oppositely twinned-

crystals in thorough molecular contact at the interfaces.

§ 41. When the primitive clear crystal was first heated very

gradually by Madan to near its melting-point (359° according to
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Carnelly) it remained clear, and only acquired the tinsel appear-

ance after it had cooled to about 245° or 248° *. Rayleigh found

that if a crystal thus altered was again and again heated it always

lost the tinsel appearance, and became perfectly clear at some

temperature considerably below the melting-point, and regained it

at about the same temperature in cooling. It seems therefore

certain, that at temperatures above 248° and below the melting-

point, the molecules had so much of thermal motions as to keep

them hovering about the positions of pqr, p'c[r' of our diagrams,

but not enough to do away with the rigidity of the solid ; and that

when cooled below 248° the molecules were allowed to settle in

one or other of the two configurations, but with little of bias for

one in preference to the other. It is certainly a very remarkable

fact in Natural History, discovered by these observations, that

when the molecules come together to form a crystal out of the

watery solution, there should be so much more decided a bias in

favour of continued homogeneousness of the assemblage than when,

by cooling, they are allowed to settle from their agitations in a rigid,

but nearly melting, solid.

§ 42. But even in crystallization from watery solution of

chlorate of potash the bias in favour of thorough homogeneousness

* " A clear transparent crystal of potassium chlorate, from which the inevitable

" twin -plate had been ground away so as to reduce it to a single crystal film about

" 1 mm. in thickness, was placed between pieces of mica and laid on a thick iron

" plate. About 3 cm. from it was laid a small bit of potassium chlorate, and the

"heat of a Bunsen burner was applied below this latter, so as to obtain an indication

" when the temperature of the plate was approaching the fusing-point of the substance

" (359° C. according to Prof. Carnelly). The crystal plate was carefully watched
" during the heating, but no depreciation took place, and no visible alteration was
" observed, up to the point at which the small sentinel crystal immediately over the

" burner began to fuse. The lamp was now withdrawn, and when the temperature

" had sunk a few degrees a remarkable change spread quickly and quietly over the

" crystal plate, causing it to reflect light almost as brilliantly as if a film of silver

" had been deposited upon it. No further alteration occurred during the cooling

;

" and the plate, after being ground and polished on both sides, was mounted with

" Canada balsam between glass plates for examination. Many crystals have been

"similarly treated with precisely similar results; and the temperature at which

"the change takes place has been determined to lie between 245° and 248°, by

" heating the plates upon a bath of melted tin in which a thermometer was im-

" mersed. With single crystal plates no decrepitation has ever been observed,

" while with the ordinary twinned-plates it always occurs more or less violently,

" each fragment showing the brilliant reflective power above noticed."

—

Nature,

May 20, 1886.
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is not in every contingency decisive. In the first place, beginning,

as the formation seems to begin, from a single molecular plane

layer such as that ideally shown in fig. 14, it goes on, not to make

a homogeneous crystal on the two sides of this layer, but probably

always so as to form a twin-crystal on its two sides, exactly as

described in § 38, and if so, certainly for the reason there stated.

This is what Madan calls the "inveterate tendency to produce

twins (such as would assuredly drive a Malthus to despair)*";

and it is to this that he alludes as " the inevitable twin-plate

"

in the passage from his paper given in the footnote to | 41

above,

§ 43. In the second place, I must tell you that many of the

crystals produced from the watery solution by the ordinary process

of slow evaporation and crystallization show twinnings and counter-

twinnings at irregular intervals in the otherwise homogeneous

crystal on either one or both sides of the main central twin-plane,

which henceforth for brevity I shall call (adopting the hypothesis

already explained, which seems to me undoubtedly true) the

' initial plane.' Each twinning is followed, I believe, by a counter-

twinning at a very short distance from it ; at all events Lord

Rayleigh's observations *}- prove that the whole number of twinnings

and counter-twinnings in a thin disturbed stratum of the crystal

on one side of the main central twin-plane is generally, perhaps

always, even ; so that, except through some comparatively very

small part or parts of the whole thickness, the crystal on either

side of the middle or initial plane is homogeneous. This is exactly

the generally regular growth which I have described to you (§ 39)

as interrupted occasionally or accidentally by some unexplained

disturbing cause, but with an essential bias to the homogeneous

continuance of the more easy or natural one of the two con-

figurations.

§ 44. I have now great pleasure in showing you a most

interesting collection of the iridescent crystals of chlorate of

potash, each carefully mounted for preservation between two glass

plates, which have been kindly lent to us for this evening by

Mr Madan. In March, 1854, Dr W. Bird Herapath sent to

* Nature, May 20, 1886.

t Philosophical Magazine, 1888, second half-year, p. 260.
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Prof. Stokes some crystals of chlorate of potash showing the

brilliant and beautiful colours you now see, and, thirty years

later. Prof. E. J. Mills recalled his attention to the subject by

sending him '' a fine collection of splendidly coloured crystals

" of chlorate of potash of considerable size, several of the plates

" having an area of a square inch or more, and all of them being thick

" enough to handle without difficulty." The consequence was that

Stokes made a searching examination into the character of the

phenomenon, and gave a short but splendidly interesting com-

munication to the Royal Society, of which I have already told

you. The existence of these beautifully coloured crystals had

been well known to chemical manufacturers for a long time, but

it does not appear that any mention of them was to be found in

any scientific journal or treatise prior to Stokes's paper of 1885.

He found that the colour was due to twinnings and counter-

twinnings in a very thin disturbed stratum of the crystal showing

itself by a very fine line, dark or glistening, according to the

direction of the incident light Avhen a transverse section of the

plate of crystal was examined in a microscope. By comparison

with a spore of lycopodium he estimated that the breadth of this

line, and therefore the thickness of the disturbed stratum of the

crystal, ranged somewhere about the one-thousandth of an inch.

He found that the stratum was visibly thicker in those crystals

Avhich showed red colour than in those which showed blue. He
concluded that " the seat of the coloration is certainly a thin

twinned stratum " (that is to say, a homogeneous portion of crystal

between a twinning and a counter-twinning), and found that

" a single twin-plane does not show anything of the kind."

§ 45. A year or two later Lord Rayleigh entered on the

subject with ^n exhaustive mathematical investigation of the

reflection of light at a twin-plane of a crystal (Philosophical

Magazine, September, 1888), by the application of which, in a

second paper " On the remarkable Phenomenon of Crystalline

Reflection described by Prof Stokes," published in the same

number of the Philosophical Magazine, he gave what seems

certainly the true explanation of the results of Sir George Stokes's

experimental analysis of these beautiful phenomena. He came

very decidedly to. the conclusion that the selective quality of the

iridescent portion of the crystal, in virtue of which it reflects
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almost totally light nearly of one particular wave-length for one

particular direction of incidence (on which the brilliance of the

coloration depends), cannot be due to merely a single twin-stratum,

but that it essentially is due to a considerable number of parallel

twin-strata at nearly equal distances. The light reflected by this

complex stratum is, for any particular direction of incident and

reflected ray, chiefly that of which the wave-length is equal to

twice the length of the period of the twinning and counter-

twinning, on a line drawn through the stratum in the direction

of either the incident or the reflected ray.

§ 46. It seems to me probable that each twinning is essentially

followed closely by a counter-twinning. Probably three or four of

these twin-strata might suffice to give colour ; but in any of the

brilliant specimens as many as twenty or thirty, or more, might

probably be necessary to give so nearly monochromatic light as

was proved by Stokes's prismatic analysis of the colours observed

in many of his specimens. The disturbed stratum of about a one-

thousandth of an inch thickness, seen by him in the microscope,

amply suffices for the 5, 10, or 100 half wave-lengths required by

Rayleigh's theory to account for perceptible or brilliant coloration.

But what can be the cause of any approach to regular periodicity

in the structure sufficiently good to give the colours actually

observed ? Periodical motion of the mother-liquor relatively to

the growing crystal might possibly account for it. But Lord

Rayleigh tells us that he tried rocking the pan containing the

solution without result. Influence of light has been suggested,

and I believe tried, also without result, by several enquirers. We
know, by the beautiful discovery of Edmond Becquerel, of the

prismatic colours photographed on a prepared silver plate by the

solar spectrum, that ' standing waves ' (that is to say, vibrations

with stationary nodes and stationary places of maximum vibration),

due to co-existence of incident and reflected waves, do produce

such a periodic structure as that which Rayleigh's theory shows

capable of giving a corresponding tint when illuminated by white

light. It is difficult, therefore, not to think that light may be

effective in producing the periodic structure in the crystallization

of chlorate of potash, to which the iridescence is due. Still,

experimental evidence seems against this tempting theory, and

we must perforce be content with the question unanswered :

—
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What can be the cause of 5, or 10, or 100 pairs of twinning and

counter-twinning following one another in the crystallization with

sufficient regularity to give the colour: and why, if there are

twinnings and counter-twinnings, are they not at irregular intervals,

as those produced by Madan's process, and giving the observed

white tinsel-like appearance with no coloration ?

§ 47. And now I have sadly taxed your patience : and I fear

I have exhausted it and not exhausted my subject ! I feel I have

not got half-way through what I hoped I might be able to put

before you this evening regarding the molecular structure of

crystals. I particularly desired to speak to you of quartz crystal

with its ternary symmetry and its chirality*; and to have told

you of the etchingf by hydrofluoric acid which, as it were,

commences to unbuild the crystal by taking away molecule after

molecule, but not in the reverse order of the primary up-building

;

and which thus reveals differences of tactics in the alternate faces

of the six-sided pyramid which terminates at either end, some-

times at both ends, the six-sided prism constituting generally the

main bulk of the crystal. I must confine myself to giving you

a geometrical symbol for the ternary symmetry of the prism and

its terminal pyramid.

§ 48. Make an equilateral equiangular hexagonal prism, with

its diagonal from edge to edge ninety-five hundredths;]: of its

length. Place a number of these close together, so as to make
up a hexagonal plane la^'er with its sides perpendicular to the

sides of the constituent hexagonal prisms : see fig. 15, and

imagine the semicircles replaced by their diameters. You see

in each side of the hexagonal assemblage edges of the constituent

prisms, and you see at each corner of the assemblage a face (not

an edge) of one of the constituent prisms. Build up a hexagonal

prismatic assemblage by placing layer after layer over it with the

constituent prisms of each layer vertically over those in the layer

below ; and finish the assemblage with a six-sided pyramid by

* See footnote to § 22 above.

t Widmanstiitten, 1807. Leydolt (1855), Wien. Akad. Ber. 15, 59, T. 9, 10.

Baumhauer, Pogg. Ann. 138, 563 (1869); 140, 271; 142, 324; 145, 460; 150, 619.

For an account of these investigations see Mallard, Traite de Crystallographie

(Paris, 1884), Tome ii. chapitre xvi.

+ More exactly -9525, being f x cot 38° 13' ; see § 48,
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building upon the upper end of the prism, layer after layer of

diminishing hexagonal groups, each less by one circumferential

row than the layer below it. You thus have a crystal of precisely

the shape of a symmetrical specimen of rock crystal, with the

faces of its terminal pyramid inclined at 38° 13' to the faces of

the prism from which they spring. But the assemblage thus

constituted has ' senary ' (or six-rayed) symmetry. To reduce this

to ternary symmetry, cut a groove through the middle of each

alternate face of the prismatic molecule, making this groove in

the first place parallel to the edges : and add a corresponding

projection or fillet to the middles of the other three faces, so that

two of the cylinders similarly oriented would fit together, with

the projecting fillet on one side of one of them entering the groove

in the anti-corresponding side of the other. The prismatic portion

of the assemblage thus formed shows (see fig. 15), on its alternate

Fig. 15.

edges, faces of molecules with projections and faces of molecules

with grooves ; and shows only orientational differences between

alternate faces, Avhether of the pyramid or of the prism. Having

gone only so far from ' senary ' symmetry we have exactly the

triple, or three-pair anti-symmetry required for the piezo-electricity

of quartz investigated so admirably by the brothers Curie*, who

found that a thin plate of quartz crystal cut from any position

perpendicular to a pair of faces of a symmetrical crystal becomes

* J. and p. Curie and C. Friedel, Comptes Eendiis, 1882, 1883, 1886, 1892.
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Plan of Top. Plan of Top.

positively electrified on one side and negatively on the other

when pulled in a direction perpendicular to those faces. But this

assemblage has not the chiral piezo-

electric quality discovered theoreti-

cally by Voigt*, and experimentally

in quartz and in tourmaline by himself

and Rieckef, nor the well-known optic

chirality of quartz.

§ 49. Change now the directions of

the grooves and fillets to either of the

oblique configurations shown in fig. 16,

which I call right-handed, because the

directions of the projections are tan-

gential to the threads of a three-thread

right-handed screw, and fig. 17 (left-

handed). The prisms with their grooves and fillets will still all

fit together if they are all right-handed, or all left-handed,

fig. 18 shows the upper side of a hexagonal layer of an assemblage

Elevation.

Fig. 17.

Fig. 18.

thus composed of the right-handed molecule of fig. 16. Fig. 15

unchanged, still represents a horizontal section through the centres

of the molecules. A prism built up of such layers, and finished

* "Allgemeine Theorie der piezo- unci pyroelectrischen Erscheinungen an

Krystallen," W. Voigt, Konigl. Gesellschaft der Wissenschaften zu Gottingen, August

2, 1890.

t Wiedemann's Aimalen, 1892, xlv. p. 923.
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at each end with a pyramid according to the rule of § 48, has all

the qualities of ternary chiral symmetry required for the piezo-

electricity of quartz ; for the orientational differences of the

alternate pairs of prismatic faces ; for the absolute difference

between the alternate pairs of faces of each pyramid which are

shown in the etching by hydrofluoric acid ; for the merely

orientational difference between the parallel faces of the two

pyramids; and for the well-known chiro-optic* property of quartz.

Look at two contiguous faces A, B oi our geometrical model

quartz crystal now before you, with its axis vertical. You will

see a difference between them : turn it upside down ; B will be

undistinguishable from what A was, and A will be undistinguish-

able from what B was. Look at the two terminal pyramids, and

you will find that the face above A and the face below B are

identical in quality, and that they differ from the face above B
and below A. This model is composed of the right-handed

constituent molecules shown in fig. 16, It is so placed before

you that the edge of the prismatic part of the assemblage nearest

to you shows you filleted faces of the prismatic molecules. You

see two pyramidal faces ; the one to your right hand, over B,

presents complicated projections and hollows at the corners of the

constituent molecules; and the pyramidal face next your left

hand, over A, presents their unmodified corners. But it will be

the face next your left hand which will present the complex

bristling corners, and the face next your right hand that will

present the simple corners if, for the model before you, you

substitute a model composed of left-handed molecules, such as

those shown in fig. 17.

§ 50. To give all the qualities of symmetry and anti-symmetry

of the pyro-electric and piezo-electric properties of tourmaline,

make a hollow in one terminal face of each of our constituent

prisms, and a corresponding projection in its other terminal

face.

§ 51. Coming back to quartz, we can now understand perfectly

the two kinds of macling which are well known to mineralogists

as being found in many natural specimens of the crystal, and

which I call respectively the orientational macling, and the chiral

macling. In the orientational macling all the crystalline molecules

* Generally miscalled ' rotational.'
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are right-handed, or all left-handed ; but through all of some part

of the crystal, each of our component hexagonal prisms is turned

round its axis through 60" from the position it would have if the

structure were homogeneous throughout. In each of the two parts

the structure is homogeneous, and possesses all the electric and

optic properties which any homogeneous portion of quartz crystal

presents, and the facial properties of natural uncut crystal shown

in the etching by hydrofluoric acid ; but there is a discontinuity

at the interface, not generally plane between the two parts, which

in our geometrical model would be shown by non-fittings between

the molecules on the two sides of the interface, while all the

contiguous molecules in one part, and all the contiguous molecules

in the other part, fit into one another perfectly. In chiral macling,

which is continually found in amethystine quartz, and sometimes

in ordinary clear quartz crystals, some parts are composed of right-

handed molecules, and others of left-handed molecules. It is not

known whether, in this chiral macling, there is or there is not

also the orientational macling on the two sides of each interface

;

but we may say probably not ; because we know that the orienta-

tional macling occurs in nature without any chiral macling, and

because there does not seem reason to expect that chiral macling

would imply orientational macling on the two sides of the same

interface. I would like to have spoken to you more of this most

interesting subject; and to have pointed out to you that some

of the simplest and most natural suppositions we can make as

to the chemical forces (or electrical forces, which probably means

the same thing) concerned in a single chemical molecule of quartz

SiOo, and acting between it and similar neighbouring

molecules, would lead essentially to these molecules

coming together in triplets, each necessarily either right-

handed or left-handed, but with as much probability of

one configuration as of the other : and to have shown

you that these triplets of silica 3 (SiOa) can form a

crystalline molecule with all the properties of ternary pj jg

chiral symmetry, typified by our grooved hexagonal

prisms, and can build up a quartz crystal by the fortuitous

concourse of atoms. I should like also to have suggested and

explained the possibility that a right-handed crystalline molecule

thus formed may, in natural circumstances of high temperature,

or even of great pressure, become changed into a left-handed

T. L. 41
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crystal, or vice versa. My watch, however, warns me that I must

not enter on this subject.

§ 52. Coming back to mere molecular tactics of crystals,

remark that our assemblage of rounded, thoroughly scalene tetra-

hedrons, shown in the stereoscopic picture (§ 36, fig, 13 above),

essentially has chirality because each constituent tetrahedron, if

wholly scalene, has chirality*. I should like to have explained

to you how a single or double homogeneous assemblage of points

has essentially no chirality, and how three assemblages of single

points, or a single assemblage of triplets of points, can have

chirality, though a single triplet of points cannot have chirality.

I should like indeed to have brought somewhat thoroughly before

you the geometrical theory of chirality ; and in illustration to

have explained the conditions under M^hich four points or two

lines, or a line and two points, or a combination of point, line and

plane, can have chirality : and how a homogeneous assemblage

of non-chiral objects can have chirality ; but in pity I forbear, and

I thank you for the extreme patience with Avhich you have listened

to me.

* See footnote to § 22 above.
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ON THE ELASTICITY OF A CRYSTAL ACCORDING

TO BOSCOVICH*.

I 1. A CRYSTAL in nature is essentially a homogeneous

assemblage of equal and similar molecules, which for brevity I

shall call crystalline molecules. The crystalline molecule may

be the smallest portion which can be taken from the substance

without chemical decomposition, that is to say, it may be the

group of atoms kept together by chemical affinity, which con-

stitutes what for brevity I shall call the chemical molecule ; or

it may be a group of two, three, or more of these chemical

molecules kept together by cohesive force. In a crystal of tartaric

acid the crystalline molecule may be, and it seems to me probably

is, the chemical molecule, because if a crystal of tartaric acid is

dissolved and recrystallised it always remains dextro-chiral. In

a crystal of chlorate of soda, as has been pointed out to me by

Sir George Stokes, the crystalline molecule probably consists of

a group of two or more of the chemical molecules constituting

chlorate of soda, because, as found by Marbachf, crystals of the

substance are some of them dextro-chiral and some of them levo-

chiral ; and if a crystal of either chirality is dissolved the solution

shows no chirality in its action on polarised light; but if it is

recrystallised the crystals are found to be some of them dextro-

chiral and some of them levo-chiral, as shown both by their

crystalline forms and by their action on polarised light. It is

possible, however, that even in chlorate of soda the crystalline

molecule may be the chemical molecule, because it may be that

the chemical molecule in solution has its atoms relatively mobile

enough not to remain persistently in any dextro-chiral or levo-

* From Proc. R. S. June 8, 1893.

t Pofjp. Ann. Vol. xci. pp.482—487 (18o4); or Ann. de Chimie, Vol. XLiii, (liV.),

pp. 252—255.

41—2
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chiral grouping, and that each individual chemical molecule

settles into either a dextro-chiral or levo-chiral configuration in

the act of forming a crystal. See " Molecular Tactics," Oxford

Lecture, § 52, reproduced as App. H in the present volume.

§ 2. Certain it is that the cr3'stalline molecule has a chiral

configuration in every crystal which shows chirality in its crystal-

line form or which produces right- or left-handed rotation of the

plane of polarisation of light passing through it. The magnetic

rotation has neither right-handed nor left-handed quality (that is

to say, no chirality). This was perfectly understood by Faraday

and made clear in his writings, yet even to the present day we

frequently find the chiral rotation and the magnetic rotation of

the plane of polarised light classed together in a manner against

which Faraday's original description of his discovery of the

magnetic polarisation contains ample warning.

§ 3. These questions, however, of chirality and magnetic

rotation do not belong to my present subject, which is merely

the forcive* required to keep a crystal homogeneously strained

to any infinitesimal extent from the condition in which it rests

when no force acts upon it from without. In the elements of

the mathematical theory of elasticity f we find that this forcive

constitutes what is called a homogeneous stress, and is specified

completely by six generalised force-components, j)^, p.,, ps, ..., j^e,

which are related to six corresponding generalised components

of strain, s^, 80,83, ..., s^, by the following formulas:

—

w = ^{p,8,+p.,8.+ ... +2hSe) (IX

where w denotes the work required per unit volume to alter any

portion of the crj^stal from its natural unstressed and unstrained

condition to any condition of infinitesimal homogeneous stress or

strain :

—

dw dw ,_,

^• = ds~
''' = 3^ (^>'

where -^ , • • • , ;t- denote dififerential coefficients on the supposition

~ This is a word introduced by my brother, the late Professor James Thomson,

to designate any .system of forces.

t Phil. Trans. April 24, 1856, reprinted in Vol. iii. Math, and Phya. Papers

(Sir W. Thomson), pp. 84—112.
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that w is expressed as a homogeneous quadratic function of

*'l ) • • • ) ^6 •

_dio _dw ,

''-dp^,"-'''-~dp,
^''^'

f) ?)

where ,,..., , denote differential coefficients on the supposi-
dpi dps

tion that w is expressed as a homogeneous quadratic function of

§ 4. Each crystalline molecule in reality certainly experiences

forcive from some of its nearest neighbours on two sides, and

probably also from next nearest neighbours and others. What-

ever the mutual forcive between two mutually acting crystalline

molecules is in reality, and however it is produced, whether by

continuous pressure in some medium, or by action at a distance,

we may ideally reduce it, according to elementary statical

principles, to two forces, or to one single force and a couple in a

plane perpendicular to that force. Boscovich's theory, a purely

mathematical idealism, makes each crystalline molecule a single

point, or a group of points, and assumes that there is a mutual

force between each point of one crystalline molecule and each

point of neighbouring crystalline molecules, in the line joining the

two points. The very simplest Boscovichian idea of a crystal is a

homogeneous group of single points. The next simplest idea is a

homogeneous group of double points.

§ 5. In the present communication, I demonstrate that, if

we take the very simplest Boscovichian idea of a crystal, a

homogeneous group of single points, we find essentially six

relations between the twenty-one coefficients in the quadratic

function expressing w, whether in terms of Sj, ..., «« or of p^, ...jp^.

These six relations are such that incompressibility, that is to say

infinite resistance to change of bulk, involves infinite rigidity. In

the particular case of an equilateral* homogeneous assemblage

with such a law of force as to give equal rigidities for all directions

of shearing, these six relations give Sk=5n, which is the relation

" That is to saj', an assemblage iu which the lines from any point to three

neighbours nearest to it and nearest to one another are inclined at 00° to one another

;

and these neighbours are at equal distances from it. This implies that each point

has twelve equidistant nearest neighbours around it, and that any tetrahedron of

four nearest neighbours has for its four faces four equilateral triangles.
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found by Navier and Poisson in their Boscovichian theory for

isotropic elasticity in a solid. This relation was shown by Stokes

to be violated by many real homogeneous isotropic substances,

such, for example, as jelly and india-rubber, which oppose so great

resistance to compression and so small resistance to change of

shape, that we may, with but little practical error, consider them

as incompressible elastic solids.

§ 6. I next demonstrate that if we take the next simplest

Boscovichian idea for a crystal, a homogeneous group of double

points, we can assign very simple laws of variation of the forces

between the points which shall give any arbitrarily assigned value

to each of the twenty-one coefficients in either of the quadratic

expressions for w.

§ 7. I consider particularly the problem of assigning such

values to the twenty-one coefficients of either of the quadratic

formulas as shall render the solid incompressible. This is most

easily done by taking w as a quadratic function of pj, ...,p^i, and

by taking one of these generalised stress components, say ^h, as

uniform positive or negative pressure in all directions. This

makes s^ uniform compression or extension in all directions, and

makes Si, ..., Ss five distortional components with no change of

bulk. The condition that the solid shall be incompressible is

then simply that the coefficients of the six terms involving jh are

each of them zero. Thus, the expression for w becomes merely

a quadratic function of the five distortional stress-components,

2h, •••,p-o, with fifteen independent coefficients : and equations (3)

of § 3 above express the five distortional components as linear

functions of the five stress-components with these fifteen in-

dependent coefficients.

Added July 18, 1893.

§ 8. To demonstrate the propositions of § 5, let OX, Y, OZ
be three mutually perpendicular lines through any point of a

homogeneous assemblage, and let x, y, z be the coordinates of any

other point P of the assemblage, in its unstrained condition. As
it is a homogeneous assemblage of single points that we arc now
considering, there must be another point P\ whose coordinates

are — x, — y, — z. Let (cc \-hx, y -\- By, z + Sz) be the coordinates

of the altered position of P in any condition of infinitesimal
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strain, speciticd by the six symbols e, f, [/, a, b, c, according to

the notation of Thomson and Tait's Natural Philosophy, Vol. i.,

Pt. XL, § 669. In this notation, e, / cj denote simple infinitesimal

elongations parallel to OX, OY, OZ respectively; and a, h, c

infinitesimal changes from the right angles between three pairs

of planes of the substance, which, in the unstrained condition, are

parallel to (XOY, XOZ), (YOZ, YOX), {ZOX, ZOY) respectively

(all angles being measured in terms of the radian). The definition

of ((, h, c may be given, in other words, as follows, with a taken as

example : a denotes the difference of component motions parallel

to OF of two planes of the substance at unit distance asunder,

kept parallel to YOX during the displacement ; or, which is the

same thing, the difference of component motions parallel to OZ of

two planes at unit distance asunder kept parallel to ZOX during

the displacement. To avoid the unnecessary consideration of

rotational displacement, we shall suppose the displacement corre-

sponding to the strain-component a to consist of elongation

perpendicular to OX in the plane through OX bisecting YOZ,

and shrinkage perpendicular to OX in the plane through OX
perpendicular to that bisecting plane. This displacement gives

no contribution to Bx, and contributes to 8y and Sz respectively

^az and hay. Hence, and dealing similarly with b and c, and

taking into account the contributions of e, f, g, we find

hx = ex + ^ {bz -\- cyy\

Sy=/y + Mc*' + «^) W
hz = gz+\ (ay + bx)j

§ 9. In our dynamical treatment below, the following formulas,

in which powers higher than squares or products of the infini-

tesimal ratios Sx/r, by/r, Bz/r (r denoting OP) are neglected, will

be found useful.

Br xBx + ySy + zBz ^ Bx'^ + By- + Bz^ . fxBx + yBy + zBzV .

r r-
"

r- ' \ r^ J

Now by (-i) we have

xBx + yBy + zBz = ex- + fy" + gz- + ayz + bzx + cxy . . .(6),

and

Bx- + By- + Bz" = e-x^ \py" + g^-z-

+ ¥ [«' {V' + ^) + ^' (^' + ^) + c' (*•' + f)\

+ \U)o + (/+ g) «] yz + l\ca ^-{g\e) b^zx + \\ab + (e -f/) c\xy. . .(7).
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Using (6) and (7) in (5), we find

— = r-2 {ex- +ff + gz- + ai/z + bzx + cxij) + q {e, f, g, a, h, c). . .(8),

where ([ denotes a quadratic function of e, f, &c., with coefficients

as follows :

—

x- af
Coefficient of ^ e" is — —

1^. ,y^^_vy:

fg »
- ifz-

he 1 y^ ^-yz

ea
x-yz

eh J
zx X'Z

" 2 „^o — T

.(9)

and corresponding symmetrical expressions for the other fifteen

coefficients.

§ 10. Going back now to § 3, let us find w, the work per unit

volume, required to alter our homogeneous assemblage from its

unstrained condition to the infinitesimally strained condition

specified by e, f, g, a, b, c. Let ^(r) be the work required to

bring two points of the system from an infinitely great distance

asunder to distance r. This is what I shall call the mutual

potential energy of two points at distance ?•. What I shall now

call the potential energy of the whole system, and denote by W,

is the total work which must be done to bring all the points of it

from infinite mutual distances to their actual positions in the

system ; so that we have

Tf=i22<^(r) (10),

where S^ (r) denotes the sum of the values of (j) (?") for the

distances between any one point 0, and all the others; and

SS^(r) denotes the sum of these sums with the point taken

successively at every point of the system. In this double sum-

mation <f){r) is taken twice over, whence the factor ^ in the

formula (10).
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§ 11. Suppose now the law of force to be such that <f){r)

vanishes for every value of r greater than v\, where X, denotes

the distance between any one point and its nearest neighbour,

and V any small or large numeric exceeding unity, and limited

only by the condition that v\ is very small in comparison with

the linear dimensions of the Avhole assemblage. This, and the

homogeneousness of our assemblage, imply that, except through

a very thin surface layer of thickness v\, exceedingly small in

comparison with diameters of the assemblage, eveiy point ex-

periences the same set of balancing forces from neighbours as

every other point, whether the system be in what we have called

its unstrained condition or in any condition Avhatever of homo-

geneous strain. This strain is not of necessity an infinitely small

strain, so far as concerns the proposition just stated, although in

our mathematical work we limit ourselves to strains which are

infinitely small.

§ 12. Remark also that if the whole system be given as a

homogeneous assemblage of any specified description, and if all

points in the surface-layer be held by externally applied forces in

their positions as constituents of a finite homogeneous assemblage,

the whole assemblage will be in equilibrium under the influence

of mutual forces between the points ; because the force exerted on

any point by any point P is balanced by the equal and opposite

force exerted by the point P' at equal distance on the opposite

side of 0.

I 13. Neglecting now all points in the thin surface layer,

let N denote the whole number of points in the homogeneous

assemblage within it. We have, in § 10, by reason of the homo-

geneousness of the assemblage,

tXcl>(r) = Nt<f>(r) (11),

and equation (10) becomes

Tr=iiY2:</>(r) (12).

Hence, by Taylor's theorem,

BW = ^NX{cl>'ir)Br + ^cf>"(r)Sr] (13);

and using (8) in this, and remarking that if (as in § 14 below) wc

take the volume of our assemblage as unity, so that N is the
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number of points per unit volume, 8W becomes the tu of § o

;

we find

^u = ^iVS
]

^ \~ {ex- -^-fif + (jz- + a]}z + hzx + Qxy)

+ r(l)'{r)q{e,f,g,a,b,c)

+ ^ —-,-- (ex- +ff + gz- + ayz + hzx + cxij)- L . .(14).

§ 14. Let us now suppose, for simplicity, the whole assemblage,

in its unstrained condition, to be a cube of unit edge, and let P be

the sum of the normal components of the extraneous forces applied

to the points of the surface-layer in one of the faces of the cube.

z
•

/

T

TT
^\ ^—z:^

J -

r'^-i

^^

>

T
f

Fisr. 1.

The equilibrium of the cube, as a whole, requires an equal and

opposite normal component P in the opposite face of the cube.

Similarly, let Q and R denote the sums of the normal components

of extraneous force on the two other pairs of faces of the cube.

Let T be the sum of tangential components, parallel to OZ, of the

extraneous forces on either of the YZ faces. The equilibrium of

the cube as a whole requires four such forces on the four faces

parallel to OY, constituting two balancing couples, as shown in

the accompanying diagram. Similarly, we must have four

balancing tangential forces 8 on the four faces parallel to OX,

and four tangential forces U on the four faces parallel to OZ.

§ 15. Considering now an infinitely small change of strain in

the cube from (e, /, g, a, h, c) to (e + cZe, f-\-df, g + dg, a-\-da,

b + db, c + dc) ; the work required to produce it, as we see by
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considering the definitions of the displacements e, f, g, a, b, c,

explained above in § 8, is as follows,

diu = Fde + Qdf+ Rdrj + Sda + Tdb + Udo (15).

Hence we have

P = dw/de
; Q = diu/df; R = dw/d<j

;

S = dw/da
;

T = dwjdh
;

U = dw/dc
;

Hence, by (14), and taking L, L to denote linear functions, we

.(16).

.(17),

find

P = liYS
l'^'^^'"'^

X' +L{e,f, g, a, b, c)

S = liYS 1*'^^'-^ yz + L {e,f, g, a, b, c)

and symmetrical expressions for Q, R, T, U.

§ 16. Let now our condition of zero strain be one* in which

no extraneous force is required to prevent the assemblage from

leaving it. We must have P = 0, (^ = 0, P=0, a^ = 0, T=0,
U=0, when e = 0, /= 0, ^r = 0, (t = 0, 6 = 0, c = 0. Hence, by

(17), and the other four symmetrical formulse, we see that

2*>:>^ = 0, 2 *'<'•>»- =

2*^:>y^=o, si^,.=o.

r

^'(r)
xij=

,.(18).

Hence, in the summation for all the points x, y, z, between

which and the point there is force, we see that the first term of

the summed coefficients in q, given by (9) above, vanishes in

every case, except those of fg and ea, in each of which there is

only a single term; and thus from (9) and (14) we find

w = hN Ue-^St^r $ + (fg + |cO S^^
+ (be + ea) Stn-

x-yz
+ eb'^m -- + &c.

r*

.(19),

where — r<^' (r) + f'(^" (r) = •or .(20).

* The consideration of the equilibrium of the thin surface layer, in these circum-

stances, under the influence of merely their proper mutual forces, is exceedingly

interesting, both in its relation to Laplace's theory of capillary attraction, and to the

physical condition of the faces of a crystal and of surfaces of irregular fracture.

But it must be deferred. [See App. J, §§ 2'J, 30.]
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The terms given explicitly in (19) suffice to show by symmetry

all the remaining terms represented by the " &c."

§ 17. Thus we see that with no limitation whatever to the

number of neighbours acting with sensible force on any one

point 0, and with no simplifying assumption as to the law of

force, we have in the quadratic for w equal values for the

coefficients of ^ and ^cv^; ge and ^b'-; ef and ^c"; he and ea;

ca and eb ; and ab and ec. These equalities constitute the six

relations promised for demonstration in § 5.

§ 18. In the particular case of an equilateral assemblage,

with axes OX, OY, OZ parallel to the three pairs of opposite

edges of a tetrahedron of four nearest neighbours, the coefficients

which we have found for all the products except /f/, (/e, e/" clearly

vanish ; because in the complete sum for a single homogeneous

equilateral assemblage we have ±x, ±y, ± z in the symmetrical

terms. Hence, and because for this case

2,^ - = Sot '^, = Sot - , and Sot '- - = Sct - -r = Sot ^r • • -(21),

(19) becomes

w = \^{e^-\-f' + (f) + M{fg^ge + ef) + \n{(e + b"- + c^)...{^-l),

where ^ = ^NX^'^-, and 33 = n = ^iVSOT ^'f (23).

§ 19. Looking to Thomson and Tait's Natural FldlosopJuj,

§ 695 (7)*, we see that the 23 of that formula is now proved to

be, in our present simplest form of Boscovichian assumption, equal

to the n of our present formula (22) which denotes the rigidity-

modulus relative to shearings parallel to the planes YOZ, ZOX,
XOY: and that if we denote by n^ the rigidity-modulus relative

to shearing parallel to planes through OX, OY, OZ, and cutting

{OY, OZ), {OZ, OX), {OX, OY) at angles of 45°, and if h denote

the compressibility-modulus, we have

' o 1. r

7i: = H^-23); ^ = H^ + 2a3))
^'

* This formula is given for the case of a body which is wholly isotropic in respect

to elasticity moduluses; but from the investigation in §§ 681, 682 we see that our

present formula, (22) or (25), expresses the elastic energy for the case of an elastic

solid possessing cubic isotropy with unequal rigidities, n^, n, in respect to these two

sets of shearings.
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and the previous expression for the elastic energy of the strained

solid becomes, for the case of cubic symmetry without any re-

striction,

+ ?i (a= + 6- + cv .,..(25).

§ 20. Comparing this with (22), for our present restricted

case, we find

3A; = 2«i + 3?i ..(26).

This remarkable relation between the two rigidities and the

compressibility of an equilateral homogeneous assemblage of

Boscovich atoms was announced without proof in § 27 of my
paper on the "Molecular Constitution of Matter*." In it n

denotes what I called the facial rigidity, being rigidity relative

to shearings parallel to the faces of the principal cubef : and n^

the diagonal rigidity, being rigidity relative to shearings parallel

to any of the six diagonal planes through pairs of mutually

remotest parallel edges of the same cube. By (24) and (23) we

see that if the law of force be such that

2=r?; = 32^2/;j' (27),

we have ?i = ?2j, and the body constituted by the assemblage is

wholly isotropic in its elastic quality. In this case (26) becomes

3^• = on, as found by Navier and Poisson ; and thus we complete

the demonstration of the statements of § 5 above.

I 21. A case which is not uninteresting in respect to Bosco-

vichian theory, and which is very interesting indeed in respect to

mechanical engineering (of which the relationship with Bosco-

vich's theory has been pointed out and beautifully illustrated

by M. Brillouinj), is the case of an equilateral homogeneous

assemblage with forces only between each point and its twelve

equidistant nearest neighbours. The annexed diagram (fig. 2)

represents the point and three of its twelve nearest neighbours

* R. S. E. Proc, July, 1889 ; Art. xcvii. of my Math, and Phyn. Papers,

VoL HI.

t That is to say, a cube whose edges are parallel to the three pairs of opposite

edges of a tetrahedron of four nearest neighbours.

X Conferences Seientifiques et Allocutions (Lord Kelvin), traduites et annotees;

P. Lugol et M. Brillouin: Paris, 1893, pp. 320—325.
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(their distances X), being in the middles of the near faces of the

principal cube shown in the diagram ; and three of its six next-

nearest neighbours (their distances XV^), being at X, Y, Z, the

corners of the cube nearest to it ; and, at other corners of the

cube, three other neighbours K, L, M, which are next-next-next-

nearest (their distances 2X). The points in the middles of the

three remote sides of the cube, not seen in the diagram, are

next-next-nearest neighbours of (their distances X^S).

Fig. 2.

§ 22. Confining our attention now to O's nearest neighbours,

we see that the nine not shown in the diagram are in the middles

of squares obtained by producing the lines YO, ZO, XO to equal

distances beyond and completing the squares on all the pairs of

lines so obtained. To see this more_ clearly, imagine eight equal

cubes placed together, with faces in contact and each with one

corner at 0. The pairs of faces in contact are four squares in

each of the three planes cutting one another at right angles

through ; and the centres of these twelve squares are the

twelve nearest neighbours of 0. If we denote by X the distance

of each of them from 0, we have for the coordinates x, y, z of

these twelve points as follows :

—

X ^ X
' V2V2

\ X

V2 V2

'

(-

72,

^ ^\
V2 '

' V2;

'

"'V2' V2/' V ' V2' V2/

V2' ' ^/2J' [ V2' ' V2/

V2 '

V2

'

V2' V2' V2' V2''',

(28).
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§ 23. Suppose now to experience force only from its twelve

nearest neighbours : the summations % of § 18 (23) will include

just these twelve points with equal values of -57, which we shall

denote by cto, for all. These yield eight terms to "Zicc^r*), and

four to %(y-z-/r^); and the value of each term in these sums is J.

Thus we find that

^ = N7^„ and 23=:n = |-iVOTo (29).

Hence and by (24), we see that

— 1 n (30).

Thus we have the remarkable result that, relatively to the

principal cube, the diagonal rigidity is half the facial rigidity

when each point experiences force only from its twelve nearest

neighbours. This proposition was announced without proof in

§ 28 of "Molecular Constitution of Matter*."

§ 24. Suppose now the points in the middles of the faces of

the cubes which in the equilateral assemblage are O's twelve

equidistant nearest neighbours to be removed, and the assemblage

to consist of points in simplest cubic order; that is to say, of

Bcscovichian points at the points of intersection of three sets

of equidistant parallel planes dividing space into cubes. Fig. 2

shows ; and, at X, Y, Z, three of the six equidistant nearest

neighbours which it has in the simple cubic arrangement.

Keeping X with the same signification in respect to fig. 2 as

before, we have now for the coordinates of O's six nearest

.

neighbours

:

(\ V2, 0, 0), (0, X^/2, 0), (0, 0, X V2),

(- \ V2, 0, 0), (0, - X V2, 0), (0, 0, - X V2).

Hence, and denoting by CTi the value of tn- for this case, we

find, by § 18 (23),

^ = N^, and 33 = n = (31).

The explanation of n = (facial rigidity zero) is obvious when we

consider that a cube having for its edges twelve equal straight

bars, with their ends jointed by threes at the eight corners, affords

no resistance to change of the right angles of its faces to acute

and obtuse angles.

* Math, and Phys, Papers, Vol. iii. p. 403.
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§ 25. Replacing now the Boscovich points in the middles of

the faces of the cubes, from which we supposed them temporarily

annulled in § 24 ;
putting the results of § 23 and § 24 together

;

and using (24) of § 19 ; we find for our equilateral homogeneous

assemblage, its elasticity-moduluses as follows :

—

23 = 7i = ii\^^o [ (32),

where, as we see by § 16 (20) above.

f2f
•(33);

-sTi = \ ^/2F {\ V2) - 2\'F' {\ V2))

F(r) being now taken to denote repulsion between any two of the

points at any distance r, which, with ^(r) defined as in § 10, is

the meaning of —(^'{r). To render the solid, constituted of our

homogeneous assemblage, elastically isotropic, we must, by § 19

(24), have 0-33 = 2?i, and therefore, by (32),

^, = 2t;^, (34).

By (33) we see that the distant forces contribute to n-^, and

not to n,

§ 26. The last three of the six equilibrium equations, § 16

(18), are fulfilled in virtue of symmetry in the case of an equi-

lateral assemblage of single points whatever be the law of force

between them, and whatever be the distance between any point

and its nearest neighbours. The first three of them require in

the case of §23 that i^(X) = 0; and in the case of (24) that

Fi\^J2) = Q, results of which the interpretation is obvious and

important. ^

§ 27. The first three of the six equilibrium equations, § 16

(18), applied to the case of § 25, yield the following equation :

—

^/\F{\^I2) = -F{\) (35);

that is to say, if there is repulsion or attraction between each

point and its twelve nearest neighbours, there is attraction or

repulsion of V2 of its amount between each point and its six

next-nearest neighbours, unless there are also forces between

more distant points. This result is easily verified by simple

synthetical and geometrical considerations of the equilibrium

between a point and its twelve nearest and six next-nearest
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neighbours in an equilateral homogeneous assemblage. The con-

sideration of it is exceedingly interesting and important in respect

to, and in illustration of, the engineering of jointed structures

with redundant links or tie-struts.

§ 28. Leaving, now, the case of an equilateral homogeneous

assemblage, let us consider what we may call a scalene assemblage,

that is to say, an assemblage in which there are three sets of

parallel rows of points, determinately fixed as follows, according

to the system first taught by Bravais*:

—

I. Just one set of rows of points at consecutively shortest

distances Xj.

II. Just one set of rows of points at consecutively next-

shortest distances X^-

III. Just one set of rows of points at consecutive distances X3

shorter than those of all other rows not in the plane

of I. and II.

To the condition X^ > X2 > ^1 we may add the condition that

none of the angles between the three sets of rows is a right angle,

in order that our assemblage may be what we may call wholly

scalene.

§ 29. Let A'OA, BOB, COG be the primary rows thus

determinately found having any chosen point, 0, in common ; we
have

A'O = 0A= K
B'0 = OB=Xo\ (36).

CO = 00 = \,^

Thus A' and A are O's nearest neighbours ; and B' and B, O's

next-nearest neighbours ; and C and C, O's nearest neighbours

not in the plane AOB. (It should be understood that there may
be in the plane AOB points which, though at greater distances

from than B and B', are nearer to than are C and C.)

§ 30. Supposing, now, BOG, B'OG' , &c., to be the acute angles

between the three lines meeting in ; we have two equal and

* Journal de VEcole Poll/technique, tome xix. cahier xxxiii. pp. 1—128 ; Paris,

1850.

T. L. 42
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dichirally similar* tetrahedrons of each of which each of the four

faces is a scalene acute-angled triangle. That every angle in and

between the faces is acute we readily see, by remembering that

OC and OC are shorter than the distances of from any other of

the points on the two sides of the plane AOB^.

§ 31. As a preliminary to the engineering of an incompressible

elastic solid according to Boscovich, it is convenient now to con-

sider a special case of scalene tetrahedron, in which perpendiculars

from the four corners to the four opposite faces intersect in one

point. I do not know if the species of tetrahedron which fulfils

this condition has found a place in geometrical treatises, but I am
informed by Dr Forsyth that it has appeai^ed in Cambridge

examination papers. For my present purpose it occurred to me
thus:—Let QO, QA, QB, QC be four lines of given lengths drawn

from one point, Q. It is required to draw them in such relative

directions that the volume of the tetrahedron OABC is a

maximum. Whatever be the four given lengths, this problem

clearly has one real solution and one only ; and it is such that

the four planes BOC, COA, AOB, ABC are cut perpendicularly by

the lines AQ, BQ, CQ, OQ, respectively, each produced through Q.

Thus we see that the special tetrahedron is defined by four

lengths, and conclude that two equations among the six edges

of the tetrahedron in general are required to make it our special

tetrahedron.

§ 32. Hence we see the following simple way of drawing a

special tetrahedron. Choose as data three sides of one face and

the length of the perpendicular to it from the opposite angle.

The planes through this perpendicular, and the angles of the

triangle, contain the perpendiculars from these angles to the

opposite faces of the tetrahedron, and therefore cut the opposite

sides of the triangle perpendicularly. (Thus, parenthetically, we

have a proof of the known theorem of elementary geometry that

the perpendiculars from the three angles of a triangle to the

* Either of these may be turned round so as to coincide with the image of the

other in any plane mirror. Either may be called a pervert of the other ; as,

according to the usage of some writers, an object is called a pervert of another if

one of them can be brought to coincide with the image of the other in a plane

mirror (as, for example, a right hand and a left hand).

t See "Molecular Constitution of Matter," § (45), (h), (/), Blath. and Phys. Papers,

Vol. III. pp. 412—413.
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opposite sides intersect in one point.) Let ABC be the chosen

triangle and S the point in which it is cut by the perpendicular

from 0, the opposite corner of the tetrahedron, AS, BS, GS,

produced through S, cut the opposite sides perpendicularly, and

therefore we find the point S by drawing two of these perpen-

diculars and taking their point of intersection. The tetrahedron

Fig. 3.

is then found by drawing through S a line SO of the given

length perpendicular to the plane of ABG. (We have, again

parenthetically, an interesting geometrical theorem. The per-

pendiculars from A, B, C to the planes of OBC, OCA, OAB
cut OS in the same point ; SO being of any arbitrarily chosen

length.)

I 33. I wish now to show how an incompressible homogeneous

solid of wholly oblique crystalline configuration can be constructed

without going beyond Boscovich for material. Consider, in any

scalene assemblage, the plane of the line A'OA through any

point and its nearest neighbours, and the line B'OB through

the same point and its next-nearest neighbours. To fix the ideas,

and avoid circumlocutions, we shall suppose this plane to be

horizontal. Consider the two parallel planes of points nearest

to the plane above it and below it. The corner C of the acute-

angled tetrahedron OABG, which we have been considering, is

one of the points in one of the two nearest parallel planes, that

above AOB we shall suppose. And the corner C" of the equal

and dichirally similar tetrahedron OA'B'G' is one of the points in

the nearest parallel plane below. All the points in the plane

through G are corners of equal tetrahedrons chirally similar to

OABG, and standing on the horizontal triangles oriented as BOA.

42—2
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All the points C" in the nearest plane below are corners of tetra-

hedrons chirally similar to OA'B'C placed downwards on the

triangles oriented as B'OA'. The volume of the tetrahedron

OABC is ^ of the volume of the parallelepiped, of which OA,

OB, 00 are conterminous edges. Hence the sum of the volumes

of all the upward tetrahedrons having their bases in one plane

is ^ of the volume of the space between large areas of these

planes : and, therefore, the sum of all the chirally similar tetra-

hedrons, such as OABG, is ^ of the whole volume of the

assemblage through any larger space. Hence any homogeneous

strain of the assemblage which does not alter the volume of the

tetrahedrons does not alter the volume of the solid. Let tie-struts

OQ, AQ, BQ, CQ be placed between any point Q within the

tetrahedron and its four corners, and let these tie-struts be

mechanically jointed together at Q, so that they may either push

or pull at this point. This is merely a mechanical way of stating

the Boscovichian idea of a second homogeneous assemblage, equal

and similarly oriented to the first assemblage and placed with

one of its points at Q, and the others in the other corresponding

positions relatively to the primary assemblage. When it is done

for all the tetrahedrons chirally similar to OABG, we find four

tie-strut ends at every point 0, or A, or B, or C, for example,

of the primary assemblage. Let each set of these four ends be

mechanically jointed together, so as to allow either push or pull.

A model of the curious structure thus formed was shown at the

conversazione of the Royal Society of June 7, 1893. It is for

three dimensions of space what ordinary hexagonal netting is in

a plane.

§ 34. Having thus constructed our model, alter its shape

until we find its volume a maximum. This brings the tetra-

hedron, OABC, to be of the special kind defined in § 31. Suppose

for the present the tie-struts to be absolutely resistant against

push and pull, that is to say, to be each of constant length. This

secures that the volume of the whole assemblage is unaltered by

any infinitesimal change of shape possible to it ; so that we have,

in fact, the skeleton of an incompressible and inextensible solid*.

* This result was given for an equilateral tetrahedronal assemblage in § 67

of "Molecular Constitution of Matter," Math, and Phys, Papers, Vol. in. pp. 425

—

426.
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Let now any forces whatever, subject to the law of uniformity in

the assemblage, act between the points of our primary assemblage

(and, if we please, also between the points of our second as-

semblage
; and between other pairs of points than the nearests

of the two assemblages). Let these forces fulfil the conditions of

equilibrium ; of which the principle is described in § 16 and

applied to find the equations of equilibrium for the simple case

of a single homogeneous assemblage there considered. Thus
we have an incompressible elastic solid ; and, as in § 17 above,

we see that there are just fifteen independent coefficients in the

quadratic function of the strain-components expressing the work

required to produce an infinitesimal strain. Thus we realise the

result described in § 7 above.

§ 35. Suppose now each of the four tie-struts to be not

infinitely resistant against change of length, and to have a given

modulus of longitudinal rigidity, which, for brevity, we shall call

its stiffness. By assigning proper values to these four stiffnesses,

and by supposing the tetrahedron to be freed from the two con-

ditions making it our special tetrahedron, we have six quantities

arbitrarily assignable, by which, adding these six to the former

fifteen, we may give arbitrary values to each of the twenty-one

coefficients in the quadratic function of the six strain-components

with which we have to deal when change of bulk is allowed.

Thus, in strictest Boscovichian doctrine, we provide for twenty-

one independent coefficients in Green's energy-function. The
dynamical details of the consideration of the equilibrium of two

homogeneous assemblages with mutual attraction between them,

and of the extension of §§ 9—17 to the larger problem now before

us, are full of purely scientific and engineering interest, but must

be reserved for what I hope is a future communication.
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MOLECULAR DYNAMICS OF A CRYSTAL*.

§ 1. The object of this communication is to partially realise

the hope expressed at the end of my paper of July 1 and July 15,

1889, on the Molecular Constitution of Matter f:—"The mathe-

matical investigation must be deferred for a future communication,

when I hope to give it with some further developments." The
italics are of present date.

Following the ideas and principles suggested in §§ 14—20 of

that paper (referred to henceforth for brevity as " M. C. M."), let

us first find the work required to separate all the atoms of a

homogeneous assemblage of a great number n of molecules to

infinite distances from one another. Each molecule may be a

single atom, or it may be a group of i atoms (similar to one

another or dissimilar, as the case may be) which makes the whole

assemblage a group of i assemblages, each of n single atoms,

§ 2. Remove now one molecule from its place in the assem-

blage to an infinite distance, keeping unchanged the configuration

of its constituent atoms, and keeping unmoved every atom
remaining in the assemblage. Let W be the work required to do

so. This is the same for all the molecules within the assemblage,

except the negligible number of those (§ 30 below) which are

within influential distance of the surface. Hence ^nW is the

total work required to separate all the n molecules of the assem-

blage to infinite distances from one another. Add to this n
times the work required to separate the i atoms of one of the

molecules to infinite distances from one another, and we have the

whole work required to separate all the in atoms of the given

assemblage.

* Proc. Roy. Soc. Edin., May, 1902.

+ Proc. Roy. Soc. Edin., and Vol. ni. of Mathematical and Physical Papers,

Art. xcvii.
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Another procedure, sometimes more convenient, is as follows:

—

Remove any one atom from the assemblage, keeping all the others

unmoved. Let w be the work required to do so, and let Sw
denote the sura of the amounts of work required to do this for

every atom separately of the whole assemblage. The total amount

of work required to separate all the atoms to infinite distances

fi-om one another is ^-Sw. This (not subject to any limitation

such as that stated for the former procedure) is rigorously true for

any assemblage whatever of any number of atoms, small or large.

It is, in fact, the well-known theorem of potential energy in the

dynamics of a system of mutually attracting or repelling particles;

and from it we easily demonstrate the item ^nW in the former

procedure.

§ 3. In the present communication we shall consider only

atoms of identical quality, and only two kinds of assemblage.

I. A homogeneous assemblage of N single atoms, in which the

twelve nearest neighbours of each atom are equidistant from it.

This, for brevity, I call an equilateral assemblage. It is fully

described in " M. C. M.," §§ 46, 50 ... 57.

II. Two simple homogeneous assemblages of ^N single atoms,

placed together so that one atom of each assemblage is at the

centre of a quartet of nearest neighbours of the others.

For assemblage II., as well as for assemblage I., w is the same

for all the atoms, except the negligible number of those within

influential distance of the boundary. Neglecting these, we there-

fore have -w = Nw, and therefore the whole work required to

separate all the atoms to infinite distances is

—

iA^w (1).

§ 4. Let cf) (D) be the work required to increase the distance

between two atoms from J) to oo ; and let f{D) be the attraction

between them at distance D. We have

f{D) = -^^{D) (2).

For either assemblage I. or assemblage II. we have

w = (^(D) + </)(i)') + (^(i)") + etc (3);

where D, D', D", etc., denote the distances from any one atom of

all neighbours, including the farthest in the assemblage, which

exercise any force upon it.
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§ 5. To find as many as we desire of these distances for

assemblage I. look at figs. 1 and 2. Fig. 1 shows an atom A, and

neighbours in one plane in circles of nearest, next-nearest, next-

next-nearest, etc. Fig. 2 shows an equilateral triangle of three

nearest neighbours, and concentric circles of neighbours in the

same plane round it. The circles corresponding to r^ and r^ of

§ 7 below, are not drawn in fig. 2. In all that follows the side of

each of the equilateral triangles is denoted by X.

§ 6. All the neighbours in assemblage I. are found by aid of

the diagrams as follows :

—

Fig. 1.

(a) The atoms of the net shown in fig. 1. The plane of this

net we shall call our " middle plane." Let lines be drawn per-

pendicular to it through the atom A, and the points marked h, c,

to guide the placing of nets of atoms in parallel planes on its two

sides.

(6) Two nets of atoms at equal distances X\/| on the two
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sides of the " middle plane." These nets are so placed that an

atom of one of them, say the near one as we look at the diagram,

is in the guide line b ; and an atom of the far one is in the guide

line c.

(c) Two parallel nets of atoms at equal distances, 2X Vf, on

the two sides of the " middle plane," so placed that an atom of the

near one is in the guide line c, and an atom of the far one is in

the guide line b.

(d) A third pair of parallel planes at equal distances, 3X\/f >

from the " middle plane," and each of them having an atom in

guide line A.

(e) Successive triplets of parallel nets with their atoms

Fig. 2.

cyclically arranged Abe, Abe... at greater and greater distances

from A on the near side of the paper, and Acb, Acb ... at greater

and greater distances on the far side.

I 7. Let ^1, go, ^g ... be the radii of the circles shown in fig. 1,

and rj, r^, r^... be the radii of the circles shown in fig. 2; and
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for brevity denote X-Vf by k. The distances from A of all the

neighbours around it are :

—

In our "middle plane": 6 each equal to 71 ; 6, ggJ 6, q-i] 12, q^;

6, g-s;...-

In the two parallel nets at distances k from middle : 6 each

equal to s/{k" + i\^) ; 6, ^(/c^ + ?f) ; 12, V(«- + n'); 12, V(«- + r/);

6, V(«' + ^'/); 12, V(«' + 7-6^); 6, V(«' + r/-').

In the two parallel nets at distances 2« from middle : the same

as {B) altered by taking 2« everywhere in place of k.

In the two parallel nets at distances 3/c from centre : the same

as {A) altered by taking v'(9«'+ ^x), v'(9«^+ ^2^), etc., in place of

q^,q., etc.

In nets at distances on each side greater than 3/c : distances of

atoms from A, found as above, according to the cycle of atomic

configuration described in (e) of § 6.

§ 8. By geometry we find

q, = \; 7, = V3\=1-732X; q^^^X;

7, = ;^7X = 2-646X; q, = ZX:

ri = V^X = -o77\; 1\ = 2 sJ^X = \-lb^\; \ /^x

r, = ^Jl\^Vb2l\; r4 = V^\ = 2-082\

r5 = 4ViX=2-308X; r^= ^J^X^2^bl'J\

r, = h ^Jl\ = 2-887X.

§ 9. Denoting now, for assemblage I., distances from atom A
of its nearest neighbours, its next-nearests, its next-next-nearests,

etc., by Dj, A, D3, etc., and their numbers by ji, j^, ja, etc., we

find by §§ 7, 8 for distances up to 2X,, for use in § 12 below,

Di = \, A = 1-414X, A = l-732\, D,= 2\,

§ 10. Look back now to § 5, and proceed similarly in respect

to assemblage II., to find distances from any atom J. to a limited

number of its neighbours. Consider first only the neighbours

forming with A a single equilateral assemblage : we have the same

set of distances as we had in § 9. Consider next the neighbours

which belong to the other equilateral assemblage. Of these, the

four nearest (being the corners of a tetrahedron having A at its

centre) are each at distance f V|^, and these are A's nearest

neighbours of all the double assemblage II. Three of these four

are situated in a net whose plane is at the distance I \/|X on one
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side of our "middle plane" through A, and having one of its

atoms on either of the guide lines h or c. The distances from A
of all the atoms in this net are, according to fig. 2,

^(^K-' + r,'), V(tV«' + ^2'). etc (5).

The remaining one of the four nearests is on a net at distance

f \/f A' from our "middle plane," having one of its atoms on the

guide line through A. The distances from A of all the atoms in

this net are, according to fig. 1,

fV|\ \^(j%'c"' + qi% s/ijl^c^' + q-i), etc (6).

All the other atoms of the equilateral assemblage to which A
does not belong lie in nets at successive distances k, 2k, Sk, etc.,

beyond the two nets we have already considered on the two sides

of our "middle plane"; the atoms of each net placed of course

according to the cyclical law described in (e) of § 6.

§ 11. Working out for the double assemblage II. for ^'s

nearest neighbours according to § 10, we find four nearest neigh-

bours at equal distances f Vf^ = '613A,; twelve next-nearests at

equal distances X ; and twelve next-next-nearests at equal distances

V^A- = 1'173X-. These suffice for §12 below. It is easy and

tedious, and not at present useful, to work out for D^, D^, Dq, etc.

§ 12. Using now §§ 9, 11 in (8) of § 4 we find,

—

for assemblage I.,

IV = 120 (\) + Q(f>
(1-414X) + 18</) (l-732\) + 6</) (2X) + ...

for assemblage II.,

w; = 40 (-eiSA.) + 120 (X) + 120 (1-173X) + . .

.

These formulas prepare us for working out in detail the practical

dynamics of each assemblage, guided by the following statements

taken from §§ 18, 16 of " M. C. M."

§ 13. Every infinite homogeneous assemblage of Boscovich

atoms is in equilibrium. So, therefore, is every finite homogeneous

assemblage, provided that extraneous forces be applied to all

within influential distance of the frontier, equal to the forces

which a homogeneous continuation of the assemblage through

influential distance beyond the frontier would exert on them.

The investigation of these extraneous forces for any given homo-

geneous assemblage of single atoms—or groups of atoms as

...(7).
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explained above (§ 1)—constitutes the Boseovich equilibrium-

theory of elastic solids.

It is wonderful how much towards explaining the crystallo-

graphy and elasticity of solids, and the thermo-elastic properties

of solids, liquids, and gases, we find ; without assuming, in the

Boscovichian law of force, more than one transition from

attraction to repulsion. Suppose, for instance, that the mutual

force between two atoms is zero for all distances exceeding a

certain distance /, which we shall call the diameter of the sphere

of influence ; is repulsive when the distance between them is < ^;

zero when the distance is = ^; and attractive when the distance is

> ^ and < /.

I 14. Two different examples are represented on the two

curves of fig. 3, drawn arbitrarily to obtain markedly diverse con-

ditions of equilibrium for the monatomic equilateral assemblage

I., and also for the diatomic assemblage II. The abscissa (x)

Fig. 3.

of each diagram, reckoned from a zero outside the diagram on the

left, represents the distance between centres of two atoms ; the

ordinates (y) represent the work required to separate them from

dv
this distance to go . Hence — -~ represents the mutual attraction

at distance x. This we see by each curve is — oo (infinite repulsion)

at distance I'O, which means that the atom is an ideal hard

ball of diameter I'O. For distances increasing from I'O the force

is repulsive as far as 1'61 in curve 1, and 1'55 in curve 2. At
these distances the mutual force is zero ; and at greater distances

up to 1*8 in curve 1, and 1'9 in curve 2, the force is attractive.

The force is zero for all greater distances than the last mentioned
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in the two examples respectively. Thus, according to my old

notation, we have f = 1-61,/ = 18 in curve 1; and ^= 1-55, I=V9
in curve 2. The distances for maximum attractive force (as shown

by the points of inflection of the two curves) are 1-68 for curve 1,

and 1"76 for curve 2.

According to our notation of § 4 we have y = (f)
(D), \i x = D

in each curve.

§ 15. The two formulas (7), § 12, are represented in fig. 4 for

curve 1, and in fig. 5 for curve 2; with x = \ for Ass. I., and

X = i)l2\ for Ass. II. In each diagram the abscissa, x, is distance

between nearest atoms of the assemblage. The heavy portions of

Fig. 4. Law of Force according to Curve 1.

the curves represent the values of w calculated from (7). The

light portions of the curves, and their continuations in heavy

curves, represent 4^ (x) and 1 2^ (x) respectively in each diagram.

The point where the light curve passes into the heavy curve in

each case corresponds to the least distance between neighbours at

which next-nearests are beyond range of mutual force. All the

diagrams here reproduced were drawn first on a large scale on

squared paper for use in the calculations from (7); which included

accurate determinations of the maximum and minimum values of

w and the corresponding distances between nearest neighbours in
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each assemblage. The corresponding densities, given in the last

column of the following table of results, are calculated by the

formula \/2/X-'' for assemblage I., and 2 ^^2/^,^ for assemblage II.;

y^nT'^

7n
' / \

?n"'

\

\

m' 1 la-forJss.I.

\8 -9 1-0

/'1

\-2 1- 3 1-4 1-5 1-6 1 7 1-8 \-9

Fig. 5. Law of Force according to Curve 2.

"density" being in each case number of atoms per cube of the

unit of abscissas of the diagram. This unit is (| 14) equal to the

diameter of the atom. For simplicity we assume the atom to be

an infinitely hard ball exerting (§ 13) on neighbouring atoms, not

in contact with it, repulsion at distance between centres less than

^ and attraction at any distance between ^ and /.

§ 16. To interpret these results, suppose all the atoms of the

assemblage to be subjected to guidance constraining them either

to the equilateral homogeneousness of assemblage I., or to the

diatomic homogeneousness of assemblage II., with each atom of

one constituent assemblage at the centre of an equilateral quartet

of the other constituent assemblage. It is easy to construct

ideally mechanism by which this may be done ; and we need not

occupy our minds with it at present. It is enough to know that

it can be done. If the system, subject to the prescribed constrain-

ing guidance, be left to itself at any given density, the condition

for equilibrium without extraneous force is that xu is either a

maximum or a minimum ; the equilibrium is stable when w is a

maximum, unstable when a minimum. It is interesting to see the
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two stable equilibriums of assemblage I. according to law of force

1, and the three according to law of force 2; and the two stable

equilibriums of assemblage II. with each of these laws of force.

Assemblage I. Assemblage II.

Distances be-

tween centres
of nearest
atoms for

maxinuiui and
mininiuni

values of w.

Maximum and
minimum

values of w.

Densities.

Distances be-
tween centres
of nearest
atoms for

maximum and
minimum

values of w.

Maximum and
minimum

values of w.
Densities.

Law of Force according to Curve 1.

1-16

1-23

1-61

8-28 (max.)
5-22 (min.)

14-76 (max.)

-904

-759

-338

1-00

1-10

1-61

11-52 (max.)
•76 (min.)

4-92 (max.)

-652

-490

-158

Law of Force according to Curve 2.

1-00

1-07

1-22

1-28

1-53

11-58 (max.)
3-78 (min.)
10-44 (max.)
9-36 (min.)

15-60 (max.)

1-414

1-146

-774

-671

-393

1-00

115
1-53

12-36 (max.)
0-16 (min.)
5-20 (max.)

-652

-433

-184

§ 17. But we must not forget that it is only with the specified

constraining guidance (§ 16) that we are sure of these equili-

briums being stable. It is quite certain, however, that without

guidance the monatomic assemblage would be stable for the small

density corresponding to the point 7n of each of the diagrams,

because for infinitesimal deviations each atom experiences forces

only from its twelve nearest neighbours, and these forces are each

of them zero for equilibrium. It may conceivably be that each of

the maximums of w, whether for the monatomic or the diatomic

assemblage, is stable without guidance. But it seems more pro-

bable that, for assemblage I. and law of force 2, the intermediate

maximum in' (close to a minimum) is unstable. If it is so, the

assemblage left to itself in this configuration would fall away, and

would (in virtue of energy lost by waves through ether, that is to

say, radiation of heat) settle in stable equilibrium corresponding

to the maximum 7n (single assemblage), or either of the maxi-

mums m" (single assemblage), or m'" (double assemblage). It is
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also possible that for law of force 1 the maximum m for the single

assemblage is unstable. If so, the system left to itself in this

configuration would fall away and settle in either of the configu-

rations m (single assemblage) or m" (double assemblage). Or it

is possible that with either of our arbitrarily assumed laws of force

there may be stable configurations of equilibrium with the atoms

in simple cubic order (§ 21 below): and in double cubic order ; that

is to say, with each atom in the centre of a cube of which the

eight corners are its nearest neighbours.

§ 18. It is important to remark further, that certainly a law

of force fulfilling the conditions of | 13 may be found, according

to which even the simple cubic order is a stable configuration

;

though perhaps not the only stable configuration. The double

cubic order, which has hitherto not got as much consideration as

it deserves in the molecular theory of crystals, is certainly stable

for some laws of force which would render the simple cubic order

unstable. Meantime it is exceedingly probable that there are in

nature crystals of elementary substances, such as metals, or frozen

oxygen, or nitrogen, or argon, of the simple cubic, and double

cubic, and simple equilateral, and double equilateral, classes. It

is also probable that the crystalline molecules in crystals of com-

pound chemical substance are in many cases simply the chemical

molecules, and in many cases are composed of groups of the

chemical molecules. The crystalline molecules, however consti-

tuted, are, in crystals of the cubic class, probably arranged either

in simple cubic, or double cubic, or in simple equilateral, or double

equilateral, order.

§ 19. It will be an interesting further development of the

molecular theory to find some illustrative cases of chemical

compound molecules (that is to say, groups of atoms presenting

different laws of force, whether between two atoms of the same

kind or between atoms of different kinds), which are, and others

which are not, in stable equilibrium at some density or densities

of equilateral assemblage. In this last class of cases the molecules

make up crystals not of the cubic class. This certainly can be

arranged for by compound molecules with law of force between

any two atoms fulfilling the condition of § 13 ; and it can be

done even for a monatomic homogeneous assemblage very easily, if

we leave the simplicity of § 13 in our assumption as to law of force.

\

V
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§ 20. The mathematical theory wants development in respect

to the conditions for stability. If, with the constraining guidance

of § 16, w is either a maximum or a minimum, there is equi-

librium with or without the guidance. For lu a maximum the

equilibrium is stable with the guidance ; but may be stable or un-

stable without the guidance. A criterion of stability which will

answer this last question is much wanted ; and it seems to me that

though the number of atoms is quasi-infinite the wanted criterion

may be finite in every case in which the number of atoms exerting

force on any one atom is finite. To find it generally for the equi-

librium of any homogeneous assemblage of homogeneous groups,

each of a finite number of atoms, is a worthy object for mathe-

matical consideration. Its difficulty and complexity is illustrated in

§§ 21, 22 for the particularly simple case of similar atoms arranged

in simple cubic order ; and in §§ 23-29 for a still simpler case.

§ 21. Consider a group of eight particles at the eight corners

of a cube (edge X) mutually acting on one another with forces all

varying according to the same law of distance. Let the magni-

tudes of the forces be such that there is equilibrium ; and in the

first place let the law of variation of the forces be such that the

equilibrium is stable. Build up now a quasi-infinite number of

such cubes with coincident corners to form one large cube or a

crystal of any other shape. Join ideally, to make one atom, each

set of eight particles in contact which we find in this structure.

The whole system is in stable equilibrium. The four forces in

each set of four coincident edges of the primitive cubes become

one force equal to the force between atom and atom at distance X.

The two forces in either diagonal of the coincident square faces of

two cubes in contact make one force equal to the force between

atoms at distance X^J2. The single force in each body-diagonal

of any one of the cubes is the force between atom and atom at

distance X \/3. The three moduluses of elasticity (compressibility-

modulus, modulus with reference to change of angles of the square

faces, and modulus with reference to change of angles between

their diagonals) are all easily found by consideration of the dynamics

of a single primitive cube, or they may be found by the general

method given in " On the Elasticity of a Crystal according to

Boscovich*." (In passing, remark that neither in this nor in other

* Proc. R.S.L. Vol. liv. June 8, 1893. App. I.

T. L, 43
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cases is it to be assumed without proof that stability is ensured by

positive values of the elasticity moduluses.)

§ 22. Now while it is obvious that our cubic system is in

stable equilibrium if the eight particles constituting a detached

primitive cube are in stable equilibrium, it is not obvious without

proof that this condition, though sufficient, is necessary for the

stability of the combined assemblage. It might be that though

each primitive cube by itself is unstable, the combined assemblage

is stable in virtue of mutual support given by the joining of eight

particles into one at the corners of the cubes which we have put

together.

§ 23. The simplest possible illustration of the stabilit}^ question

of § 20 is presented by the exceedingly interesting problem of the

equilibrium of an infinite row of similar particles, free to move

only in a straight line. The consideration of this linear problem

we shall find also useful (§| 28, 29 below) for investigation of the

disturbance from homogeneousness in the neighbourhood of the

bounding surface, experienced by a three-dimensional homogeneous

assemblage in equilibrium. First let us find a, the distance, or

one of the distances, from atom to atom at which the atoms must

be placed for equilibrium ; and after that try to find whether the

equilibrium is stable or unstable.

§ 24. Calling f{D) (as in § 4) the attraction between atom

and atom at distance D, we have for the sum, P, of attractions

between all the atoms on one side of any point in their line, and

all the atoms on the other side, the following finite expression

having essentially a finite number of terms, greater the smaller

is a

:

/(a) + 2/(2a) + 3/(3a)+ =P (8).

Hence a, for equilibrium with no extraneous force, is given by the

functional equation

/(a) + 2/(2a)+3/(3a) + =0 (9);

which, according to the law of force, may give one or two or any

number of values for a : or may even give no value (all roots

imaginary) if the force at greatest distance for which there is

force at all, is repulsive. The solution or all the solutions of this

equation are readily found by calculating from the Boscovich

curve representative of /(B) a table of values of P, and plotting
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them on a curve, by formula (8), for values of a from a = I (the

limit above which the force is zero for all distances) downwards

to the value which makes P = — oo, or to zero if there is no

infinite repulsion. The accompanying diagram, fig. 6, copied

Fig. 6.

from fig. 1 of Boscovich's great book*, with slight modifications

(including positive instead of negative ordinates to indicate

attraction) to suit our present purpose, shows for this particular

curve three of the solutions of equation (8). (There are obviously

several other solutions.) In two of the solutions, respectively,

Aq, A', and Aq, A", are consecutive atoms at distances at which

the force between them is zero. These are configurations of

equilibrium, because A^B, the extreme distance at which there is

mutual action, is less than twice A^A', and less than twice A^A".

In the other of the solutions shown, Aq, Ai, A„, A3, A^, A^, Ae

are seven equidistant consecutive atoms of an infinite row in

equilibrium in which A^ is within range of the force of A^, and

Ae is beyond it. The algebraic sum of the ordinates with their

proper multipliers is zero, and so the diagram represents a solution

of equation (9).

* Theoria Philosophise Naturahs redacta ad unicam legem virium in natura

existentium, auctore P. Eogerio .Josepho Boscovich, Societatis Jesu, nunc ab ipso

perpolita, et aucta, ac a plurimis prascedentium editionum mendis expurgata.

Editio Veneta prima ipso auctore prssente, et corrigente. Venetiis, mdcclxhi.

Ex Typographia Eemondiniana superiorum permissu, ac privilegio.

43—2
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§ 25. In the general linear problem to find whether the equi-

librium is stable or not for equal consecutive distances, a, let

(as in § 4) ^ (D) be the work required to increase the distance

between two atoms from D to qc . Suppose now the atoms to

be displaced fron^ equal distances, a, to consecutive unequal

distances

—

... a i- Ui_2, a + tfi_i, a + Ui, a + u^+j, a + «j-+2, (10).

The equilibrium will be stable or unstable according as the

work required to produce this displacement is, or is not, positive

for all infinitely small values of... ^/^_l, Ui, Wj+i, Its amount

is Wq— W; where W denotes the total amount of work required

to separate all the atoms from the configuration (10) to infinite

mutual distances.

According to § 2 above W is given by

W = ^i...+Wi., + Wi + tVi+, + ...) (11);
where

Wi= cl){a + Ui) + ^ (2a + Ui_i + Ui) -l-^(3a + Mj:-2 + Wj-i + Wi) +...

+ (f>{a + Mi+i) + (f)(2a + Ui+^ + z^i+2)+0(3a + Mj+i + Mj+o + Ui+3)+ • •

.

+ (12).

Expanding each term by Taylor's theorem as far as terms of the

second order, and remarking that the sum of terms of the first

order is zero for equilibrium* at equal distances, a, and putting

(f)"(D) = -f {!)), we ^nd

Wo-W = it{f'(a)(ue + u%,)

+/' (2a) [(Wi_i + UiY + (Ui+, + Ui+,y]

+/' (3a) [(Mi_2 + Ui-i + Uif + (Wi+i + ?<i+2 + 2<i+3)']

+ etc. etc. etc. etc.} ...(13);

where S denotes summation for all values of i, except those corre-

sponding to the small numbers of atoms (§§ 28, 29 below) within

influential distances of the two ends of the row.

§ 26. Hence the equilibrium is stable if /'(a),/' (2a), /' (3a),

etc., are all positive ; but it can be stable with some of them

It is interesting and instructive to verify this analytically by selecting all the

dW
s in W which contain u^, and thus finding -— . This

*
dUi

values of ...!/j_i, i/j, »,+!,... gives equation (9) of the text.

dW
terms in W which contain it^, and thus finding -— . This equated to zero, for zero
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negative. Thus, according to the Boscovich diagram, a condition

ensuring stability is that the position of each atom be on an up-

slope of the curve showing attractions at increasing distances.

We see that each of the atoms in each of our three equilibriums

for fig. 6 fulfils this condition.

§ 27. Fig. 7 shows a simple Boscovich curve drawn arbitrarily

to fulfil the condition of § 13 above, and with the further simpli-

fication for our present purpose, of limiting the sphere of influence

so as not to extend beyond the next-nearest neighbours in a row

of equidistant particles in equilibrium, with repulsions between

nearests and attractions between next-nearests. The distance, a,

between nearests is determined by

/(a) + 2/(2a) = (14),

being what (9) of § 24 becomes when there is no mutual force

except between nearests and next-nearests. There is obviously

one stable solution of this equation in which one atom is at the

zero of the scale of abscissas (not shown in the diagram) and its

nearest neighbour on the right is at ^, the point of zero force with

attraction for greater distances and repulsion for less distances.

The only other configuration of stable equilibrium is found by

solution of (14) according to the plan described in § 24, which gives

a = -680. It is shown on fig. 7 hy Ai, ^i+i, as consecutive atoms

in the row.

§ 28. Consider now the equilibrium in the neighbourhood of

either end of a rectilinear row of a very large number of atoms

which, beyond influential distance from either end, are at equal

consecutive distances a satisfying § 27 (14). We shall take for

simplicity the case of equilibrium in which there is no extraneous

force applied to any of the atoms, and no mutual force between

any two atoms except the positive or negative attraction f{D).

But suppose first that ties or struts are placed between con-

secutive atoms near each end of the row so as to keep all their

consecutive distances exactly equal to a. For brevity we shall

call them ties, though in ordinary language any one of them

would be called a strut if its force is push instead of pull on the

atoms to which it is applied. Calling Ai, A^, A3 ... the atoms at

one end of the row, suppose the tie between Ai and A^ to be
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removed, and A^ allowed to take its position of equilibrium.

A single equation gives the altered distance A^A^, which we shall

denote by a + iX^. Let an altered tie be placed between A^ and

A2 to keep them at this altered distance during the operations

which follow. Next remove the tie between Ao and ^3, and find

by a single equation the altered distance a + 1X0. After that

remove the tie between A3 and A^ and find, still by a single equa-

Fig. 7.

tion, the altered distance a+ 1X3, and so on till we find ^x^ or ^Xg, or

^Xi, small enough to be negligible. Thus found, ^x-^, jXo, 1X3,... ^Xi

give a first approximation to the deviations from equality of

distance for complete equilibrium. Repeat the process of removing
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the ties in order and replacing each one by the altered length as

in the first set of approximations, and we find a second set

2^1 > 2^2) 2^3 Go on similarly to a third, fourth, fifth, sixth...

approximation till we find no change by a repetition of the process.

Thus, by a process essentially convergent if the equilibrium with

which we started is stable, we find the deviations from equality of

consecutive distances required for equilibrium when the system is

left free in the neighbourhood of each end, and all through the

row (except always the constraint to remain in a straight line).

By this proceeding applied to the curve of fig. 7 and the case of

equilibrium a = "680, the following successive approximations were

found :

—

Xi Xa •"'3 ^4 ^5 Xg ^7

1st Approximation . + •018 -•009 + •004 - ^002 + •001 -•001 •000

2nd + •026 -•014 + •007 - OOS i + ^002

3rd + •031 -•018 + •009 - •OOS + ^003

4th + •034 - -020 + 011 - •ooe
5th + •036 - ^022 + 012 -•007
6th + •037 -•023 + •013

7th + •038 -•024
8th + •039

Thus our final sohition, with a = 680, is

x, = + •039, cco^ = - -024,

0^3 = + -013, ^, = --007,

0:5= + -003, a;s = --001,

Xj = 000.

§ 29. It is exceedingly interesting to remark that the devia-

tions of the successive distances from a are alternately positive

and negative, and that they only become less than one-seventh per

cent, of a for the distance between A^j and A^. Thus, if we agree

to neglect anything less than one-seventh per cent, in the distance

between atom and atom, the influential distance from either end

is 7a, although the mutual force between atom and atom is null at

all distances exceeding 2"2a.

§ 30. If, instead off(D) denoting the force between two atoms

in a rectilinear row, it denotes the mutual force between two
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parallel plane nets in a Bravais homogeneous assemblage of single

atoms, the work of §§ 27, 28 remains valid ; and thus we arrive at

the very important and interesting conclusion that when there is

repulsion between nearest nets, attraction between next-nearests,

and no force between next-next-nearests or any farther, the dis-

turbance from homogeneousness in the neighbourhood of the

bounding plane consists in alternate diminutions and augmenta-

tions of density becoming less and less as we travel inwards, but

remaining sensible at distances from the boundary amounting to

several times the distance from net to net.
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ON VARIATIONAL ELECTRIC AND MAGNETIC SCREENING*.

§ 1. A SCREEN of imperfectly conducting material is as

thorough in its action, when time enough is allowed it, as is a

similar screen of metal. But if it be tried against rapidly varying

electrostatic force, its action lags. On account of this lagging, it is

easily seen that the screening effect against periodic variations of

electrostatic force will be less and less, the greater the frequency

of the variation. This is readily illustrated by means of various

forms of idiostatic electrometers. Thus, for example, a piece of

paper supported on metal in metallic communication with the

movable disc of an attracted disc electrometer annuls the at-

traction (or renders it quite insensible) a few seconds of time

after a difference of potential is established and kept constant

between the attracted disc and the opposed metal plate, if the

paper and the air surrounding it are in the ordinary hygrometric

condition of our climates. But if the instrument is applied to

measure a rapidly alternating difference of potential, with equal

differences on the two sides of zero, it gives very little less than

the same average force as that found when the paper is removed

and all other circumstances kept the same. Probably, with

ordinary clean white paper in ordinary hygrometric conditions,

a frequency of alternation of from 50 to 100 per second will

more than suffice to render the screening influence of the paper

insensible. And a much less frequency will suffice if the atmo-

sphere surrounding the paper is artificially dried. Up to a

frequency of millions per second, we may safely say that, the

greater the frequency, the more perfect is the annulment of

screening by the paper; and this statement holds also if the

paper be thoroughly blackened on both sides with ink, although

* Froc. M.S., April, 1891.
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possibly in this condition a greater frequency than 50 to 100

per second might be required for practical annulment of the

screening,

§ 2. Now, suppose, instead of attractive force between two

bodies separated by the screen, as our test of electrification,

that we have as test a faint spark, after the manner of Hertz.

Let two well insulated metal balls, A, B, be placed very nearly

in contact, and two much larger balls, E, F, placed beside them,

with the shortest distance between E, F sufficient to prevent

sparking, and with the lines joining the centres of the two pairs

parallel. Let a rapidly alternating difference of potential be

produced between E and F, varying, not abruptly, but according,

we may suppose, to the simple harmonic law. Two sparks in

every period will be observed between A and B. The inter-

position of a large paper screen between E, F, on one side, and

A, B, on the other, in ordinary hygrometric conditions, will

absolutely stop these sparks, if the frequency be less than, per-

haps, 4 or 5 per second. With a frequency of 50 or more, a clean

white paper screen will make no perceptible difference. If the

paper be thoroughly blackened with ink on both sides, a fre-

quency of something more than 50 per second may be necessary

;

but some moderate frequency of a few hundreds per second will,

no doubt, suffice to practically annul the effect of the interposition

of the screen. With frequencies up to 1000 million per second,

as in some of Hertz's experiments, screens such as our blackened

paper are still perfectly transparent, but if we raise the frequency

to 500 million million, the influence to be transmitted is light,

and the blackened paper becomes an almost perfect screen.

§ 3. Screening against a varying magnetic force follows an

opposite law to screening against varying electrostatic force. For

the present, I pass over the case of iron and other bodies possess-

ing magnetic susceptibility, and consider only materials devoid

of magnetic susceptibility, but possessing more or less of electric

conductivity. However perfect the electric conductivity of the

screen ma}^ be, it has no screening efficiency against a steady

magnetic force. But if the magnetic force varies, currents are

induced in the material of the screen which tend to diminish

the magnetic force in the air on the remote side from the varying

magnet. For simplicity, we shall suppose the variations to follow
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the simple harmonic law. The greater the electric conductivity

of the material, the greater is the screening effect for the same

frequency of alternation ; and, the greater the frequency, the

greater is the screening effect for the same material. If the

screen be of copper, of specific resistance 1640 sq. cm. per second

(or electric diffusivity 130 sq. cm. per second), and with frequency

80 per second, what I have called the " mhoic effective thickness*"

is 0"71 of a cm.; and the range of current intensity at depth

% X 0*7 1 cm. from the surface of the screen next the exciting

magnet is e~" of its value at the surface.

Thus (as e'' = 20'09) the range of current-intensity at depth

2"13cm. is
2'o

^f its surface value. Hence we may expect that

a sufficiently large plate of copper 2| cm. thick will be a little

less than perfect in its screening action against an alternating

magnetic force of frequency 80 per second.

§ 4. Lord Rayleigh, in his " Acoustical Observations " (Phil.

Mag., 1882, first half-year), after referring to Maxwell's statement,

that a perfectly conducting sheet acts as a barrier to magnetic

force {Electricity and Magnetism, § %Qo), describes an experiment

in which the interposition of a large and stout plate of copper

between two coils renders inaudible a sound which, without the

copper screen, is heard by a telephone in circuit with one of the

coils excited by electromagnetic induction from the other coil,

in which an intermittent current, with sudden, sharp variations

of strength, is produced by a " microphone clock " and a voltaic

battery. Larmor, in his paper on '" Electromagnetic Induction

in Conducting Sheets and Solid Bodies " {Phil. Mag., 1884, first

half-year), makes the following very interesting statement :
—

" If

" we have a sheet of conducting matter in the neighbourhood of

" a magnetic system, the effect of a disturbance of that system

" will be to induce currents in the sheet of such kind as will tend

" to prevent any change in the conformation of the tubes [lines]

" of force cutting through the sheet. This follows from Lenz's

" law, which itself has been shown by Helmholtz and Thomson to

"be a direct consequence of the conservation of energy. But if

" the arrangement of the tubes [lines of force] in the conductor

"is unaltered, the field on the other side of the conductor into

" which they pass (supposed isolated from the outside spaces by

* Math, and Phys. Papers, Vol. iii. Art. cii, g 35.
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" the conductor) will be unaltered. Hence, if the disturbance is

" of an alternating character, with a period small enough to make
" it go through a cycle of changes before the currents decay

" sensibly, we shall have the conductor acting as a screen.

" Further, we shall also find, on the same principle, that a

" rapidly rotating conducting sheet screens the space inside it from

" all magnetic action which is not symmetrical round the axis of

" rotation."

Mr Willoughby Smith's experiments on " Volta-electric induc-

tion," which he described in his inaugural address to the Society

of Telegraph Engineers of November, 1883, afforded good illus-

trations of this kind of action with copper, zinc, tin, and lead,

screens, and with different degrees of frequency of alternation.

His results with iron are also very interesting : they showed, as

might be expected, comparatively little augmentation of screening

effect with augmentation of frequency. This is just what is to

be expected from the fact that a broad enough and long enough

iron plate exercises a large magnetostatic screening influence
;

which, with a thick enough plate, v/ill be so nearly complete that

comparatively little is left for augmentation of the screening

influence by alternations of greater and greater frequency.

I 5. A copper shell closed around an alternating magnet

produces a screening effect which on the principle of | 3 we may

reckon to be little short of perfection if the thickness be 2^ cm.

or more, and the frequency of alternation 80 per second.

§ 6. Suppose now the alternation of the magnetic force to be

produced by the rotation of a magnet M about any axis. First,

to find the effect of the rotation, imagine the magnet to be repre-

sented by ideal magnetic matter. Let (after the manner of Gauss

in his treatment of the secular perturbations of the solar system)

the ideal magnetic matter be uniformly distributed over the

circles described by its different points. For brevity call / the

ideal magnet symmetrical round the axis, which is thus con-

stituted. The magnetic force throughout the space around the

rotating magnet will be the same as that due to /, compounded

with an alternating force of which the component at any point

in the direction of any fixed line varies from zero in the two

opposite directions in each period of the rotation. If the copper

shell is thick enough, and the angular velocity of the rotation
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great enough, the alternating component is almost annulled for

external space, and only the steady force due to / is allowed to

act in the space outside the copper shell.

§ 7. Consider now, in the space outside the copper shell, a

point P rotating with the magnet M. It will experience a force

simply equal to that due to M when there is no rotation, and,

when M and P rotate together, P will experience a force gradu-

ally altering as the speed of rotation increases, until, when the

speed becomes sufficiently great, it becomes sensibly the same as

the force due to the symmetrical magnet /. Now superimpose

upon the whole system of the magnet, and the point P, and the

copper shell, a rotation equal and opposite to that of M and P.

The statement just made with reference to the magnetic force

at P remains unaltered, and we have now a fixed magnet M and

a point P at rest, with reference to it, while the copper shell

rotates round the axis around which we first supposed M to

rotate.

§ 8. A little piece of apparatus, constructed to illustrate the

result experimentally, is submitted to the Royal Society and

shown in action. In the copper shell is a cylindric drum, 1'25 cm.

thick, closed at its two ends with circular discs 1 cm. thick. The

magnet is supported on the inner end of a stiff wire passing

through the centre of a perforated fixed shaft which passes

through a hole in one end of the drum, and serves as one of

the bearings ; the other bearing is a rotating pivot fixed to the

outside of the other end of the drum. The accompanying sections,

drawn to a scale of three-fourths full size, explain the arrange-

ment sufficiently. A magnetic needle outside, deflected by the

fixed magnet when the drum is at rest, shows a great diminution

of the deflection when the drum is set to rotate. If the (triple

compound) magnet inside is reversed, by means of the central

wire and cross bar outside, shown in the diagram, the magneto-

meter outside is greatly affected while the copper shell is at rest

;

but scarcely affected perceptibly while the copper shell is rotating

rapidly.

§ 9. When the copper shell is a figure of revolution, the mag-

netic force at any point of the space outside or inside is steady,

whatever be the speed of rotation ; but if the shell be not a figure

of revolution, the steady force in the external space observable
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when the shell is at rest becomes the resultant of the force due

to a fixed magnet intermediate between M and / compounded

with an alternating force with amplitude of alternation increasing

to a maximum, and ultimately diminishing to zero, as the angular

velocity is increased without limit.

1



EXPERIMENTAL ILLUSTRATION. 687

§ 10. If 71/ be symmetrical, with reference to its northern and

southern polarity, on the two sides of a plane through the axis of

rotation, / becomes a null magnet, the ideal magnetic matter in

every circle of which it is constituted being annulled by equal

quantities of positive and negative magnetic matter being laid

on it. Thus, when the rotation is sufficiently rapid, the magnetic

force is annulled throughout the space external to the shell. The

transition from the steady force of M to the final annulment of

force, when the copper shell is symmetrical round its axis of

rotation, is, through a steadily diminishing force, without alter-

nations. When the shell is not symmetrical round its axis of

rotation, the transition to zero is accompanied with alternations

as described in §8.

I 11. When 31 is not symmetrical on the two sides of a plane

through the axis of rotation, / is not null ; and the condition

approximated to through external space with increasing speed

of rotation is the force due to /, which is an ideal magnet
symmetrical round the axis of rotation.

§ 12. A very interesting simple experimental illustration of

screening against magnetic force may be shown by a rotating

disc with a fixed magnet held close to it on one side. A bar

magnet held with its magnetic axis bisected perpendicularly by
a plane through the axis of rotation would, by sufficiently rapid

rotation, have its magnetic force almost perfectly annulled at

points in the air as near as may be to it, on the other side of

the disc, if the diameter of the disc exceeds considerably the

length of the magnet. The magnetic force in the air close to

the disc, on the side next to the magnet, will be everywhere

parallel to the surface of the disc.
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ON ELECTRIC WAVES AND VIBEATIONS IN A SUBMARINE
TELEGRAPH WIRE*.

§ 1. To simplify our problem, by avoiding the interesting

subject of alternating electric currents of electricity in a solid

conductor dealt with in §§ 9, 19, 29—35 of Art. cii. of my
Mathematical and Physical Papers, Vol. ill., I suppose for the

present the central conductor and the surrounding sheath to be

exceedingly thin copper tubes ; so thin that the electric current

carried by each is uniformly distributed through its substance,

with the highest frequency of alternation which we shall have to

consider. To simplify farther, by avoiding the exceedingly com-

plex question of electric currents in the water above the cable and

wet ground below it, I for the present suppose the outer sheath to

be perfectly insulated. This supposition will make exceedingly

little difference in respect to the solution of our problem for such

frequencies of alternation as are used in submarine signalling; but

it makes a vast difference and simplification for the very high

frequencies, up to those of the vibrations constituting light, which

must be considered. For brevity I shall call the system of two

conductors, with air or gutta-percha or other insulating material

between them, the cable. For simplicity we shall suppose the

cable to be laid straight ; and shall specify any place in tiie cable

by X, its distance from any chosen point of reference in the axis

of the inner conductor. But all our calculations will be applicable

though the cable be not laid straight
;

provided its radius of

curvature everywhere is very large in comparison with the radius

of the sheath in cross-section ; and provided x is distance from

measured along the length of the cable.

* This is the Appendix promised in the footnote on Lecture IV., page 45, of the

present volume. A partial statement of results was given in Nichol's Cyclopedia

(1860) under title " Electricity, Velocity of," republished Mathematical and

Physical Papers, Vol. ii. Article lxxxi.
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§ 2. Let r and r' be the radii of the inner conductor and the

sheath (1)

;

R, the sum of the resistances of the two conductors per

unit of length of each (2)

;

c, the quantity of electricity on unit length of each

conductor when the difference of potentials be-

tween them is unity (3);

II, the electromagnetic quasi-inertia of a circuit made

ideally by metallically connecting the inner con-

ductor with the sheath at two cross-sections with

the length I between them large in comparison

with r' — r (4);

7, the current in either of the two conductors at time

t and place x (5)

;

^, the difference of potentials between the two con-

ductors at time t and place x (6);

q dx, the quantity of electricity on a length dx of

either conductor at time t and place x (7).

In all these items of electric reckoning we shall use electro-

magnetic measure. It is to be borne in mind that in every part

of the cable the electi'ic currents in the central conductor, and in

the sheath are equal and opposite : also that the total quantities

of electricity at every instant on the smaller convex surface of

the central conductor, and the larger concave surface of the

sheath, are equal and opposite : and that there is no electricity

on the inner surface of the central conductor, and no electricity

on the outer surface of the sheath. The notation (3) above,

in terms of my original definition * of electrostatic capacity, means

that c is the electrostatic capacity, reckoned in electromagnetic

measure, of unit length of the central conductor; regarded as if

it were part of a Leyden phial. By (3) and (7) we have

q = C(f> (8).

I 3. Changes of electrification of the opposed surfaces of the

two conductors can only take place through more electricity

* "On the Electrostatical Capacity of a Leyden Phial and of a Telegraph Wire
insulated in the Axis of a Cylindrical Conducting Sheath." First published in

Phil. Mag. 1855, 1st haK-year; republished in my volume of Electrostatics and
Magnetism, §§ 51—56.

T. L. 44
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flowing into, than flowing out of, any portion. This electro-

kinematic principle gives us the following equation

:

^A^yjl /m
dt dx ""^ ''

The dynamical equation of our problem is as follows

:

^-4l=-rt <i»)-

Here the first term of the first member expresses the ohmic

anti-electromotive force ; the second term the inertial anti-

electromotive force. Eliminating q and from these three

equations we find

^ dt^^ dt'~ c'dx'^
^^^^•

§ 4, For small frequencies, such as those of submarine cable

signalling, the ohmic resistance dominates ; and the inertial

resistance is imperceptible : thus we have

<t--'Z 0.)-

§ 5. For very high frequencies the inertial resistance dominates;

and the ohmic is ultimately almost imperceptible : thus we have

^^"^-t (1^)-

§ 6. According to the principles set forth in Part III., " Elec-

tricity in Motion*," of a paper "On the Mechanical Values of

Distributions of Electricity, Magnetism, and Galvanism f," pub-

lished originally in the Proceedings of the Glasgow Philosophical

Society for January 1853, we find It most readily by imagining

the temporarily closed circuit described in (4) of § 2 to be divided

into a very great number of parts by meridional planes through

the axis of the two cylindrical conductors, and imagining any one

of these parts to be removed to any position outside, while the

currents are kept constant in all the parts : and calculating the

work done in this movement against the attractive force between

* Mathematical and Physical Papers, Vol. i. pp. 530—533.

t By this ill-chosen word I then meant electric currents in closed circuits.
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the portion of the circuit removed and the remainder. The full

synthetic working-out of this plan gives

lyHog(r'/7^) (14)

for the total work spent in taking the whole circuit to pieces

separated by infinite distances from one another. Hence, for the

quasi-inertia of the current, per unit length of cable, in the circuit

before dissection, we have

/ = 21og(r7r) (15).

§ 7. By Electrostatics and Magnetism, § 55, we have for c

in electrostatic measure ^kjlog (r'/r) ; where fc is what Faraday

called the specific inductive capacity of the insulating material

between the core and the sheath. Now if we denote by N the

number of electrostatic units in the electromagnetic unit of

electric quantity, it is also the number of electrostatic units in the

electromagnetic unit of potential. Hence N~ is the number of

electrostatic units in the electromagnetic unit of capacity : and we

have accordingly

c = N-'k/-2 log {r'/r) = k/N'I (16).

Using this in (11) we find

lidydry^N^cPry
I dt^ df" k dx''

^ ^'

and (13) becomes
drry.^N^d^y

dt' k dx' ^ ^'

which shows that the propagational velocity of the wave is more

and more nearly equal to Njsjk, the higher the frequency; subject

to the restriction of § 8. Numerous and varied experimental in-

vestigations have shown, probably within ^ per cent., that N is

equal to 3 .
IQi".

§ 8. Our demonstration [see § 2 (4)] involves essentially the

supposition that the wave-length is long in comparison with the

thickness r' — r of the dielectric between the outer and inner

conductors.

I 9. A complete solution of (17) is

7 = sin mx {Ae^^ + Bec'*) (18),

where m denotes iir divided by the wave-length, and

-R
21) -T''''

.(19);
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which is real when

mN/'^k<R/2I (20).

But when (20) is not fulfilled, the radical in (19) is zero or

imaginary; and, instead of (18), we may take, as a convenient

solution for standing waves,

= sin mx sin t

k
m- —

-R t

. 2/
.(21).

This expresses a subsidential oscillation, with ratio of subsidence

per unit of time, e~^^l^\ which is independent of the wave-length
;

a very important and interesting result. What we call the

period* of the oscillation is

T^'^- 27
27r, .(22);

which becomes more and more nearly equal to (2iTjm)l{NlyJk),

the greater is m, subject to the restriction of § 8.

§ 10. The complicated subsidential law expressed by (18),

with two ratios of subsidence, each dependent on the wave-length,

one of them with ratio diminishing, the other with ratio increasing,

when the wave-length is diminished from infinity, is also very

interesting. It is interesting to see how, with very small values

of m (very great wave-lengths), the solution blends with the

solution of (12) above ; and how, with the greatest values of iii

fulfilling (20), the solution (18) blends into (21).

§ 11. As a single example take the Atlantic Cable of 1865,

for which we had

R = 23000 c.G.s, per cm. of length ; r'jr = S'o ;
whence / = 176

(23);

^^ = 3; A^/^/^= 1-732. 10"; c= 1894. lO--^^ (24).

By (23) we find ii^//=6534. Hence, when (20) is not ful-

filled, the ratio of extinction for 1/6534 of a second is e~\ and

for a millionth of a second it is 6~"°°^^**, or approximately "99347.

And the limiting condition between fulfilment and non-fulfilment

of (20) is, by (24), m < 3-772 .
10"^ ; or, if \ denote the wave-length.

* This is according to common usage ; but it is not strictly correct, because

subsiding vibratory motion is not periodic.
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X<167 kilometres. Hence, if we take a length of anything less

than 167 kilometres of the cable, and somehow manage to give it

initially a sinusoidal distribution of current, varying through its

length from zero at one end, through maximum and minimum,

to zero at the other end, and leave it to itself; the electric distri-

bution will subside vibrationally to zero. A millionth of a second

from the beginning the vibrational amplitude will be "99347 of its

initial value ; and in 1/6534 of a second it will have subsided to

e""^ of- its initial value. Instead now of the impracticable manage-

ment to begin with a sinusoidal distribution of current, apply a

voltaic battery to maintain, for a very short time, say a hundred-

thousandth of a second, a difference of potential between sheath

and interior conductor at one end, and leave it to itself This

will give us an initial disturbance represented, according to

Fourier, by a sum of sinusoidal currents, each zero at both ends

of the cable. Every one of these components will subside vibra-

tionally, all with the same ratio of subsidence in the same time.

The periods of the different sinusoidal components will be those

expressed by (22) ; with, for m, the successive values 27r/A., 2 , 27r/X,

S.^tt/X, ..., where X denotes the length of the cable. If this

length of the cable is 16'7 kilometres, the second term within the

brackets of (22) will be only 1/100 of the first, and for this or any

shorter length it may be neglected. Thus, for a length of one

kilometre, the period of the gravest sinusoidal vibration, as we
see by (24) and (22), is 1071-732 . 10^" or -577 . IQ-^ of a second.

The ratio of subsidence in this time is e"'"^^" ; so that 26^ periods

of vibration will be performed before subsidence to e~^ of the

initial value.

§ 12. Consider, in conclusion, how thin the copper must be to

fulfil the first simplifying condition of § 1, when the vibrational

period is so short as -577.10"^ of a second. This is 1/2166 of

1/80, the period for which I found 714 cm. as the mhoic thick-

ness* of copper of specific resistance 1610 c. G. s. Hence mhoic

thickness for period -577 . lO"'' is -714/^/2166, or '0153 cm. Now
without going farther into the theory of the diffusion of alternate

currents of electricity through a metal, we may safely guess that,

if the thickness of the sheet is anything less than one-third of the

* Mathematical and Physical Papers, Vol. in, Art. cii, § 35 (May, 1890).
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mhoic thickness for any particular period, the current will be

nearly uniform through the whole thickness. Hence, to satisfy the

first simplifying condition of § 1, the copper need not be thinner

than 1/200 of a cm. Taking this as the thickness, let us find

what r and ?•', with the ratio r Ir = 3*3, must be to make the sum
of the resistances in a cm. of the inner tube and a cm. of the outer

tube equal to 23000 C. G. s. If we take the specific resistance of

copper as 1610 square centimetres per second, our equation to

determine r and r is

.(25);
1610.200 /I 1 \ ^^^^^

o -+^ =23000

by which we have r = 2-9 and r' = 9"6. It must be noted that it

is only for the gravest fundamental vibration that 1/200 cm. thick-

ness of the metal would be small enough to give the law and rate

of subsidence determined above.
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Aberration of light, 487

— ethei'ial explanation of, 491

Abney, low rays of radiant heat, 11

Absorption, 8

— explanation due to Sellmeier and

Stokes, 101

— atmospheric, 320

Acoustic illustrations with circular

plates, 65

Action at a distance, 497

Adamantine property, 385

— reflection, phasal lag of, 419

Adamantinism, explanation of, 416

^olotropic elastic solid, 20

— elasticity without skewness, 170

iEolotropy, 165

— defined, 122

— of square woven cloth, 168

— of inertia, 426

— electric, explained, 562

Aepinus, one fluid theory of, 541

— on pyro-electricity of tourmaline,

561

Airy on reflection of diamond, 385

— "Tracts," 400, 430

Albedo of Lambert defined, 317

Algorithm of finite difl'erences, 69

Amplitudes after reflection, Jamin on,

350

Analcime, property of, 168

Aragonite, 250

— wave surface for, 429

Argon, viscosity of, 297

Arsenic, sulphuret of, 423

Aschkinass, experiments on sylvin and

rock salt, 151

Asymmetry, cubic, 168

Atmospheric electricity, Beccaria on, 543

Atoms, number of per cu. cm., Eayleigh

on, 305

T. L.

Atoms, size of, 35, 164, 281

— table of weights of, 322

Babinet's compensator, 401

Barlow's crystal model, 606

Basset, construction for vibrational line,

432

— "Physical Optics," 401

Beccaria on atmospheric electricity, 543

Becker on atmospheric absorption, 320

— velocities of stars, 270

Becquerel's phosj^horoscope, 92

— prismatic colour photographs,

636

— rays, effect on electric conduction

explained, 501

Bell, elliptic, of Marlowe, 65

— vibrating, 64

Belopolsky, spectroscopic observations,

278

Biaxal crystals, 118

Blackburn's pendulum experiment, 571

Blanchet's three sheet wave surface, 137

Blue sky, brightness of, 311

— case of elastic solid relating to

Stokes and Rayleigh's theory of, 217

— Eayleigh on, 28, 89, 302

— spectrum of, 319

— Stokes on, 89

— Zettwuch on, 320

Boltzmann on partition of energy, 495

— -Maxwell doctrine, errors in, 503

— -Maxwell doctrine, tests for errors

in, 515

Boltzmann's theorem, Rayleigh on, 504

Boracite, Haiiy on, 561

Bornstein, table of chirality, 460

Boscovich, 125, 131

— atom defined, 285

— curve, 675

45
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Boscovich equilibrium theory of elastic

solids, 668

— on different laws of atomic force,

556

— theory, relation to mechanical

engineering, 653

— wrongly judged obsolete, 123

Boscovich's idea of a crystal, 645

Bottomley on thermal diffusivity of

water, 287

Bouguer, varying brightness of stars, 304

Boussinesq, "Theorie Analytique de la

Chaleur," 441

Bravais, homogeneous assemblages, 604

— scalene assemblage of molecules,

657

Brewster, double refraction of strained

glass, 257

— on deviation from Fresnel's tan-

gent law, 339

— property of analcime, 168

Brightness of stars, Bouguer on varying,

304

— of 10^ stars, at a certain radius,

535

Brillouin, relation of Boscovich's theory

to mechanical engineei'ing, 653

Bulk modulus, medium with infinite, 140

— of ether, negative, 410

Cable, Atlantic, of 1865, 692

— submarine, electric wave velocity

in, 691

— subsidential law of wave velocity

in, 692

Caged atom, impacts on, 521

Campbell, velocities of stars, 270

Canton on electric-polarity of tourma-

line, 560

Capillarity, Kayleigh's investigation on,

284

Capillary wave of Scott Eussell, 596

Carbonic acid, viscosity of, 297

Catania, observations from, 307

Cauchy, molecular treatment of wave

theory, 5

— explanation of dispersion, 6

— on deep sea waves, 114, 530
— " Calcul des Residus," 138

— on double refraction, 228
— imaginary refractive index, 379

Cell surface, maximum partitional area

of, 617

Chirality, 436
— of biaxal crystal, Pocklington on,

451

— of cinnabar, 450

— of crystals, Stokes on, 461

— of chlorate of soda crystal, 643

— non- chirality, of Faraday's mag-

netic polarization, 644

— Fresnel on, 449

— of quartz, 449, 637

— of tartaric acid, 643

•— of turpentine, 449

— effect on double refraction, 457

— table of, 460

Chiral medium, speed of circularly po-

larized light in, 443

— properties of quartz, curves

showing, 454

— results. Van 't Hoff and Le Bel,

546

— theories, 459

Chiroid defined, 439

— model of, 588

Chlorate of potash crystals, Herapath's,

634

— optical effects of heat on, 632

— Rayleigh and Stokes on colours

of, 635

— twinning, etc. of, 632

— soda crj'stals, chirality in, 643

Christiansen on anomalous dispersion in

fuchsin, 149

Clausius on energy of gases, 493

— thermal capacities, 499

— viscosity, 286

Clustering of gravitational matter, 540

Coefficients, only fifteen for simplest

Boscovich crystal, 645

Cohesive force, 280

Collision defined, 498

Colour photographs, Becquerel on pris-

matic, 636

Condensational waves, 36

— energy of, 43

— probability of existence of, 140

— produced by reflection and re-

fraction, 44

— solution for points distant from

the source, 63

— or sound waves, non-symmetrical

solution for, 48

Conductivities of metals at low tempera-

tures, 558
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Conductivity, electric, caused by certain

light rays, 501

Conroy, "ideal silver," 326

— on reflected light, 341

Continuity in uudulatory theory, 157

Copper and zinc, heat of combination

of, 282

Cork cited as substance disproving

Poisson's condition, 130

Critical periods of a medium, three kinds

of, 155

Crystals, biaxal, 118

— Barlow's model of, 606

— boundary of, 610

— Green on propagation of light in,

139

— molecularly defined, 559

— pyro-electric, 560

— with ternary symmetry, 638
— — chiral symmetry, 640

Curie brothers, on piezo-electricity, 562

D'Alembert's equations of motion, 22

Democritus on atomic origin, 540

Deville's theory of dissociation, 498

Dewar's "Nadir of Temperature," 558

Diamond, Airy on reflection of, 385

Diffraction, Stokes on, 190

Diffusion, inter-, of solids, 556

— molecular, of lead and gold, 286

Diffusivity, 292

— thermal, of water, Bottoniley on,

287

— material, 290

Dilatancy of sand, 624

Dilatation, cubic, 27

Discontinuous source, waves from a, 108

Dispersion, anomalous, Helmholtz on,

7, 13

— — in chromium salt crystals,

iodine vapour, fuchsin, 149

— — Lommel on, 79

— — Eayleigh on, 76

— — Sellmeier's dynamics of, 103

— Cauchy's explanation of, 7

— dynamics of, 145

— Maxwell on, 337

— mechanical explanation of, 12

— Sellmeier's theory of, 149

Displacement potential, 62

Dissociation, theory of, 498

Distortional waves, 36

— condition for purely, 173

Distortional fundamental solution, 80

Distortion of elastic solid, energy of, 23

— model with twenty-one coefficients

of, 34

— relation between coefficients of,

in isotropic bodies, 25

— twenty-one coefficients of, 24

Eisenlohr, on metallic reflectivities, 385

Elasticity, Todhuuter and Pearson's, 139

Electric asolotropy explained, 562

Electrical waves in ether, energy of, 550

Electric force, suggestion as to the pro-

pagation of, 44

Electricity, contact-, of metals, 548

— friction al, atomic explanation of,

547

Electric screening by imperfect con-

ductors, 681
— waves, 45

— — velocity of, in submarine

cable, 691

Electrification, Hertz' test for, 682

Electrions in an atom, equilibrium of,

551

Electro-inductive capacity, 554

Electro-magnetic disturbances, Rowland
on, 68

— induction in conducting sheets

and solid bodies, 683

— theory of light, 9, 45, 376

Elliptically polarized light, energy of,

263

Elongations, principal, 231

Energy of electric etherial waves, 550
— partition of, 493

— potential, of distorted solid, 232

— rate of transmission of in solid, 204

Epicurus on atomic origin, 540

Equations of motion for elastic body,

22, 26

— heterogeneous elastic body, 27
—

- incompressible solid, 166, 167

Etching, molecular action of hydro-

fluoric acid, 637

Ether, arbitrary distribution of, in atom,

470
— density of, 260

— distribution of, in an atom, 254
— effect of its passage through

matter, 485

— illustration of, by fluid quality of

shoemaker's wax, 10
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Ether, inertia of, 483
— kinetic energy of, 481

— negative bulk modulus of, 410

— not gravitational, 533
— orbit of, in an atom, 476
— properties of luminiferous, 9

— relative motion of, and of ponder-

able bodies, 486

— rigidity of, 265

— sphere of condensation, 414

— stream lines through an atom,

480

— amplitudes of vibrations of, 262

— vs^eight of, if gravitational, 267

— with embedded molecules, motion

of, 189

Ethylene- chloride, viscosity of, 297

Ethylene, viscosity of, 297

Etna, observations from, 307
" Extraneous force " of Green, 227

Faraday, conductivity for lines of force,

554

— effect of magnetic force on cir-

cularly polarized light, 570

— magnetic polarization, non-chi-

rality of, 644

— magneto-optic rotation of vibra-

tional line, 461

Films, translucence of metallic, 324

Fitzgerald on expansion of matter due

to passage of ether through it, 485

Fizeau on interference, 98

— velocity of light, 92

Fluorescence, molecular explanation of,

58

— Stokes on, 301

— of sulphate of quinine, 92

— of uranium glass, 59, 92

Forbes on blue veins in glacier, 581

Foucault, pendulum experiment, 572
— velocity of light, 92

Fourier's series, formula leading to, 112

Fox-Talbot, anomalous disi^ersion in

chromium salt crystals, 149

Fraunhofer, line of sodium vapour,

double dark, 176
Fresnel, chirality, 449
— electro-magnetic theory, 9

— formula for intensity of light

after reflection, 16

— relative motion of ether and
matter, 486

Fresnel's laws and Green's theory com-

pared, 343

— — arrived at by theory, 362

— rhomb, errors in, 394

— — phasal changes in, 387

— — theory of, 386
— wave-surface, Glazebrook on, 426

Frictional electricity, atomic explanation

of, 547

Froude, nautical experiments, 599

Fuchsin, 78

Gait, A., experiment on dilatancy of

sand, 625

— on heat of combination of copper

and zinc, 282

Gases, kinetic theory of, 5, 30

Gas under gravity, equilibrium of, 524

Glaciers, blue veins in, 581

Glazebrook on double refraction, 257

— Fresnel's wave-surface, 426

— wave-surface of aragonite, 429
— vibrational line, 432

Gold leaf, etc., translucency of, 374

Graham on transpiration, 296

Granite, vibrations in, 219

Grating of Prof. Kowland, 98

Gravel, void space in a heap of, 622

Green on Fresnel's wave-surface, 175

— double refraction, 228

— propagation of light in crystals,

139

— results on reflection and refrac-

tion, 14

Green's extraneous force, 227

— dynamical theory, correction in,.

352

— theory and Fresnel's laws com-

pared, 343

Groombridge, 1830, Newcomb on, 273

Groups of waves, velocities of, 58, 59,

90

Haiiy on boracite, 561

Haze, cause of, 307

Heating of water by light, 118

Heat, radiant, of a Leslie cube, 120

Helmholtz, anomalous dispersion, 7, 13

— on Lenz' law, 683

— on viscous consumption of energy,

100

Herapath's crystals of chlorate of potash,

634
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Hercules, motion of solar system to-

wards, 491

Herscbel's discovery of solar system's

motion, 491

Hertz' test of electrification, 682

Huggins' method for relative motion of

earth and star, 491

Huyghens' law of double refraction,

19

Hydrofluoric acid, molecular etching

action of, 637

Hydrokinetic solutions and observations,

436

Iceland spar, 17, 252

—
- — wave-surface for, 429

Ice, physical properties of, 577

"Ideal silver," 326

Ideal solid, 241

Incompressible solid, equations of motion

of, 166, 167

— formed by scalene assemblage of

molecules, 659

Inertia, aeolotropic, 426

— — explained, 438

Institution Lecture, Royal, 85

Intensity of light after reflection, 16

Inter-action of ether and matter, 253

Inter-diffusion of solids, Eoberts-Austen

on, 556

— Loschmidt on, 294

— Maxwell on, 293

Interference, Fizeau on, 98

— perfectness of, for 100,000 periods,

98

Ions, for explanation of electric con-

ductivity caused by ultra-violet and

other rays, 501

Iridescence and twinning of chlorate

of potash crystals, 632

Jamin on amphtudes after reflection,

350

— metallic reflectivities, 385

— reflected light, 341

Joule, mechanical equivalent of heat,

261

— "Thermal effects of fluids in

motion," 595

Jupiter's satellites, eclipses of, 11

Kelvin, Lord, " Thermal effects of fluid

in motion," 595

Kelvin, Lord, "Hydrokinetic solutions

and observations," 436

— "Mathematical Theory of Elas-

ticity," 231

— '
' Mechanical values of electricity,

magnetism and galvanism," 436

— on Lenz' law, 683

Kempf on velocity of sun, 272

Kerr on double refraction of strained

glass, 257

Ketteler on refractive index, 107

Kinetic energy, disappearance of, 188

— theory of gases, 5, 30

Koenig, tuning fork, 53

Kundt, thermal capacity of mercury

vapour, 500

Lagrange, algorithm of finite diflereuces,

69

Lambert's albedo defined, 317

Landolt, table of chirality, 460

Langley, measurements of wave-length,

11

Laplace, tidal problem, 39

"Laplacian" adopted for V"> HI
Larmor, electro-magnetic induction in

conducting sheets and solid bodies,

683

Le Bel, chiral results, 546

Lenz' law, 683

Leroux on anomalous dispersion in

iodine vapour, 149

Leslie's cube, radiant heat of a, 120
—

• experiment in sound, 37, 64

Lockyer, Sir Norman, velocity of stars,

270

Lommel, double refraction, 79

— ordinary dispersion, 79

Lorentz, expansion of matter due to

passage of ether through it, 485

Loschmidt on determination of inter-

diffusivity, 294

— diffusivity, 292
—

- molecular dimensions, 284
Lucretius on atomic origin, 540

MacCuUagh on imaginary refractive

index, 379

— errors in Fresnel's rhomb, 394
MacCuUagh's chiral theory, 459
Macling of quartz, 641

Madau, optical effects of heat on chlorate

of potash crystals, 632

45—3
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Magnetic force, effect on circularly po-

larized light, 570
— polarization, non - chirality of

Faraday's, 644

— screen in teleijhone circuit,

683

— — , rotating conductor is a, 685

Magneto- optical properties of sugar and

quartz, 31

Majorana, observations at Catania and

Mount Etna, 307

Marbacb, chirality of chlorate of soda,

643

Marlowe, tuning fork, 53

Mascart, "Traite d'Optique," 461

Maxwell on Boltzmann's theorem, 494
— dispersion, 377

— dynamics of viscosity, 295

— dynamical theory of gases, 526

— inter-diffusivity, 293
— partition of energy, 494
— viscosity, 286

Maxwell's electro-magnetic theory of

light, 376

McConnel, wave-surface in quartz-

crystal, 452

Meyer, kinetic theory of gases, 292

Mhoic effective thickness, 683

Michelson on relative motion of ether

and matter, 485

— velocity of a group of waves,

58

— — light, 92

Mikrom, 150

Mikron, 121, 150

Model of solid of constant volume and

no rigidity, 127

Moduluses, model of elastic solid with

eighteen independent, 124

— of elastic body, 24, 25

Molecular dimensions, 279, 284

— — table of, 322

— model, 28

Molecules, closest packing of, 619

Morley, fundamental periods of serial

molecule, 163

— relative motion of ether and

matter, 485, 492

— solution for serial molecule, 408

Motion of an elastic solid, possible, 46

Miiller on atmospheric absorption, 320

Murray on contact electricity of metals,

548

" Nabla," suggested name for V'> HI
"Nadir of Temperature," Dewar, 558

Napier's "pressure log," 595

Nature of elemental source of light,

probable, 97

Navier, relation between rigidity and
compressibility, 61

Navier's relation unnecessary, 124

Nernst on conductivity, 557

Newcomb on 1830 Groombridge, 273
— velocity of groups of waves, 58
— waxing and waning of self-

luminous stars, 12

Newton on black spots on soap bubbles,

282

Nitrous oxide, viscosity of, 297

Nomenclature, French classical, 167
— Rankine's, 169

Obermayer on diffusivity, 292

— viscosity of carbonic acid, etc.,

297

Oil films, thickness of, 283

Opacity, magnetic, 375
— of i^ermanganate of potash, 77

Orbital direction in light from mirror,

403

Pendulum experiment of Blackburn, 571
— of Foucault, 572

Phosphorescence, energy theory of, 467
— mechanically illustrated, 187

Phosphoroscope of Becquerel, 92

Piezo-electricity, Curie brothers on, 562
— Voigt's theory of, 566

Pitch, Burgundy or Trinidad, a property

of, 9

Plane wave defined, 132

— in EBolotropic homogeneous elas-

tic solid, most general, 131

Pocklington on chirality of biaxal

crystal, 451

Poisson on deep water waves, 114, 430
— distribution of electricity on two

spheres, 53

— relation between rigidity and
compressibility, 61

— — not essential, 124

, ,. „ d-iv „ ., ,„„— solution of -n2='v-'^-w, 192

Polarizational analysis of reflected light,

332

Polarization, plane of, defined, 14
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Polarized light, direction of vibrations

in, 14

— illustrated by wood ball in jelly,

83

Polish, detection of imperfect, 327

Pouillet on solar radiation, 261

Pyro-electric crystal, 560

Quartz crystal, chirality of, 637

— — macling of, 641

— — wave surface in, 452
— magneto-optical properties of, 31

Quincke, experiment on the translucency

of metallic films, 325

Quinine, fluorescence of sulphate of, 92

Eadian of James Thomson, 23

Ramsey, densities of certain substances

in the solid and liquid states, 299
— thermal capacitiesofargon, helium

and krypton, 500

Eankine, double refraction, 19

— molecular vortices, 571

— nomenclature of, 169
— on stream lines, 585

Eayleigh, Lord, on anomalous dispersion,

76

— — blue sky, 28, 89, 302

— — Boltzmann's theorem, 504
— — capillarity, 284

— — colours of chlorate of potash

crystals, 633

— — double refraction, 19

— — explanation of an effect of

heat on chlorate of potash crystals,

633

— — intensity after reflection, 371
— — magnetic screen in telephone

circuit, 683

— — Maxwell's theory, 377

— — number of atoms per cu. cm.,

305

— — proof of direction of vibra-

tions in polarized light, 322

— — spectrum of blue sky, 319
— — "Theory of Surface Forces,"

280

— — thermal capacity of argon,

helium and krypton, 500

— — thickness of oil films, 283

— — velocity of groups of waves,

58, 59

— — viscosity of argon, 297

Reflection after direct incidence, 369

— — grazing incidence, 372

— displacements in the jDlaue of in-

cidence, 364
— — perpendicular to the plane of

incidence, 363

— dynamical theory of, 14, 351

— intensity after, 371

Reflectivities, 329, 385

Refraction, double, Cauchy on, 228

— — effect of chirality on, 457

— — Glazebrook on, 257
— — Green on, 228

— — Huyghens' law for, 19

— — Lommel on, 79

— — of strained glass, 257

— — Rankine on, 19

— — Rayleigh on, 19

— -- Stokes on, 226, 425

— — — verification of Huyghens'

law for, 19

— dynamical theory of, 14, 104, 351

Refractive index, expression for, 146

— imaginary, 379

— Ketteler and Sellmeier on, 107

Refractivity through wide range of wave-

lengths of rock-salt, 121

Reiuold, "On the limiting thickness of

liquid films," 283

Reynolds, Osborne, dilatancy of sand,

624

Rigidity of ether, 265

Ripples, 593

Risteen on the velocity of the sun, 272

Roberts-Austen, heat of combination of

copper and zinc, 282

— interdiffusion of solids, 556

— molecular diffusion of lead and

gold, 286

Rock-salt, curve of refractivity for, 152

Rcintgen rays, 157

— thickness of oil films, 283

Rood, intensity of light after reflection,

16

Rosa, Monte, observations on, 307

Rotating rod, vibrations in a rapidly,

575

Rotational waves, 282

Rowland, electro-magnetic disturbances,

68

— on his {^"ating, 98

— model vibrator, 185

— wave-machine, 163
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Rubens, experiments on sylvin and rock-

salt, 151

Riicker, "On the limiting thickness of

liquid films," 283

Rudberg on sodium light, 454

Russell, Scott, capillary waves, 596

Sand, dilatancy of, 624

Sarrau, chiral theory, 459

Sella, observation on Monte Rosa, 307

Sellmeier, exjDlanation of absorption,

101

— dynamics ofanomalous dispersion,

103, 149
•— on refractive index, 107

Sellmeier's formula applied to gas with

only one molecular period, 182

Serial molecule, arithmetical values for,

103

— — critical values of period of, 55

— — determinant, numberof terms

in, 70

— — fundamental periods of, 163

— — jangling of, 91

— — roots of equation for, 75

— — solution for, 408

— — vibrations of, 39

Shocks are the most probable source of

light, 97

Silence, cones of, indicated in displace-

ment potential, 64

— — for tuning fork, 51, 53

Silver, "ideal," 326

Smith, Archibald, on Fresnel's wave

surface, 430

— Willoughby, on volta-electric in-

duction, 684

Smith's Prizes examination, 35

Soap bubbles, Newton on black spots

on, 282

. Soda, nitrate of, 252

Sodium atom period, 8

— light, Rudberg on, 454

— vapour, double dark Fraunhofer

line of, 176

— — probable moleaular structure

of, 102

Solar radiation, Pouillet on, 261

Solution, general, ofcertain simultaneous

partial differential equations, 35

Sound, velocity of, 29

Source of light, simplest vibrator re-

presenting, 84

Source of light, probable nature of

elemental, 97

Spheres, distribution of electricity on

two, 53

— resistance of a fluid to two os-

cillating, 53

Stability of molecular assemblages, 671

— — not secured by positive modu-

luses, 673

Starhght, total, 275

Stars, self-luminous, waxing and waning

of, 12

Star velocities calculated, 534

Steeple curve, 114

Stokes, adamantine property, 385

— blue sky, 89

— chirality in crystals, 461

— — of chlorate of soda crystals,

643

— colours of chlorate of potash

crystals, 635

— double refraction, 226, 425
—

• dynamical explanation of dark

line in solar spectrum, 8

— theory of diffraction, 190

— equivoluminal and irrotational

constituents of dispersion, 193

— exj)lanation of absorption, 101

— fluorescence, 301

^ iridescence and twinning of

chlorate of potash crystals, 632

— on Leslie's experiment, 37, 64

— proof of direction of vibration in

polarized light, 322

— resistance of a fluid to two oscil-

lating spheres, 53

— verification of Huyghens' law of

double refraction, 19

— wave-surface for Iceland spar, 429

— work against viscosity to maintain

a wave, 595

Stoney, molecular dimensions, 284

Sugar, magneto-oijtical properties of, 31

Sunlight, energy of, 260

Surface forces, Rayleigh on, 280

— tension, 282

Sylvin, 151, 154

— curve of refractivity for, 153

Tait, foundations of kinetic theory of

gases, 494

Tartaric acid crystal, chirality of, 643

Tasinomic coefficients explained, 223
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Telephone circuit, magnetic screen in,

683

Tetrakaidekahedron, 615

Thermal capacities, Clausius on, 499

Thermal capacities of mercury vapour,

etc., 500

Thlipsonomic coefficients explained, 223

Thomson, James, plasticity of ice, 577
— — radian, 23

— — "forcive" of, 644

Thomson, J. J., "Electric conduction

through gases," 406
— — ions explaining conduction

caused by certain light rays, 501

Tidal problem of Laplace, 39

Time relation between periods in ether

and matter, 8

Tourmaline, electro-polarity of, 560

— pyro-electricity of, 561

Transluceney of gold leaf, etc., 374
— metallic films, 324

Tuning-forks of Marlowe and Koenig, 53

Twinning of chlorate of potash crystals,

632

Twin or double crystal, 629

Tyndall on some physical properties of

ice, 577

Ultra-violet rays, effect of, on electric

conduction explained, 501

Uranium glass, fluorescence of, 50, 92

Van 't Hoff, chiral results, 546

Varley's kathode torrent, 544

Velocity of light, 92

— propagation of waves through
ether with embedded molecules, 117

— stars, 270
— sun, 272

Velocity-potential defined, 62
— — for oscillating sjjhere, 50, 52

— — for radially vibrating sphere,

50, 52

— — for vibrating fork, 50, 52
Vibrating particle, extension of Helm-

holtz', 30

— serial molecule, 39

Vibration to and fro of two globes, 86

Vibrational line, 432

— — magneto-optic rotation of, 461

Vibrations, direction of, in polarized

light, 322

Vibrations in rapidly rotating rod, 575

Vibrators, contrary, in one line, 94

Viscosity, Clausius and Maxwell on,

286

Viscous consumption of energy, Helm-

holtz on, 100

Voigt, chiral theory, 459

— theory of piezo-electricity, 566

Volta-electric induction, 684

Vortices, molecular, 571

Waitz on diffusivity, 292

Waterston, law of partition of energy,

493

Wave-lengths, measurements of, 11

Wave machine, 163

Wave-motion, quasi-, in medium with

complex density, 379

Wave theory, difficulties of, 119

Waves, condensational; see "Condensa-

tional
"

— condition for no condensational,

223

— deepwater,of CauchyandPoisson,

530

— distortional, 36, 80

— energy of, 109

— — electric etherial-, 550

— from a discontinuous source,

108

— in incompressiblf solid, 204

— in elastic solid, solution for, in

finite terms, 529

- "On reflection and refraction of

cwlitary plane waves," 191

— spherical, in an elastic solid, 190

Wave-surface in quartz crystal, 452

Wind, effect of, on water waves, 590

Work against viscosity to maintain a

wave, 595

— curves for assemblages of mole-

cules, 669

Young, equal densities or rigidities of

media, 371

— on molecular dimensions, 280
— relative motion of ether and

matter, 486

Zettwuch on blue sky, 230

Zinc and copper, heat of combination

of, 320
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